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Abstract 14 

Increased settlement on bacterial biofilms has been demonstrated for a number of marine 15 

invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested 16 

the hypothesis that the bay barnacle Balanus improvisus utilises the bacterial signal molecules 17 

N-acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent 18 

attachment. Single species biofilms of the AHL-producing bacteria Vibrio anguillarum, 19 

Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. 20 

improvisus. However, when AHL production was inactivated, either by mutation of the AHL 21 

synthetic genes or by expression of an AHL-degrading gene (aiiA), the ability of the bacteria 22 

to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli 23 

expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3-oxo-C6-HSL), 24 

rhlI from Pseudomonas aeruginosa (C4-HSL/C6-HSL), vanI from V. anguillarum (3-oxo-25 

C10-HSL), and sulI from Sulfitobacter sp. BR1 (C4-HSL, 3-hydroxy-C6-HSL, C8-HSL and 26 

3-hydroxy-C10-HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs 27 

(C8-HSL, 3-oxo-C10-HSL and C12-HSL) at concentrations similar to those found within 28 

natural biofilms (5 µM) resulted in increased cyprid settlement. Thus, B. improvisus cypris 29 

exploration of and settlement on biofilms appears to be mediated by AHL signalling bacteria 30 

in the laboratory. This adds to our understanding of how quorum sensing inhibition may be 31 

used as for biofouling control. Nonetheless, the significance of our results for larvae settling 32 

naturally in the field, and the mechanisms that underlay the observed responses to AHLs, are 33 

as yet unknown.  34 
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Introduction 39 

Many reports have described enhanced settlement of algal spores and invertebrate larvae 40 

on bacterial biofilms, (e.g. ascidians, barnacles, bryozoans, corals, echinoderms, polychaetes, 41 

molluscs, and sponges; reviewed by Wieczorek and Todd, 1998; Hadfield and Paul, 2001; 42 

Hadfield 2011). The microbially-derived agents that mediate this induction are not only 43 

important for selection of surfaces, but can also trigger metamorphological events in certain 44 

species (Wieczorek and Todd, 1998; Hadfield and Paul, 2001; Hadfield 2011). Reports of 45 

both surface-attached and water-bourne attractants derived from microbial films have been 46 

described (Leitz and Wagner, 1993; Wieczorek and Todd, 1988; Harder et al., 2002), but until 47 

recently, very few have identified the cue responsible (reviewed in Hadfield, 2011). There is 48 

evidence to suggest that for larvae of some marine invertebrates, the receptor that detects the 49 

presence of a biofilm is a lectin. This includes the spirorbid polychaete Janua brasiliensis 50 

(Maki and Mitchell, 1985), the ascidians Herdmania curvata (Woods et al., 2004) and 51 

Boltenia villosa (Roberts et al., 2007), and the barnacle Balanus amphitrite (Khandeparker et 52 

al., 2003). In addition Grasso et al. (2008) found high levels of transcripts for a protein that 53 

includes a C-type lectin domain in the anterior tip of larvae of the coral Acropora millepora. 54 

In the polychaete, Hydroides elegans, inhibiting the activity of a p38 mitogen-activated 55 

protein kinase inhibited the biofilm-induced larval settlement (Wang and Qian, 2010), and a 56 

similar protein has been shown to regulate settlement of the barnacle Balanus amphitrite (He 57 

et al, 2012).  58 

An alternative settlement cue has been described for the zoospores of the problematic 59 

biofouling macro-algae Ulva: N-acylhomoserine lactone signal molecules (AHLs) (Joint et 60 

al., 2002). Production of AHLs by biofilms affect swimming behaviour of the zoospores 61 

through a process of chemokinesis, which brings about decreased swimming speed (Wheeler 62 
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et al., 2006) and increased settlement within areas of high AHL production, such as dense 63 

biofilm micro-colonies (Tait et al., 2005). These AHL signal molecules are used by bacteria 64 

to co-ordinate their behaviour on a population level: a process known as ‘quorum sensing’ 65 

(QS). QS links the concentration of signal molecule to the expression of multiple genes, 66 

including those involved in secondary metabolism, virulence and biofilm development in a 67 

variety of bacteria (Swift et al., 2001). Along with Proteobacteria, AHL-production has been 68 

reported in Cyanobacteria and Bacteroidetes (Sharif et al., 2008; Huang et al., 2008), 69 

indicating AHL-mediated signalling is particularly widespread amongst marine bacteria. 70 

Specialist niches, such as biofilms, promote the growth of dense microbial populations in 71 

which AHL signalling can be detected (Huang et al., 2009), and concentrations of AHLs of ~ 72 

600 pmol cm
-2

 can be detected within natural rocky shore biofilms (Tait et al. 2009).  73 

Since the initial discovery of the involvement of AHLs in Ulva zoospore settlement, N-74 

butanoyl-L-homoserine lactone (C4-HSL) has been shown to up regulate sporulation in the 75 

red algae Acrochaetium sp. (Weinberger et al., 2007) and a possible role for QS has also been 76 

suggested in the settlement of invertebrate larvae: using the QS blockers 5-hydroxy-3[1(R)-1-77 

hydroxypropyl]-4-methylfuran-2(5H)-one, (5R)-3,4-dihydroxy-5-[(1S)-1,2-78 

dihydroxyethyl]furan-2(5H)-one and triclosan Dobretsov et al. (2007) inhibited the 79 

establishment of a bacterial biofilm, and thereby decreased the settlement of larvae of the 80 

polychaete H. elegans and the bryozoan Bugula neritina. However, although synthetic AHLs 81 

(> 100 μM) induced crawling behaviour in H. elegans (a prerequisite to larval settlement) 82 

none of the AHLs tested induced larval settlement to the same extent as natural biofilms 83 

(Huang et al., 2007). Dobretsov et al. (2009) also refers to similar but unpublished results for 84 

the barnacle Balanus amphitrite.  85 



 

5 

The response of B. amphitrite to bacterial biofilms has been the most widely studied, but 86 

several other barnacle species are known to settle preferentially on bacterial biofilms, 87 

including Balanus improvisus (O’Connor and Richardson, 1996), Balanus trigonus 88 

(Thiyagarajan et al., 2006), Semibalanus balanoides (Thompson et al., 1998) and Elminius 89 

modestus (Neal and Yule, 1994). Although the response of barnacles to a glycoprotein termed 90 

settlement-inducing complex (SIPC), isolated from adult shells has been well documented 91 

