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Additional description of the measurements

1. The WETLabs ECO-FLBB instruments were programmed to sample for 
approximately 1 second at prescribed pressures with vertical resolution increasing 
towards the surface (i.e., every 25 m between 1000 and 500 m, every 20 m 
between 500 and 400 m, every 10 m between 400 and 150 m, and every 5 m 
between 150 and 5 m).  

2. The floats were originally equipped with SBE oxygen sensors, but these failed 
shortly after deployments and are thus not available for this analysis.

Argument supporting the sensing of small particles

The arguments below are provided in support of the statement that low-pass filtered 
particulate optical backscattering (bbp) data are sensitive to small particles.

1. Particles larger than about 20um should appear as spikes in bbp measurements 
[Briggs et al., 2013].  We used a median filter to remove most/all spikes from our 
datasets [see Figure 2].  

2. In addition, the influence of large particles was further reduced in our 
measurements, because relatively large volumes of water were sampled by the bbp 
instruments.  The volume of water sampled by each measurement was about 10-30 
times larger than the volume the instrument would have sampled if the float had not 
been not moving vertically.  The work by Briggs et al. [2013] can be used to predict 
how optical spikes due to large particles affected our bbp measurements.  Sample 
volume is inversely related to the variance-to-mean ratio (which increases when the 
concentration of large particles increases) of the measured optical property [eq. A6 
in Briggs et al., 2013]. Thus, the bbp values recorded when the floats were 
ascending are expected to be less affected by spikes generated by large particles.  
This is because, although there are in average more large particles in a larger 
volume of sampled water, the relevant quantity affecting optical measurements is 



their concentration. Large particles are very rare in a small volume of water.  When 
they do occur, however, their concentration is significantly larger than in a larger 
volume of water and the optical instrument records a spike.  In summary, binning 
optical data (or sampling when the instrument is moving with respect to the water) 
increases the volume of water sampled and decreases the influence of spikes, 
without increasing significantly the mean value of the measured optical property [eq. 
14 in Briggs et al., 2013].

3. Simulations based on particle size distributions measured in the upper productive 
layer (and thus more abundant in large particles than deeper layers), suggest that, 
to first order, a dominant (>95%) fraction of bbp is generated by particles smaller 
than 10um [Stramski and Kiefer, 1991; Morel and Ahn, 1991].  Although the 
complexity of marine particles may invalidate the results of the above simulations, 
these modeling results nevertheless support, at least to first order, the statement 
that bbp signals are generated by small particles.

In summary, although we do not have direct observations of the sampled particles 
(besides our optical measurements), based on the above arguments, we conclude that it is 
highly unlikely that the smoothed bbp values presented in this manuscript were generated 
by particles greater than about 10-20um.  Most likely, particles smaller than 10um 
contributed the majority of the bbp signal.

Uncertainty estimation for instantaneous fluxes and transfer efficiencies 

Uncertainties in instantaneous fluxes and transfer efficiencies were computed following a 
Monte Carlo approach.  The uncertainties in these output variables were assumed to be 
due to uncertainties in the input parameters required for their computation: (1) the bbp 
values, and the POC:bbp ratios (2) within and (3) below the mixed layer.  Independent 
normally-distributed random distributions (N=1000 for each input variable) were generated 
using as averages the measured bbp values at each point sampled by each float and the 
POC:bbp values from Cetinic et al., (2012, the averages of the two communities within and 
below the mixed layer).  The uncertainties (i.e., standard deviations) associated with each 
input variable were computed as follows.  The combined experimental uncertainty in bbp 
was estimated following Dall'Olmo et al. (2012) by accounting for the uncertainties in the 
scaling factors (S), chi-factor (χp) and instrument precision (C; Table A1).  The symbols are 
provided to facilitate a comparison with Table 3 in Dall'Olmo et al. (2012). Note that 
uncertainties in dark counts (D) and the volume scattering function of pure sea water (βsw) 
were not included, because they represent biases that were removed by subtracting the 
minimum bbp value from each time series (see Methods section).

Input variable
Uncertainty

[units]

S 10%

χp 2.9%

C 2 [counts]

Table A1: Uncertainties in bbp input variables.



