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In the pelagic marine realm, current spatial patterns
in diversity are the result of evolutionary, biogeogra-
phic and more local abiotic, biotic and ecological fac-
tors (Angel 1998). At the evolutionary scale, variability
in biodiversity is related to geological events such as
plate tectonics and orbital forcing (Angel 1993, Molfino
1994). These events have led to the opening or closure
of seas, modification of global circulation patterns and
oscillation of sea levels, which together have shaped
pelagic biodiversity (Angel 1998). These large-scale
events should still be considered in the explanation of
present day patterns of biogeography and species
ecology (Williamson 1998).

Until now, the science of biodiversity has mainly
focussed on these global features, and especially lati-

tudinal gradients, in increasing diversity from the
poles to the tropics (Stehli et al. 1969, Angel 1991). Dif-
ferent maps of diversity have been displayed (Ruddi-
man 1969, Reid et al. 1976, Pierrot-Bults 1998) and
hypotheses proposed (Rohde 1992, Rutherford et al.
1999). Although these maps have played a significant
role in identifying factors responsible for observed pat-
terns at a global scale, this is not so at a regional level.
Indeed, several drawbacks have limited their use.
First, the lack of a large data-set has prevented the de-
tection of accurate boundaries between oceanic prov-
inces. Second, neritic regions were often neglected,
hindering comparison of diversity patterns in oceanic
and neritic areas. Third, the mapping methods or the
distribution of samples on which maps were based
were often not clearly indicated, decreasing their rele-
vance. However, information on diversity at a regional
scale is essential for understanding year-to-year fluctu-
ations of planktonic communities as well as for ecosys-
tem management.

There is little information on the spatial distribution
of copepod biodiversity, despite their importance in
marine food webs. High seasonal and ontogenic vari-
ations and diel migration would necessitate a high
intensity of sampling through seasons in both the day
and night. Here we summarise the diversity of cala-
noid copepods in the North Atlantic and the North Sea
based on intensive sampling by the Continuous Plank-
ton Recorder (CPR) for all months and times of day,
from 1958 to 1997. The objectives were (1) to accu-
rately identify the mean location of major systems,
(2) to characterise diversity between oceanic and ner-
itic regions as well as their boundaries, and (3) to de-
tect local patterns in diversity in a regional context.

Materials and methods. The CPR survey is an upper
layer plankton monitoring programme that has re-
gularly collected about 400 taxa in the North Atlantic
and North Sea since 1948 (Warner & Hays 1994). It is
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demonstrate pronounced local spatial variability in plank-
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resolution. They form a baseline at which long-term changes
in planktonic diversity can be better assessed and ecosystem
management plans implemented.
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operated by a high-speed plankton recorder (about
20 km h–1) that is towed behind voluntary merchant
ships at a depth of approximately 10 m. Despite the
near surface sampling, studies have shown that this
machine gives a satisfactory picture of the epipelagic
zone (Lindley & Williams 1980, Williams & Lindley 1980,
Batten et al. 1999). Upon returning to the laboratory,
the silk on which plankton is collected, is unwound
and cut into sections corresponding to 10 nautical
miles and approximately 3 m3 of filtered sea water
(Hays 1994). Calanoid copepods (108 taxa) were se-
lected because (1) they play a key role in the food web
and (2) CPR sampling and identification are optimal
with this taxa. Indeed, in most cases (92.5%) identifi-
cation is carried out to species level, except for small
calanoids, which are identified to genus, and Para-
Pseudocalanus, which includes species of both Para-
calanus and Pseudocalanus. Data (168 162 samples)
from January 1958 to December 1997 have been used,
as the taxonomic resolution of analysis has been stable
over this period.