(Matsumura et al., 1998; Dreanno et al., 2007), the nature of the cue derived from biofilms is 92 

not well understood. It is possible that marine biofilms produce a compound similar to SIPC, 93 

or that they are likely to be responding to multiple cues (Hadfield, 2011) such as a component 94 

of biofilm EPS (Khandeparker et al., 2003) or alternative, currently undetermined biofilm 95 

properties. Interestingly, for B. amphitrite, it is known that settling cypris larvae can 96 

distinguish between biofilms of varying community composition, preferring to settle on 97 

biofilms characteristic of their adult habitat (Lau et al., 2005).  98 

The aim of the present study was to assess the impact of AHL signals on settlement of 99 

cypris larvae of the bay barnacle B. improvisus. This invasive species is thought to have 100 

originated in North America, but now has a world-wide distribution as a result of dispersal as 101 

a biofouling agent on the hulls of ships. Similar to the more widely studied B. amphitrite 102 

(Harder et al., 2001; Qian et al., 2003; Hadfield, 2011), B. improvisus has been shown to 103 

settle preferentially on bacterial biofilms (O’Connor and Richardson, 1996). There are, 104 

however, key differences: B. amphitrite has a preference for hydrophilic surfaces, but the 105 

presence of older biofilms enhance larval attachment, irrespective of the type of substrate 106 

(Hung et al., 2008). In contrast, B. improvisus has shown a clear preference for hydrophobic 107 

substrates (Dahlström et al., 2004) and smooth substrata (Berntsson et al., 2000), and the 108 

presence of a biofilm can alter the response of B. improvisus cyprids to particular surfaces, 109 
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decreasing detachment to hydrophobic polystyrene but increasing attachment to hydrophilic 110 

glass (O’Connor and Richardson, 1996). This indicates that the nature of the biofilm and 111 

perhaps also the B. improvisus cyprid-settlement cue may be altered by properties of the 112 

underlying substratum.  113 

To investigate the role of AHL signal molecules on the settlement of cyprid larvae of B. 114 

improvisus, we adapted methodologies used to investigate the role of AHLs in Ulva zoospore 115 

settlement (Joint et al., 2002; Tait et al., 2005). Live single species biofilms of the marine 116 

bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were used to 117 

provide a natural supply of AHL signal, and the response of B. improvisus cyprids compared 118 

with AHL-deficient variants of the three strains. Attempts were also made to assess cyprid 119 

responses to biofilms of E. coli expressing recombinant AHL synthases, as well as to 120 

synthetic AHLs.  121 

 122 

Materials and Methods 123 

Bacterial strains  124 

All bacterial strains and plasmids are described in Table 1. The influence of AHL signal 125 

molecules on cyprid settlement were assessed using three AHL-producing strains and their 126 

signal-deficient mutants V. anguillarum and A. hydrophila each contain a mutation to the 127 

AHL synthases: vanM in V. anguillarum (Tait et al., 2005) and ahyI in A. hydrophila (Lynch 128 

et al., 2002). In addition, we also used a strain of V. anguillarum that expresses an inducible 129 

copy of aiiA, a lactonase enzyme which has been shown to degrade AHLs (Tait et al., 2005). 130 

An AHL-deficient variant of Sulfitobacter sp. BR1 was constructed first by transforming with 131 

the luxR::luxI’ Gfp-based AHL reporter plasmid pRK-C12 (Reidel et al., 2001) to produce a 132 

strain that self-reported AHL production (BR1 pRK-C12). Transposon mutagenesis of BR1 133 
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pRK-C12 with the EZ-Tn5™ <R6Kγori /KAN-2>Tnp Transposome kit (Epicentre 134 

Biotechnology) was used to randomly mutate the genome of BR1. The transformants were 135 

plated onto marine agar containing both gentamicin and kanamycin and the colonies were 136 

then screened for the lack of Gfp production. The absence of AHL production was confirmed 137 

in dark colonies. As EZ-Tn5™ contains its own origin of replication the insertion site was 138 

located by extracting the DNA (DNeasy extraction kit, Qiagen), partially digesting the DNA 139 

with EcoRV and self-ligating to form mini-plasmids. E. coli pir+ was transformed with the 140 

ligated DNA fragments and kanamycin resistant colonies selected. An insertion in a gene with 141 

homology to luxI genes was located and designated sulI. This gene was amplified from BR1 142 

using the primers sulIF (AGTTGCGATCATGGCAGAACC) and sulIR 143 

(TACAAGGATATCGACCAGCA), cloned into pGEM to generate pKT11 and transformed 144 

into chemically competent JM109. Using thin layer chromatrography (TLC) plates overlaid 145 

with the AHL biosensor Agrobacterium tumefaciens NTL4 (pCF218) (pCF372) (Fuqua and 146 

Winans, 1996), AHL production by wildtype BR1 and E. coli pKT11 was clearly visible, but 147 

there was no AHL production in BR1 with the mini-Tn5 insertion in the sulI gene (Figure 1). 148 

Culture supernatants of the BR1 WT, the sulI mutant and E. coli pKT11 were extracted with 149 

dichloromethane and evaporated to dryness. The extracts were applied to RP18 F245 TLC 150 

plates (20 x 20 cm; VWR International) and a mobile phase of 60% (v/v) methanol used to 151 

separate the extracts. TLC plates were overlaid with the biosensor NTL4 (pCF218; pCF372) 152 

(Fuqua & Winans, 1996) following the methodology of Mohammed et al., (2007). Following 153 

incubation at 30 °C overnight, the TLC plates were examined for the presence of blue spots, 154 

indicative of AHL production. The same AHLs produced by the BR1 WT were also produced 155 

by the E. coli expressing the recombinant sulI. No AHLs were detected in the presence of the 156 

BR1 sulI mutant, confirming the disruption to the AHL synthases in this bacterium.  157 
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 The miniTn7 system developed by Lambertsen et al. (2004) was used to make Gfp-158 

tagged varients of V. anguillarum WT and the vanM mutant. A four parental mating between 159 

V. anguillarum NB10 or DM28 (recipients), E. coli pRK6000 (conjugation helper), E. coli 160 

pMiniTn7(Gm)PrrnB1gfp.-a (donor) and E. coli pUX-BF13 (transposition helper) was carried 161 

out, and transconjugants selected on TSB supplemented with 50 μg ml
-1

 gentamycin. Site-162 

specific insertion of Tn7 downstream of the glmS gene was verified by PCR (Lambertsen et 163 

al., 2004). 164 

 Escherichia coli JM109 biofilms expressing vanI from V. anguillarum (producing 3-165 

oxo-C10-HSL), luxI from Vibrio fischeri (3-oxo-C6-HSL), rhlI from Pseudomonas 166 

aeruginosa (C4-HSL/C6-HSL) and sulI from Sulfitobacter sp. BR1 (C4-HSL, 3-hydroxy-C6-167 

