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A NOTE ON THE RELATIONS OF CERTAIN
PARAMETERS FOLLOWING A LOGARITHMIC

TRANSFORMATION

By Mary Bagenal
The Marine Station, Millport

(Text-fig. 1)

The logarithmic transformation has been used in the statistical analysis of
certain marine biological data. Parameters calculated from the transformed
distributions have been used in the description of the observations, but it
appears that some of the mathematical procedures adopted have not been
fully understood.

Winsor & Clarke (1940) have analysed data from plankton hauls. The
problem considered by them was the determination of the variability in
numbers of animalscaught by repeated hauls through the same body of water.
The raw data were characterizedby a constant coefficientof variation, i.e. the
variability in catch wasproportional to the sizeof the catch. Bytransformation
from the actual numbers caught to their logarithmic values, it was possible to
equalize the variances and to apply the method of analysisof variance to esti-
mate the variability due to the different sources. Finally, an estimate of the
coefficient of variation was obtained from the logarithmic values. Their
method of estimationwasquoted by Snedecor(1946,p. 451)and wasemployed
by Barnes & Bagenal (1951)in their study of repeated trawl hauls. Barnes &
Bagenal also calculated confidence limits for comparison of observations
following the method of Silliman (1946)in his work on pilchard eggs. These
methods seem to be based on a misunderstanding of the nature of a trans-
formation. The formal relation between the variance of such transformed data
and the coefficientof variation of the untransformed data follows from the
moments of the 'log-normal' distribution, given first by Wicksell (1917).
From these moments it will be shown that the method given by Winsor &
Clarke is mathematicallyunsound. However, the discrepanciesbetween their
valuesand thosenowobtained are comparativelysmall(rangingfrom about 2%
for a coefficient of variation of 20 % to about 15% for one of 60%). In all
cases the method given in this paper results in a smaller estimate.

For comparison of catches Silliman gave confidence limits which were
expressed as percentages of the mean catch. The mean used, although not
explicitly stated, was the geometric mean of the catches.
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THE LOGARITHMIC TRANSFORMATION

For. untransformed data with a positively skew frequency distribution a trans-
formation from the values of x, to the logar~thnlic values y= loglo x, may result
in a distribution of the normal form. The relation between the two distribu-
tions is such that the proportion of observations falling within a given range of
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Fig. 1. Diagram to show the relation between the 'log-normal' and the normal distributions.
, For explanation see text.

the x values will equal the proportion of observations falling within the
corresponding range of y values. This is so since there is,a corresponding
value of y to every value of x.

Such a transformation is shown in Fig, 1 (after N. L. Johnson, 1949).
An untransformed frequency distrib.ution, which is noticeably skew, is

represented on the lowermargin. Let this be the distribution of x with mean
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t;and variance a~. In the centre of the figure the relation y = loglo X is repre-
sented graphically by the smooth curve. On the left-hand margin is the
transformed frequency distribution, projected from the original distribution
by means of the curve y=loglo x. This distribution of y, with.mean YJand
variance a;, is normal.

The cross-hatched columns representing frequencies over corresponding
ranges of the two variates are equal in area. By considerationof this property
of correspondence of areas certain relations between parameters of the two
distributions become apparent. The mean, median and mode of the trans-
formed distribution, which is normal, coincide and divide the area under the
curve equally. The corresponding value in the untransformed distribution
also divides the area under the curve equally and is the median, but because
the curve is skew will not coincidewith the mean and mode.

The normal curve has been thoroughly investigated and tabulated and use
has been made of many of its properties. The 95% confidence limits are
those values of the variate between which 95% of the total observations lie,
and for the normal curve are approximatelygiven by the mean plus and minus
two standard deviations (or for meansof smallsamples t standara deviations).
In the figure these are at YJ:t2ay for the transformed distribution,-and the
corresponding values in the untransformed distribution will also represent
95 % confidence limits since the shaded' tail areas', are equal.

The mean and variance of a frequency distribution do not depend simply
on area and therefore the valuesfor one distribution cannot be obtained simply
by transformation of the appropriate values for the transformed distribution;
but must be obtained from the mathematical relations betWeenthem.

Wicksell (1917)gives for the transformationy=loge x, wherey is normally
distributed with mean YJ and variance a;, the relation:

rth moment about origin of x = er7J+tr2o;,

whence, mean x = e7JHu:,

(I)

(2)

(3)and variance x=e27J+u:(eu:- I).