Fig. 1 summarises the different steps of numerical
procedures that led to the average map of diversity. For
each of the 168 162 samples, taxonomic richness was
calculated (Step 1). In this case, taxonomic richness
means the mean number of taxa per CPR sample. The

CPR sampling is irregular in time and space. Samples
can be collected at any time of day or night for any
month or location. In order to take this heterogeneity
into account, spatial interpolations for each month and
each 2 h period were performed. Latitude and longi-
tude were transformed to Lambert coordinates (Step 2).
The main advantage of using the Lambert conical pro-
jection was to avoid an extreme alteration of distances
on the map (Planque et al. 1997). Next, the inverse
squared distance method (Lam 1983) was used to pro-
duce monthly maps for each 2 h period (Step 3) to take
into account seasonal, ontogenic variations and diel
vertical migration (a total of 144 maps). In each case,
interpolation was realised on a grid of 50 × 50 nautical
mile (n mile) pixels using a search radius of 250 n mile.
Due to a close dependence of diversity indices with
size of sample (Magurran 1988), it was important to use
the same number of samples for each estimation of
diversity. Thus, each estimation was based exactly on
10 samples in a search radius of 250 n mile (maximum
distance between the estimator and the sample). If
more than 10 neighbours were present in this search
area, the 10 nearest ones were selected to estimate the
taxonomic richness. If less than 10 neighbours were
present in this same search radius, no estimation was
calculated. Each pixel was based on exactly 1440 data
(10 samples for 144 different times). All spatial interpo-
lations integrated 40 yr of plankton monitoring.

Results and discussion. Fig. 2 displays the mean spa-
tial pattern derived from 144 base maps of the taxo-
nomic richness of calanoids for each month and 2 h
period. As a result of the small CPR sample size, the
taxonomic richness should be considered more as an
index of diversity than the actual number of taxa. At a
regional scale over the North Atlantic, a major contrast
is evident between calanoids in subarctic waters (south
of Greenland) with low diversity and waters influenced
by the Gulf Stream extension (~40 to 50° N, ~40 to
50° W), the Bay of Biscay and the southeast North Sea,
where taxonomic richness is higher (Fig. 2). There is a
clear difference between the eastern oceanic part of
the North Atlantic, where a weak contrast in diversity
exists, and the western part, where the contrast is
sharper, mainly due to the effects of the Gulf Stream
extension. A large difference in taxonomic richness
also exists between the American and European conti-
nental shelves. Above the American shelf, diversity is
low probably due to the influence of the Labrador Cur-
rent that brings only a few species southwards. The
opposite situation is found over the European conti-
nental shelf, where the effects of the North Atlantic
Current, and probably the shelf edge current, trans-
port more species northwards. Over the southwest
oceanic part, high diversity may be the result of the
Gulf Stream extension that carries subtropical species.
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Fig. 1. Successive steps of numerical procedures used to pro-
duce the average map of calanoids diversity in the North

Atlantic and the North Sea
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This is corroborated by the occurrence in this region of
subtropical species such as Candacia ethiopica and
Centropages violaceus. At this latitude, the current
frequently forms meanders or eddies (Mann & Lazier
1996) that could mix subtropical, temperate and sub-
polar species and hence also increase local diversity.

The sharp and irregular contrasts of biodiversity in
these regions show that the hypothesis of a progressive
increase of diversity from the poles to tropics (Stehli et
al. 1969) is altered by a pronounced local variability. In
previous studies, this local variability could not be
detected because of the weak resolution used. High
regional variability observed in the Bay of Biscay and
Celtic Sea is a consequence of the conjunction of a
number of hydrographic factors. Species that belong to
the mid-latitude gyre may reach this zone. The slope
current (Pingree & Le Cann 1992) along the shelf edge
break may also contribute to an increase in diversity.
Indeed, species indicative of upwelling water such as
Calanoides carinatus are detected in this region along
the shelf edge break. Finally, interpenetration of both
neritic and oceanic species may also increase the num-
ber of taxa occurring in this region. Northwards, the
effects of seasonal shelf-edge and tidal fronts, and
southwards, the influence of the Iberian upwelling,
complicate diversity patterns in this region. In the

North Sea, higher diversity is found in the shallow,
strongly tidally mixed southeast area due to the pres-
ence of coastal species such as Isias clavipes and
Labidocera wollastoni.