HSL, C8-HSL and 3-hydroxy-C10 (Figure 1) were compared to biofilms containing the 168 

vector plasmids without the luxI homologues (Table 1).  169 

 Sulfitobacter sp. BR1 was routinely grown in Difco Marine Broth. V. anguillarum 170 

strains were grown in Tryptic Soy Broth (TSB), and A. hydrophila strains and E. coli strains 171 

in Luria Broth. Temperatures for incubation were 37 °C for E. coli and 25 °C for V. 172 

anguillarum, A. hydrophila and Sulfitobacter sp. BR1.  173 

 174 

Preparation of biofilms 175 

Biofilms were prepared as previously described (Tait et al., 2005). Briefly, cultures were 176 

grown overnight in rich media, the cells harvested by centrifugation, washed and resuspended 177 

in sterile, filtered seawater (0.2 μm, salinity 15 ‰) to an OD of 1.0. Varying volumes of cell 178 

suspension (50 – 100 µl) were used to inoculate biofilm culture vessels which contained 10 179 

ml sterile, filtered seawater (0.2 μm, salinity 15 ‰) and sterile microscope cover glasses, and 180 



 

9 

the vessel incubated for 24 h at room temperature. By adjusting the volume of the inocula, 181 

similar densities of signal-producing and non-producing biofilms were achieved.  182 

 183 

Preparation of Balanus improvisus cyprids and settlement assays 184 

Balanus improvisus cyprids were reared in a laboratory culture system at the Sven Lovén 185 

Centre for Marine Sciences in Tjärnö, Sweden as described by Berntsson et al. (2000). 186 

Settlement assays were performed by placing cover glass biofilms, synthetic AHLs plus clean 187 

cover glasses, or clean cover glasses only (controls) into each well of 6-well culture plates 188 

(Corning Costar Cell Culture Plates) containing 10 ml sterile, filtered seawater (0.2 μm, 189 

salinity 15 ‰). Between 10 and 12 cyprids were added to a minimum of 12 replicates, and 190 

incubated at 18 °C with a light/dark cycle of 9:15 h for a period of 7 days. The vessels were 191 

monitored daily using a dissecting microscope (x10 magnification), and the numbers of (1) 192 

permanently settled cyprid larvae (following expulsion of cement), (2) exploratory cyprids 193 

(non-permanent settlement or active crawling on vessel surface) and (3) dead cyprids was 194 

recorded daily. Experiments with V. anguillarum were repeated with three separate batches of 195 

cyprids and experiments with Sulfitobacter sp., E. coli or synthetic AHLs repeated with two 196 

separate batches of cyprids. Due to varying quantities of cyprids within the different batches, 197 

experiments with A. hydrophila experiments were conducted only once. As the E. coli died 198 

during the long incubations in seawater, biofilms were only monitored for 2 days. Each cyprid 199 

batch was derived from different multiple barnacle parents. 200 

As biofilm density influences AHL production, care was taken to ensure biofilms of 201 

signal-producing and signal-deficient strains were of similar densities. The proportion of the 202 

surface area covered by bacteria was determined with microscope image analysis, using an 203 

Image ProPlus imaging system attached to a Reichert Jung Polyvar microscope and a 204 
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Optronics Magna Fire SP camera. Biofilm material was stained with crystal violet 1% 205 

aqueous solution and counts were made of 20 random fields of view from each of four 206 

replicates.  Measurements revealed similar percent coverage for signal-producing and signal-207 

deficient mutants of all three bacteria. The percent coverage for V. anguillarum WT biofilms 208 

was 26.04% ± 1.54, for V. anguillarum vanM mutant biofilms, 25.43% ± 1.14 and for V. 209 

anguillarum expressing the recombinant AiiA lactonase, 25.33% ± 1.59.  A. hydrophila WT 210 

biofilm densities were 21.8% ± 1.3 and the ahyI- mutant, 23.77% ± 1.18. For Sulfitobacter sp. 211 

BR1, biofilm densities were 42.42% ± 2.21 for the WT and 37.29% ± 3.67 for the signal-212 

deficient mutant.  213 

 214 

Quantification of introduced bacteria during cyprid settlement assays 215 

To calculate the numbers of bacteria introduced to the biofilm along with the cyprids during 216 

the long experiments, Gfp-variants of V. anguillarum and the vanM mutant were used. 217 

Similarly, to detect if any of the introduced bacteria were making AHLs, a V. anguillarum 218 

vanM mutant carrying a gfp-based AHL biosensor luxR-PluxI-RBSII::gfpmut3*-T0 was used 219 

(Tait et al., 2005). This strain does not produce any AHLs, but expresses Gfp when an 220 

exogenous source of AHL is detected. This was compared to the number of Gfp-producing 221 

bacteria within biofilms of the V. anguillarum wildtype strains containing the same construct.  222 

Biofilms were counterstained with 1 mg ml
-1

 DAPI and viewed using a Reichert-Jung Polyvar 223 

microscope. A blue light filter (excitation, 450–495 nm; emission, 510 nm; dichroic, 510 nm) 224 

was used for Gfp fluorescence and an ultraviolet filter (excitation, 330–380 nm; emission 420 225 

nm; dichroic 420 nm) for DAPI. Image Pro+ 5 (Media Cybernetics) was used to estimate the 226 

percentage of cells expressing Gfp. Counts were made of 10 random fields of view from each 227 

of four replicates.  228 
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 229 

Settlement assays using synthetic AHLs 230 

To quantify cyprid response to synthetic AHLs, 0.5, 5 and 50 μM C6-HSL (N-hexanoyl-L-231 

homoserine lactone), C8-HSL (N-octanoyl-L-homoserine lactone), C12, (N-dodecanoyl-L-232 

homoserine lactone) and OC10-HSL (N-(3-oxodecanoyl)-L-homoserine lactone) (Sigma-233 