The uncertainties in the POC:bbp averages were conservatively estimated as three times 
the squared root of the sum of the squared standard deviations reported for the two 
communities within and below the mixed layer by Cetinic et al. (2012). The resulting 
uncertainties in the POC:bbp ratios within and below the mixed layer were: 8475 and 6282 
mg C m2, respectively.  

An example of the Monte Carlo output is presented in Figure A1.  Furthermore, to provide 
an overall picture of the impact of noise (uncertainties) on our estimates, we present in 
Figure A2 the signal-to-noise ratios (SNR) of our instantaneous flux estimates.  These 
SNR were computed as the ratio of the mean to the standard deviation of the 1000 Monte 
Carlo realizations.  Figure A2 demonstrates that the SNR was typically above 1 and 
reached values greater than 4 when fluxes were maximal.

Uncertainties in E and spatial-homogeneity requirements in the open ocean

In this section we derive an analytical approximation to estimate the uncertainty in the 
export flux. We then use this approximation to estimate the uncertainty in flux that is 
obtained when integrating float-based measurements over a given amount of time.

The flux E within a given layer of the mesopelagic is here defined as the rate of change of 
iPOC during a period of time (∆t = t2 -t1):

E=
Δ iPOC

Δ t
=

Δ P
Δ t

=
P2−P1

t 2−t1
, where Pi stands for iPOCi.

The variance in E is thus (standard law of propagation of uncertainties):

Figure A2: Signal-to-noise ratios (SNR) computed for each instantaneous flux. Colors and 
vertical dashed lines are as in Figure 3 of the main text.  The horizontal dashed lines mark 
the SNR=1, when the standard deviation equals the mean of the 1000 Monte Carlo 
realizations. (a) Float 6900798, (b) float 6900799.

Figure A1: Example of the Monte Carlo output for Ezp (thin pink lines) and E0 (thin gray 
lines).  The averages (+/- 1 standard deviation) are also presented as thicker lines. (a) 
Float 6900798, (b) float 6900799.
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where σP1, σP2 and ρ12 are the uncertainties in P1 and P2 and the correlation coefficient 
between P1 and P2, respectively.

Thus, in general:

σE
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Δ t 2
 (1).

Here we assume that the relative error in iPOC, σr, is approximately constant, consistent 
with the results from our Monte Carlo calculations when the water column is stratified (see 
Table A2 below).  In addition, we assume that time t has no uncertainties and that iPOC 
grows linearly with time, which allows us to set a fixed value for E (as a first 
approximation).  Then,

P2=EΔ t+P1  (2).

By combining equations (1) and (2) the (squared) relative error in E can be obtained: 
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We can then derive an expression that allows us to estimate the (squared) ratio of the 
relative error in E as a function of the (squared) relative error in iPOC (which is known) and 
of ∆t:

σ=1+2
P1

EΔ t
(1−ρ)+2(

P1

EΔ t
)
2

(1−ρ)   (3), 

where σ=[(σE/E)/σr]2,  and ρ is the autocorrelation 
function.

Equation (3)  allows us to understand how fast the 
relative error in E approaches its minimum value as ∆t 
increases.  

The limit results are:
a)  as E∆t → 0, σE:E → +∞ 
b)  as E∆t → +∞, σE:E → σr, 
c)  as P1 → 0, σE:E → σr, 
d)  as P1 → +∞, σE:E → +∞. 
e) if ρ=1, then σE:E = min(σE:E) = σr.

Thus, according to equation (3), the relative uncertainty 
in E (σE:E) can never be smaller than the relative 

Figure A3: Ratio of relative error 
in E to relative error in iPOC as a 
function of ∆t, for two values of E 
and corresponding typical values 
of iPOC.  Low export case: E = 10 
mg m-2 d-1; P1 = 2000 mg m-3.  High 
export case: E = 100 mg m-2 d-1; 
P1= 5000 mg m-3.



uncertainty in iPOC (σr).  This minimum error is achieved for very large integration times 
(i.e., ∆t).

Figure A3 is a plot of σ computed using equation (3) and accounting for the autocorrelation 
as a function of ∆t.  (The autocorrelation of our raw iPOC dataset varied approximately 
linearly between 1 and 0.25 for ∆t = [1:100], independent of depth). 