Fig. 3 shows seasonal and day-night variations in
each region. This coefficient is the ratio of the standard
deviation to the mean (Scherrer 1984) and gives an
indication of the amplitude of seasonal and diel varia-
tions. It shows that over the continental shelf and shelf
break, seasonality and diel variation are weaker in
contrast to oceanic region, where the amplitude is far
greater. This difference influences the calculation of
mean taxonomic richness (Fig. 2). In particular the con-
trast between shallow regions of lower diversity and
deeper regions of higher diversity is reduced. These
characteristics and the effects of seasonal and diel
variations make it difficult to directly compare diver-
sity between the southeast North Sea region and the
diversity of the Gulf Stream extension, which seem to
be similar in Fig. 2.

Knowledge of spatial patterns in plankton diversity in
the North Atlantic has been provided mainly by bio-
geographic or paleoecologic studies using, for example,
foraminifera (Ruddiman 1969, Rutherford et al. 1999),
euphausiids (Reid et al. 1976), mysids (Angel 1998), or
chaetognaths (Pierrot-Bults 1998). At a coarse scale,
similar patterns exist between Fig. 2 and the above
studies, but differences are also evident at a regional
level. Boundaries between the Atlantic Arctic Province
of the Atlantic Polar Biome as proposed by Longhurst
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Fig. 2. Mean taxonomic richness of calanoid copepods per
CPR sample in the North Atlantic and North Sea. Each pixel is
based on exactly 1440 samples to assure that no sampling bias
is introduced between regions. Five different diversity
indices — the Berger-Parker index (Berger & Parker 1970),
Brillouin diversity (Brillouin 1956), Brillouin evenness (Bril-
louin 1962), Shannon diversity (Shannon & Weaver 1962), and
Gini coefficient (Lande 1996) — were also calculated and
gave similar results to the taxonomic richness used here.
Boundaries of continental shelves are indicated by a grey line

representing 200 m depth
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Fig. 3. Coefficient of variation of the mean taxonomic richness
of calanoids per CPR sample over the North Atlantic and the
North Sea. This coefficient, expressed as percentage, is the
ratio of the standard deviation to the mean. This shows
greater seasonal and diel variations in oceanic regions in con-
trast to the shallow ones. Boundaries of continental shelves

are indicated by a grey line representing 200 m depth
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(1998) are refined as well as the northward extension of
the Gulf Stream Province belonging to the Atlantic
Westerly Winds Biome (Longhurst 1998). Hydrography
and behavioural responses by organisms are likely to
be responsible for the maintenance of the high diversity
structures seen in the Bay of Biscay and the Celtic Sea.
In the North Sea, 2 main regions were distinguished: a
shallow tidally mixed region in the southeast, and to the
north a deeper and stratified area in summer.

Human activities may alter biodiversity in the marine
realm through overexploitation, eutrophication, pollu-
tion (Omori et al. 1994, Sherman & Duda 1999) or indi-
rectly by the effects of global warming on large-scale
oceanic circulation. Poor knowledge of spatial patterns
of biodiversity, however, has limited our assessment of
this change. Our diversity map (Fig. 2) summarises
40 yr of investigation to give an average planktonic
biodiversity which will enable future changes in cli-
mate and anthropogenic forcing to be better assessed.
The Gulf Stream extension, identifiable by its diversity,
suggests that diversity or indicator species may be
used as a proxy variable to study how regional circula-
tion is modified by climatic change. Our results also
have practical applications for ecosystem manage-
ment. In particular, there is an increasing concern
about ballast water transfer of aquatic organisms by
merchant vessels (Carlton & Geller 1993, Krause &
Angel 1994, Nehring 1998). The International Mar-
itime Organisation (IMO) has recommended exchange
of ballast water in the open ocean to prevent the inva-
sion of exotic species by merchant vessels from one
port to another (Hallegraeff 1998). Our map could be
used to help identify preferred sites for ballast water
exchange. The information provided may also be use-
ful in the implementation of Integrated Coastal Zone
Management (ICZM) as defined in Pullen (1998), as
well as for the management of Large Marine Ecosys-
tems (LME) as shown in Sherman (1994). This note
represents the first product of a project that focuses on
spatial and temporal changes in the biodiversity of
calanoid copepods in the North Atlantic and the North
Sea. More information about the effects of seasonal
and interannual variations in diversity are needed, and
are being investigated.
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