Aldrich), were embedded in a 1% agarose/distilled water matrix (Tait et al., 2005). A 234 

consistent thin coating of agarose/AHL was applied to cover glasses using a mould. This 235 

agarose film was used in cyprid settlement assays. For each AHL concentration, 12 replicates 236 

were used and agarose films without AHLs were included as controls.  237 

Given the rapid diffusion of AHLs from surfaces, which can occur within minutes for 238 

very short chain AHLs (Tait et al., 2005), and the long incubation times of these experiments, 239 

AHLs were also added directly to seawater. AHL concentrations of 0.5, 5 and 50 μM were 240 

maintained through-out the incubation. This first required measurement of the rate of 241 

degradation of AHLs in natural seawater. AHL degradation varies with temperature, acyl side 242 

chain length and also the presence of substitutions on the acyl chain (Tait et al., 2005; Hmelo 243 

&Van Mooy, 2009), and is much higher in natural, unsterilised seawater than in artificial 244 

seawater (Hmelo &Van Mooy, 2009). To measure the rate of degradation during incubation, 245 

natural seawater containing AHLs was incubated for 3 hours and residual AHLs extracted 246 

with ethyl acetate and evaporated to dryness. Extracts were then resuspended in acetonitrile, 247 

added to white/clear bottomed microtitre plate wells (Corning, UK) and 200 μl of the lux-248 

based E. coli pSB401 AHL biosensor added. The microplates were incubated at 37 °C and the 249 

luminescence and absorbance (600 nm) monitored for a period of 8 h using a Berthold 250 

Mithras plate reader. Measurements of the areas under each curve were made, and a standard 251 

curve of relative light units (RLU)/OD600 as a function of AHL concentration constructed for 252 
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each of the 4 AHLs. For each sample, five values were obtained and the mean determined. 253 

The percent degradation of each AHL in the seawater was calculated as 1.54 ± 0.23% h
-1

 for 254 

C6-HSL, 1.02 ± 0.49% h
-1

 for C8-HSL, 4.57 ± 1.21 % h
-1

 for OC10-HSL and 0.68 ± 0.24% h
-

255 

1
 for C12-HSL with reference to the calibration curve. Using these values, AHLs were 256 

replenished in the cyprid settlement assays every 8 hours to maintain the desired 257 

concentration. For each AHL concentration, 12 replicates were used and agarose films 258 

without AHLs were included as controls.  259 

 260 

Statistical Analysis 261 

Data are reported as a means with 95% confidence intervals. The software package PRIMER 262 

6 (Clarke & Gorley 2006) with PERMANOVA+ (Anderson et al. 2008) was used for all 263 

statistical analysis. Multivariate permuational analysis of variance (PERMANOVA) based on 264 

Euclidean distance was used for analyses of the cyprid exploratory behaviour (see above) and 265 

settlement responses on V. anguillarum, A. hydrophila and Sulfitobacter sp. BR1 biofilms. 266 

Daily measurements of cyprid behaviour were used as response variables and the different 267 

treatments and their replicates used as samples. The multivariate nature of this analysis 268 

readily accounts for the non-independence of the daily measurements. For experiments using 269 

batch 1 and 3 cyprids, at least 18 replicates were analysed for every experiment. For batch 2 270 

cyprids, at least 30 replicates were used. Significant terms were investigated further using 271 

pairwise comparisons with 999 permutations (Anderson et al 2008). Tests for V. anguillarum 272 

biofilms were carried out with the 2 different signal-deficient mutants as separate treatments 273 

and also as a single, combined treatment with no differences between the conclusions made. 274 

Differences in the response of cyprid batch 2 to each of the 3 bacteria studied, and also 275 

differences in the behaviour of the 3 separate cyprid batches in vessels containing V. 276 
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anguillarum signalling and non-signalling biofilms were investigated by creating combined 277 

factors of ‘Bacterium × Biofilm Type’ and ‘Batch × Biofilm Type’ respectively. To clearly 278 

visualise differences within treatments, replicates were averaged and shown as MDS plots.  279 

 For experiments using E. coli and synthetic AHLs, where analyses typically used data 280 

collected on day 2 or day 7, ANOVA was also used to test for differences in cyprid 281 

exploratory behaviour between no biofilm controls and control E. coli biofilms, E. coli 282 

controls and E. coli strains expressing AHLs, and also in vessels with and without synthetic 283 

AHLs.  284 

 285 

Results 286 

Increased settlement of Balanus improvisus cyprids in the presence of AHL-producing 287 

biofilms 288 

Substantially higher numbers of cyprids settled in treatments containing signal-289 

producing bacteria than in non-signalling biofilm and no-biofilm controls (Figure 2). These 290 

differences were statistically highly significant for all bacteria tested and for each of three 291 

batches of cyprids (PERMANOVA, Table 2, Figure 2). Pairwise comparisons indicated that 292 

the AHL-producing wildtype biofilm caused significantly more settlement than the signalling-293 

deficient mutant biofilms and the no-biofilm controls (Table 2). Settlement on the signalling-294 

deficient biofilms was not statistically different from that on the no-biofilm controls (p > 0.12, 295 

Table 2), except in one case (larvae from Batch 1 on Sulfitobacter sp. BR1 biofilms settled 296 

significantly less on no-biofilm controls than on the AHL-deficient biofilms; Figure 2, Table 297 

2). Although more cyprids were recorded crawling on the AHL producing biofilms (with the 298 

exception of V. anguillarum, batch 3; Figure 2, day 2 data), most settlement occurred on the 299 



 

14 

sides of the culture dishes. This behaviour is typical for this species under static laboratory 300 

conditions (Berntsson et al., 2001). 301 

Overall levels of larval settlement varied between different batches of larvae (data for 302 

Sulfitobacter sp and V. anguillarum; Figure 2). The possibility that larvae from different 303 

batches (genotypes) may have also responded differently to the different biofilm treatments 304 

was tested using data for settlement on V. anguillarum (the only bacteria species that was 305 

tested using three different larval batches). A significant Batch x Biofilm interaction was 306 

detected (Pseudo-F = 1.88; p = 0.036, Table 3). Further investigation of this interaction using 307 

multidimensional scaling (MDS) showed clear separation of settlement of the AHL signal-308 

producing (WT) biofilms from that in the non-signalling controls (vanM mutant and V. 309 

anguillarum expressing the recombinant AiiA lactonase; Figure 3A), and that responses in the 310 

non-signalling controls grouped much more closely together (Figure 3A). Similar broad 311 

separation between AHL-producing WT strains and relatively tight grouping of non-312 

signalling biofilms was also seen for all three bacteria species when compared using batch 1 313 

cyprids (the only batch for which all three species and biofilm types were compared; Figure 314 