Typical iPOC relative errors ranged between about 20% and 60% during the stratified 
period, with maximal values found in winter and typical (mean±st.dev.) values between 
spring and autumn as in Table A2.

Extremes of depth 
integration

Float 6900798 Float 6900799

0; zp 0.217 ± 0.019 0.219 ± 0.019

zp; 1000 0.204 ± 0.006 0.204 ± 0.006

zp+100; 1000 0.214 ± 0.003 0.214 ± 0.004

zp+200; 1000 0.219 ± 0.004 0.219 ± 0.005

zp+300; 1000 0.226 ± 0.006 0.227 ± 0.006

zp+400; 1000 0.237 ± 0.007 0.237 ± 0.007

zp+500; 1000 0.249 ± 0.008 0.249 ± 0.008

Table A2: Average and standard deviations of typical iPOC uncertainties between spring 
and summer.

Table A3 presents typical uncertainties in Ezi resulting for integration times of 10 and 30 
days for the low and high export cases of Figure A3 and for the average errors reported in 
Table A2.

Extremes of 
depth 

integration

Integration time = 10 days Integration time = 30 days

Low export High export Low export High export

0; zp 1.75 1.07 0.51 0.38

zp; 1000 1.63 1.00 0.48 0.35

zp+100; 1000 1.71 1.05 0.50 0.37

zp+200; 1000 1.75 1.07 0.51 0.38

zp+300; 1000 1.81 1.11 0.53 0.39

zp+400; 1000 1.90 1.16 0.56 0.41

zp+500; 1000 1.99 1.22 0.58 0.43

Table A3: Uncertainties in Ezi computed using Eq. (3) and obtained from uncertain iPOC 
estimates taken 10 and 30 days apart for the two export scenarios described in Figure A3.  

 
Thus, for a high-export case (E = 100 mg m-2 d-1), we expect a typical relative uncertainty 



in E ranging from 35% to 43%, when using a ∆t =30 days.  Uncertainties increase when E 
decreases to 10 mg m-2 d-1 or when ∆t  decreases.

If a float drifts at depth in a straight line at an average speed of 5.4 cm/s [Ollitrault and 
Rannou, 2013], over 30 days it will have traveled about 140 km.  Therefore, assuming that 
the uncertainties in POC:bbp are realistic, to compute export over regions where the floats 
are not confined in a given basin, an assumption of spatial homogeneity over typical 
scales of 150 km is required.  Improved estimates of the POC:bbp ratio would significantly 
reduce uncertainties and allow to relax the above assumption.

Additional plots

Figure A4: Temperature data (colors and white contours) for floats 6900798 (top) and 
6900799 (bottom). The black line is the mixed layer depth estimate based on the 0.10 kg 
m-3 density criterion.



Figure A6: Chlorophyll fluoresce data for floats 6900798 (top) and 6900799 (bottom). 
White lines are mixed-layer-depth estimates based on the 0.10 kg m-3 density criterion.

Figure A5: Salinity data (colors and white contours) for floats 6900798 (top) and 6900799 
(bottom). The black line is the mixed-layer-depth estimate based on the 0.10 kg m-3 density 
criterion.  Red and blue colors have been selected to differentiate the two main water 
masses of the region: (red) the saltier and warmer Atlantic Water, and (blue) the cooler 
and fresher Arctic Water.



MODIS estimates of Particulate Inorganic Carbon

Particulate Inorganic Carbon (PIC) estimates were obtained from NASA Giovanni for 2011 
and 2012.  Figure A7 demonstrates that in 2012 elevated concentrations of PIC were 
found in the region sampled by the floats (70degN, 0-5degE).

Estimation of euphotic depth

The depth of the bottom of the euphotic zone (zeu, 
i.e., 1% of surface irradiance) was computed based 
on an empirical relationship (Figure A7) that was 
established between float-based surface (10 m) chl 
and MODIS AQUA remote-sensing estimates of zeu:

(zeu)-1 = 0.012939 + 0.018151 chl10  .

The R2 of the log-transformed relationship was 
0.70.

Figure A8: Empirical fit relating 
MODIS estimates of zeu and float-
based measurements of chl 
fluorescence at a depth of 10 m.

Figure A7: NASA Giovanni images of MODIS estimates of 
particulate inorganic carbon from 2011 and 2012. White areas are 
land or clouds.
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