3B, Table 2).  315 

After 7 days incubation, the WT and the vanM mutant biofilms still contained similar 316 

bacterial coverage (WT biofilms: 24.67% ± 2.24; vanM mutant biofilms: 26.19% ± 2.19). 317 

However, addition of cyprids to the biofilm unavoidably introduced additional bacteria to the 318 

culture vessels and this was assessed using Gfp variants of V. anguillarum WT and the vanM 319 

mutant. In control, axenic biofilms, the numbers of V. anguillarum still expressing Gfp was 320 

97.6% for the WT and 98.1% for the vanM mutant after 7 days. Within the biofilms exposed 321 

to cyprids, 91.5 ± 0.98% bacteria within the WT vessels and 89.13 ± 1.23% bacteria within 322 

the vanM mutant biofilm were producing Gfp after the 7 day incubation period. Very few 323 
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cells expressing Gfp were detected within the V. anguillarum vanM mutant carrying a gfp-324 

based AHL biosensor (2.14 ±1.24%). This shows that despite the relatively high number of 325 

introduced bacteria, very few of these were actively releasing AHLs. In contrast, biofilms of 326 

the V. anguillarum WT containing the same construct contained 93.65 ±5.12% Gfp-producing 327 

bacteria.  328 

 329 

Experiments using AHL synthase-producing E. coli and synthetic AHLs also show an 330 

increase to cyprid exploratory behaviour and settlement  331 

 After 2 days, significantly higher numbers of cyprids were actively exploring the AHL 332 

synthase-producing E. coli biofilms than the control biofilms (Figure 4). In contrast there 333 

were no significant differences in cyprid exploration between the E. coli control plasmids and 334 

the no-biofilm controls (ANOVA p = 0.683). This experiment was repeated with 2 batches of 335 

cyprids, with similar results each time. 336 

Assays using the synthetic AHLs C6-HSL, C8-HSL, OC10-HSL and C12-HSL, in 337 

agarose films showed that only C8-HSL and C12-HSL elicited an increase in the number of 338 

cyprids actively crawling on the surface of the vessel after 2 days incubation (Figure 5A; 339 

ANOVA p = 0.037 and p = 0.001, for C8-HSL and C12-HSL, respectively). After 7 days 340 

incubation, there was no difference in cyprid responses between vessels containing AHLs and 341 

the AHL-free controls (results not shown). When AHLs were added directly to the seawater 342 

there was increased settlement within vessels containing 50 μM of all 4 AHLs compared to 343 

controls (Figure 5B). Using concentrations of AHLs close to those found in natural biofilms 344 

(5 μM), C8-HSL, OC10-HSL and C12-HSL, but not C6-HSL increased cyprid settlement. 345 

The response towards OC10-HSL was marginally less significant than the response towards 346 
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C8-HSL and C12-HSL (ANOVA p = 0.023 for OC10-HSL and p = 0.001 for both C8-HSL 347 

and C12-HSL). 348 

 349 

Discussion 350 

Our results clearly demonstrate that AHL-producing biofilms influence settlement of cypris 351 

larvae of the barnacle, B. improvisus: AHL-producing variants of the marine bacteria V. 352 

anguillarum, A. hydrophila and Sulfitobacter sp. BR1 all significantly increased settlement of 353 

B. improvisus cyprids in comparison to non-AHL producing biofilms and controls (Figures 2 354 

and 3); cyprids actively investigated biofilms of E. coli expressing recombinant AHL 355 

synthase genes significantly more than biofilms of E. coli not producing AHLs (Figure 4); 356 

and synthetic AHLs at environmentally relevant concentrations increased the numbers of 357 

settling cyprids (Figure 5B). In the majority of cases, there were no differences between 358 

settlement within vessels containing no biofilms and biofilms of the signal-deficient mutants. 359 

Taken together this evidence suggests that cyprid settlement in response to biofilms is either 360 

mediated directly by an AHL signal or is mediated indirectly, for example, the AHL signal 361 

may control the production of an unknown biofilm-derived settlement cue.  362 

 Mutation to an AHL synthase is likely to impact other phenotypes, other than AHL 363 

production in the bacteria used in this study: quorum sensing is thought to constitute a global 364 

regulatory system for many bacteria. For example, transcriptomic studies of P. aeruginosa 365 

revealed over 500 genes regulated by LasRI and RhlI dispersed throughout the chromosome 366 

(Hentzer et al., 2003; Schuster et al., 2003; Wagner et al., 2003). It is, therefore, not surprising 367 

to find a link between quorum sensing and regulation of biofilm formation and development 368 

in many bacteria, including V. anguillarum and A. hydrophila. Biofilms of the AHL-deficient 369 

mutants in both these bacteria are less differentiated with no microcolonies (Tait et al., 2005; 370 



 

17 

Lynch et al., 2002). Given the differences in structure for V. anguillarum and A. hydrophila 371 

biofilms, it is possible that the cyprid responses we observed were responses to changes in 372 

biofilm architecture rather than the presence or absence of an AHL signal. Conversely, under 373 

the conditions used to produce the Sulfitobacter sp. BR1 biofilms, there are no visible 374 

differences between the wildtype and signal-deficient mutant (data not shown). Nonetheless, 375 

our treatments may have caused unintended (and uncharacterised) changes to biofilm 376 

phenotypes that influenced in cyprid settlement. For example, EPS production has been 377 

linked to AHL production in certain bacteria (Sakuragi and Kolter, 2007) and it has been 378 

shown that for some invertebrate larvae, the settlement cue involves recognition of biofilm 379 

EPS by lectin receptors (Maki and Mitchell, 1985; Khandeparker et al., 2003; Woods et al., 380 

2004; Roberts et al., 2007). 381 

 The possibility that additional unidentified features of the AHL-deficient variants of 382 

V. anguillarum, A. hydrophila and Sulfitobacter BR1 affected cyprid settlement were 383 

investigated using assays with E. coli expressing recombinant AHL synthases. As would be 384 

expected, the long incubation period of the experiments resulted in the death of the E. coli 385 

biofilms, and consequently after day 7 there was no difference in the numbers of cyprids 386 

settling within vessels containing signalling or non-signalling E. coli strains (data not shown). 387 

Exploratory behaviour precedes permanent attachment for B. improvisus cyprids (Berntsson 388 

et al., 2000) and therefore the finding that significantly more cyprids were actively exploring 389 

the E. coli biofilms that expressed the recombinant AHL synthases (after 2 d) than the control 390 

biofilms corroborates the results from our settlement experiments using AHL-producing and 391 

AHL-deficient strains. 392 

 Finally, we assessed the biofilm-independent effects of AHLs on cyprid settlement 393 

with a range of synthetic AHLs. C8- and C12-HSL produced significantly more searching by 394 
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cyprids after 2 days incubation than other AHLs (Figure 5B). After this time, there were no 395 

differences between the numbers of cyprids settling in chambers with or without the presence 396 

of AHLs. These findings may be partially explained by the instability of AHLs in seawater 397 

(Tait et al., 2005; Hmelo & van Mooy, 2009). AHLs consist of five-membered homoserine 398 

lactone rings with varied amide linked acyl side-chains. These acyl side chains can range 399 

from 4 to 18 carbons in length, and may be saturated or unsaturated, with or without a 400 

substituent (usually an oxo or hydroxy) on the C3 carbon of the N-linked acyl side chain 401 

(Chhabra et al., 2005). The alkaline pH of seawater (typically pH 8.1) causes rapid hydrolysis 402 

of the lactone ring, and this increases with increasing temperature (Tait et al., 2005) Shorter 403 

acyl chain length AHLs and those with substitutions on the acyl chain are also more 404 

susceptible. In addition, AHLs diffuse rapidly from surfaces (Tait et al., 2005): for short chain 405 

AHLs such as C6-HSL almost complete diffusion from the agarose matrix could be expected 406 

within < 1 hour. Thus, AHLs have an extremely short half-life in seawater and would only be 407 

expected to be biologically active within micro-niches such as biofilms. Given the long 408 

exposure times required for cyprid settlement within these laboratory experiments (days), it is 409 

unlikely any synthetic AHLs, whether in seawater or within the agarose matrix, would still be 410 

biologically active. This may also explain why previous studies using synthetic AHLs within 411 

larval settlement assays (Huang et al., 2007; Dobretsov et al., 2007) have yielded ambiguous 412 

results. By calculating the rate of degradation of each AHL within the experimental vessels 413 

and replenishing regularly through-out the course of the experiment we ensured AHLs 414 

remained close to the target concentration and mimicked the natural release of AHLs from 415 

live biofilms. This methodology yielded significant results for seawater containing synthetic 416 

AHLs at biologically relevant concentrations (Figure 5B). The response to a synthetic AHL 417 

suggests that cyprids can respond to the AHL signal directly. Note that this does not exclude 418 
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the possibility that cyprids also used other biofilm-derived cues during our experiments with 419 

bacteria.  420 

 The long incubation period before cyprid settlement in our experiments (7 days) 421 

produced several potential problems, not least the introduction of ‘foreign’ bacteria along 422 

with the cyprids. By using V. anguillarum labelled with Gfp, we found the extent of 423 

colonisation by non-Gfp bacteria after 7 days was as high as 10% of the biofilm. The 424 

identities of the introduced bacteria are not known. Neither is it known if there was a 425 

difference between those colonising the signal-deficient or signal-producing biofilms, nor if 426 

there were differences in ‘foreign’ colonisation between the three marine bacteria used. All 427 

these factors may have influenced cyprid settlement in our assays. Our attempts to determine 428 

the level of AHL signal produced by these marine bacteria using a V. anguillarum vanM 429 

mutant carrying a Gfp-based AHL reporter did, however, indicate that few of these were 430 

actively producing AHL signal: very low numbers of the V. anguillarum reporter bacteria 431 

were detecting an AHL signal produced by neighbouring, introduced bacteria (2.14 ±1.24%). 432 

Consequently, while the biofilms of the signal-deficient strains may not have been entirely 433 

AHL-free through the course of the experiment, the concentration of AHLs in these 434 

treatments in comparison to the signal-producing strains was extremely low.  435 

We found statistically significant differences in cyprid settlement behaviour from 436 

different larval batches (Table 3). Variability in larval response is well known (Raimondi and 437 

Keough, 1990). Rearing conditions (Holm, 1990), larval age (Holm et al., 2000) and type of 438 

microalgae used to feed the developing larvae (Clare et al., 1994) have all been shown to 439 

influence the attachment and metamorphosis of B. amphitrite. Consequently, offspring of the 440 

same parents raised at different times can respond differently to the same surface (Holm, 441 

1990). Therefore, care was taken to ensure larvae used within these studies were reared using 442 
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identical conditions in each case. Nonetheless, the number (and genetic identity) of parents 443 

that contributed to the larvae within each cyprid batch is unknown. The clear differences 444 

between larval responses we observed (Table3) indicate the potential for larval selection and 445 

adaptation to different biofilms. 446 

Although the number of cyprids exploring the biofilms of signal-producing bacteria 447 

was higher than those exploring the non-signalling biofilms and no-biofilm controls (with the 448 

exception of V. anguillarum, batch 3; Figure 2, Day 2 data), many cyprids chose to settle on 449 

the sides of the vessel and not directly on the biofilms. This settlement behaviour is typical of 450 

B. improvisus within laboratory experiments (Berntsson, 2001). It is known that B. improvisus 451 

actively explores a large area before settling: the likelihood of final settlement at a particular 452 

site is directly related to searching behaviour which occurs over the entire surface of the dish 453 

prior to settlement (Havenhand, unpublished data). While the mechanism behind B. 454 

improvisus cyprid settlement may still be unclear, the critical point here is that without the 455 

presence of the AHL-producing biofilms, settlement was reduced (Figure 2). 456 

The series of experiments described here indicates AHL signalling biofilms may be used 457 

by B. improvisus as a settlement cue under laboratory conditions and certainly highlights the 458 

need for further research, particularly using conditions more closely mimicking field 459 

conditions.  Hydrodynamics and surface properties are known to have a significant impact on 460 

B. improvisus settlement (Jonsson et al., 2004; Berntsson et al., 2000), and will also influence 461 

the rate of diffusion of AHLs from surfaces. This is essential to clarify the importance of 462 

AHLs and AHL-signalling biofilms for larval settlement in the field. It is also not clear if the 463 

cyprids are chemotactically attracted to the AHL signal, or if the cyprid response is 464 

chemokinetic behaviour as shown to be the case with Ulva (Wheeler et al., 2006). Yet, it is 465 

becoming increasingly apparent that AHLs have biologically important properties beyond 466 
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their role in cell-to-cell communication within species of bacteria. In the marine environment, 467 

there is now evidence that algae (Joint et al., 2002; Weinberger et al., 2007), polychaetes and 468 

bryozoans (Huang et al., 2007; Dobretsov et al., 2007) respond to the presence of a bacterial-469 

derived signal. The effect of AHLs on other plant (Mathesius et al., 2003; Ortiz-Castro et al., 470 

2008; von Rad et al., 2008; Bai et al., 2010), animal (Smith et al., 2002; Telford et al. 1998; 471 

Pritchard et al. 2005) and fungal cells (Hogan et al. 2004) has also been well documented. 472 

These findings show that AHL signals molecules can modify the behaviour of a wide-range 473 

of evolutionarily diverse organisms. Studies of the underlying mechanism in each of these 474 

organisms are needed to reveal the origin and scale of this interaction. Here we have shown 475 

the potential importance of AHLs for settlement success in a key marine invertebrate species.   476 

Enhanced understanding of the role of AHL signalling within marine biofouling 477 

communities (Tait et al., 2005; Huang et al., 2007; Dobretsov et al., 2007; Huang et al., 2008; 478 

Huang et al., 2009) increases the importance of research into technologies that specifically 479 

disrupt AHL-mediated QS for biofouling control, as well as for disease control within 480 

aquaculture (Natrah et al., 2011). Screens for AHL inhibitory compounds from compounds 481 

obtained from the marine environment have already shown promising results (Dobretsov et 482 

al., 2011). Further investigations of the role of AHLs in mediating settlement responses, 483 

chemical defence, and inter-specific communication of barnacles and other marine 484 

invertebrates are warranted. 485 

 486 

487 
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Legends to figures 716 

Figure 1 717 

Thin layer chromatography (TLC) showing AHL production by Sulfitobacter BR1 WT, 718 

similar profiles for E. coli expressing the BR1 AHL synthase sulI, and no detectable AHLs by 719 

the BR1 sulI mutant. TLC plates were overlaid with the biosensor NTL4 (pCF218; pCF372) 720 

(Fuqua & Winans, 1996) and the presence of spots are indicative of AHL production. AHL 721 

synthetic standards were used as markers: 0.5 mM N-butanoyl-L-homoserine lactone (C4), 50 722 

µM N-hydroxyhexanoyl-L-homoserine lactone (HC6), 0.5 µM N-octanoyl-L-homoserine 723 

lactone (C8) and 0.5 mM  N-hydroxydecanoyl-L-homoserine lactone (HC10). 724 

 725 

Figure 2 726 

Comparison of cyprid exploration (Day 2) and settlement (Days 3 – 7) in vessels containing 727 

biofilms of wildtype  V. anguillarum, A. hydrophila and Sulfitobacter sp. BR1 and their 728 

signal-deficient mutants. Also indicated on each graph is the cyprid batch used in each case. 729 

Black bars indicate wildtype bacteria, the light grey bars are the AHL synthase mutant and the 730 

white bars are control surfaces containing clean cover glasses with no biofilm. For V. 731 

anguillarum assays, V. anguillarum expressing the aiiA gene (an AHL lactonase) was also 732 

included (dark grey bars). Bars are 95% confidence intervals.   733 

 734 

Figure 3 735 

Non-metric multidimensional scaling (MDS) ordination of a Euclidean Distance resemblance 736 

matrices calculated using cyprid settlement data from days 3 to 7 (data points are average of 737 

replicates within treatments). (A) settlement of 3 separate batches of cyprids on V. 738 

anguillarum WT (▲) and biofilms of the 2 signal-deficient variants of V. anguillarum: the 739 
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vanM mutant (○) and V. anguillarum expressing recombinant aiiA (□). Numbers represent 740 

cyprid batch number.  (B) cyprid batch 2 settlement on signal producing and signal-deficient 741 

biofilms of V. anguillarum (▲), A. hydrophila (■) and Sulfitobacter sp.BR1 (●) Letters are 742 

wildtype (WT) and mutant (M). 743 

 744 

Figure 4 745 

Percentage numbers of cyprids actively exploring surfaces of vessels containing biofilms of 746 

E. coli containing AHL synthases. Strains JM109 containing control plasmids are light grey 747 

bars and those containing plasmids with the recombinant sulI from Sulfitobacter sp. BR1, luxI 748 

from V. fischeri, rhlI from Ps. aeruginosa and vanI from V. anguillarum are black bars. The 749 

white bar indicates control surfaces containing clean cover glasses with no biofilm. Error bars 750 

are 95% confidence intervals and asterisk show those values that are significantly different to 751 

the controls (* one-way ANOVA p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001). 752 

 753 

Figure 5 754 

Interaction of cyprids with vessels containing AHLs dissolved in (A) agarose films or (B) 755 

seawater. For experiments using agarose films, 5 μM was used and data are percentage 756 

number of cyprids actively exploring the vessel surface after 2 days incubation. For 757 

experiments using AHLs dissolved in seawater, three concentrations of AHLs were used (0.5, 758 

5 and 50 μM), and data is percentage number of cyprids permanently settled after 7 days. 759 

Agarose films with no AHLs or seawater containing no AHLs were included as controls. 760 

Error bars are 95% confidence intervals and asterisks show those values that are significantly 761 

different to the controls (* one-way ANOVA p ≤ 0.05 and *** = p ≤ 0.001). 762 
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Table 1. Bacterial strains and plasmids used in this study.  782 

Strain or Plasmid Description Reference 

E. coli   
JM109 recA1 supE44 endA1 hsdR17 gypA96 relA1 thi Δ (lac-proAB) Schaefer et al. (1996) 

A. hydrophila   
AH-IN Spontaneous mutation of A. hydrophila AH-1 lacking S-layer and O-antigen Swift et al. (1999) 
AhyI

-
 AHL-deficient variant:AH-IN with an in frame deletion of ahyI Lynch et al. (2002) 

V. anguillarum   
NB10 Wild type, serotype 01, clinical isolate from the Gulf of Bothnia Norqvist et. al. (1989) 
DM28 AHL-deficient variant: In-frame deletion of vanM   Milton et. al. (2001) 
NB10 Gfp Gfp-labelled WT: contains mini-Tn7 PA1/04/03gfp (Gent

R
) This study 

DM28 Gfp Gfp-labelled AHL-deficient variant: DM28 containing mini-Tn7 PA1/04/03gfp (Gent
R
) This study 

NB10/pDM44 Wildtype carrying Autoinducer Inactivation protein (AiiA): contains a PA1/04/03::aiiA gene fusion (Cm
R
) Tait et al. (2005) 

NB10/pDM42 Wildtype carrying a Gfp-based AHL reporting construct: contains luxR-PluxI-RBSII::gfpmut3*-T0; (Cm
R
) Tait et al. (2005) 

DM27/pDM42 AHL-deficient variant containing a Gfp-based AHL reporting contruct: DM28 containing luxR-PluxI-
RBSII::gfpmut3*-T0 (Cm

R
) 

Tait et al. (2005) 

Sulfitobacter sp.   
BR1 Wild type, isolated from rocky shore Tait et al. (2005) 
SulI

-
 Mini-Tn5 insertion into sulI (Kan

R
) This study 

Agrobacterium tumefaciens 
NTL4 (pCF218) (pCF372) 

AHL reporter: produces a blue colour in the presence of 5-bromo-4-chloro-3-indolyl-b-D-
galactopyranoside (X-Gal) in response to a wide range of AHLs 

Fuqua and Winnas (1996) 

Plasmids   
pUX-BF13 mob

+
ori-R6K; helper plasmid; providing Tn7 transposition functions in trans (Amp

R
) Bao et al. (1991) 

pRK600 ori-ColE1 RK2-mob
+
 RK2

−
tra

+
 helper plasmid in matings (Cm

R
) Kessler et al. (1992) 

pMiniTn7(Gm)P
rrnB1 

–gfp-a P
rrnB1

-gfp cloned into NotI site of pBK-miniTn7-ΩGm Lambertsen et al. (2004) 

pSB401 AHL reporter plasmid; luxR′′::luxCDABE (Amp
R
) Winson et al. (1998) 

pRK-C12 AHL reporter plasmid; pBBR1MCS-5 carrying PlasB– gfp(ASV) Plac- lasR Reidel et al. (2001) 
pUCP18 pUC18 containing 1.8-kb fragment for maintenance in Pseudomonas sp. (Amp

R
)  Shweizer (1991) 

pMW47.1 2-kb PstI Pseudomonas aeruginosa PAO1 DNA insert (rhlRI) in pUCP18 Latifi et al. (1996) 
pT7T3 General cloning vector derived from pUC18 (Amp

R
) Pharmacia 

pT7T3luxI pT7T3 expressing  luxI from Vibrio fischeri  7744 Tait et al. (2005) 
pET3a Overexpression vector (Amp

R
), T7 promoter, pBR ori Novagen 

PETVanI2 pET3a expressing vanI from Vibrio anguillarum NB10 Tait et al. (2005) 
pGEM General cloning vector derived from pUC18 (Amp

R
) Promega 

pKT11 pGEM expressing sulI from Sulfitobacter sp. BR1 (Amp
R
) This study 
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Table 2 

Effect of biofilm type (wildtype, mutant and no biofilm controls) on cyprid settlement determined using PERMANOVA analyses for V. 

anguillarum, A. hydrophila and Sulfitobacter sp. using three separate batches of cyprids.  

 

 

Batch 

 

 

Bacterium 

PERMANOVA PAIR-WISE TESTS 

 

Source  

 

df 

 

SS 

 

MS 

 

F 

P 

(perm) 

Unique  

perms 

 

Groups 

 

t 

P 

(perm) 

Unique  

perms 

1 A. hydrophila Biofilm 2 5369.6 2684.8 33.35 0.001*** 998 WT, Mutant 2.83 0.003*** 998 

  Res 234 18838 80.505    WT, No biofilm 2.62 0.007*** 997 

  Total 251 28612     Mutant, No biofilm 0.47 0.875 998 

             

1 Sulfitobacter Biofilm 2 28059 14030 116.59 0.001*** 998 WT, Mutant 4 0.001*** 997 

  Res 234 28164 120.36    WT, No biofilm 5.58 0.001*** 999 

  Total 251 69209     Mutant, No biofilm 1.83 0.031** 997 

             

2 Sulfitobacter Biofilm 2 20875 10438 105.79 0.001*** 999 WT, Mutant 6.55 0.001*** 998 

  Res 469 46273 98.662    WT, No biofilm 6.43 0.001*** 997 

  Total 485 140010     Mutant, No biofilm 0.65 0.714 999 

             

1 V. anguillarum Biofilm  2 11999 5999.5   12.631 0.001***    999 WT, Mutant 3.8 0.001*** 999 

   Res 51 24224 474.98                  WT, No biofilm 4.81 0.001*** 999 

  Total 53 36223                      Mutant, No biofilm 149 0.121 998 

             

2 V. anguillarum Biofilm   2 34534  17267   31.724 0.001***    999 WT, Mutant 7.21 0.001*** 999 

   Res 106 57695 544.29                  WT, No biofilm 5.13 0.001*** 999 

  Total 108 92229                         Mutant, No biofilm 0.77 0.569 999 

             

3 V. anguillarum Biofilm  2 8129.3 4064.6   10.665 0.001***    999 WT, Mutant 4.21 0.001*** 999 

   Res 69  26298 381.13                         WT, No biofilm 3.25 0.001*** 993 

  Total 71  34427                                Mutant, No biofilm 0.59 0.675 993 

 

Asterisks indicate significant P values (* = p ≤ 0.05, ** = p  ≤ 0.01 and *** = p ≤ 0.001). 
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Table 3 

Effect of cyprid batch and V. anguillarum biofilm type on cyprid settlement after 7 days 

incubation as determined using PERMANOVA analyses of two crossed, fixed factors: cyprid 

batch and biofilm type (signal-producing, signal-deficient and no biofilm controls).  

 

PERMANOVA 

 

Source  

 

df 

 

SS 

 

MS 

 

F 

P 

(perm) 

Unique 

perms 

Batch   2 97829 48915 9.2449 0.001*** 999 

Biofilm   2 43689 21844 4.1286 0.002*** 998 

Batch x Biofilm   4 39877 9969.1 1.8842 0.036** 999 

Res 162 857140 5291    

Total 170 1038500     

       

PAIR-WISE TESTS 

 

Groups 

 

t 

P 

(perm) 

Unique 

perms 

  

WT, Mutant 1.9139 0.017** 999 
  

WT, No biofilm 2.8794 0.002*** 998   

Mutant, No biofilm 1.1039 0.286 999   

 

 

Asterisks indicate significant P values (* = p ≤ 0.05, ** = p  ≤ 0.01 and *** = p ≤ 0.001). 