For the transformation y = IOglOx, rearrangement gives the relations

mean y = YJ = loglo [(I + ;~/ t;2)tJ '

variance y = a; = loglO e loglo (I + a~/ t;2).

(4)

(5)

Now ax/t;= V", is the ratio of the standard deviation of x to its mean value and
is the coefficient of variation of the .untransformed data. Rewriting (5) we
have

a;= o.43428 loglo(I + V~),
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from which it is seen that if the coefficientof variation of x is constant the
variance of the transformed variatey will be constant and the methods of the
'analysis of variance' may be used. From equation (4) it is seen that the
relation between the means of the transformed and untransformed distribu-
tions is not simple. For a sample the mean of the transformed values equals
the logarithm of the geometricmean of the actual numbers.

Since y = loglox,
1 n 1 n

y=- L Yi=- L loglo xi=loglo :fI(Xl X X2 X ... X xn),
n i=l n i=l

1.e. meany=loglO (geometric mean x).

The mean of a sample drawn from a normal population is itself distributed
normally with a variance equal to that of the parent population divided by the
number in the sample, and therefore appropriate confidence limits may be
calculated; since the geometric mean of a sample of n observations is related to
the arithmetic mean of the transformed values in the same way as a single
observation of x is to the transformed value y = loglo x, for all values of n. If
the limits for use with the arithmetic mean of the untransformed data are

required, estimates of the population mean will have to be made from the
actual numbers observed. Finney (1941) has shown that for data of this type

the usual estimate of the sample mean, i.e. ~ ~ Xi decreases in efficiency as an
n i=l

estimator of the population mean as the coefficient of variation increases. He
has given corrections which can be used, but it is probably better to perform
all comparisons on the transformed values, and thus also to avoid confusion
between the geometric and arithmetic means.

and

THE METHOD OF WINSOR & CLARKE

The data considered by Winsor & Clarke consisted of catches from plankton
nets hauled vertically,obliquelyand horizontally. In eachcasesimilarmethods
of analysis were used. The observations were given in the form of estimated
total catches of each of given groups of animals (defined by species, age and
sex) calculated from laboratory samples, which represented numbers caught
by nets hauled consecutively,and therefore effectivelythrough the same body
of water. The subsequent analysis of variance divided the total variance
observed into its component parts.

In order that such an analysisof variancemay be performed the data should
satisfy several conditions, one of which is that the variances within different
groups and due to different factors must be estimated on comparablescales,or
, equalized', and the resultant residual variations should be normal with zero
mean. A transformation from the raw data may result in variates which
satisfy these conditions.
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Winsor & Clarke applied the logarithmic transformation and subsequent
analysis of variance, which they used to estimate the variances and appropriate
coefficients of variation. To illustrate this latter step it is best to quote from
their paper.

From the estimates 0'00781 and 0'00600 for the within haul and haul to haul
variances, we obtain 0'0884 and 0'0775 as the estimated standard deviations. These
are obtained from the logarithms of the catches. To interpret these figures in terms of
variability of the actual catches we proceed as follows:

0'0884=log 1'226,

0'0775 = log 1'195.

Now a deviation of 0'0884 in the logarithm of the catch means that the catch has been
multiplied (or divided) by 1'226. Hence we may say that one standard deviation in the
logarithm corresponds to a percentage standard deviation, a coefficient of variation, of
22.6 %in the catch. Similarly,a logarithmic standard deviationof 0'0775 corresponds
to a coefficient of variation of 19'5 %.

This implies that the relation between ay and Vx is

ay=loglo (1+ Vx), (6)

but from equation (5) we see that this is not so. Equation (6) will always
overestimate the value of V for a given ay, since it gives

(7)

whereas from (5) Vx=,J(10u;/O'<13429-1). (8)

and the magnitude of the bias may be calculated. For the case quoted by
Winsor & Clarke, calculation from equation (5) gives

a;= 0'00781 = o.43429 (1 + V~),

2 . (0'00781)
1+ Vx = antiloglO( ) = 1'0422,. 0'43429

and Vx=0'205 or 20'5%

for which Winsor & Clarke obtained 22.6%.
For a~= 0'0400eqn. (5) gives48'6% and the methodof Winsor& Clarke
58'5 %; and a~= 0'0900 eqn. (5) gives 78'2% and the method of Winsor &
Clarke 99'5%.

The bias due to the method of Winsor & Clarke increases with increase. 2
ill ay.

Vx= 10Uy- 1,

THE METHOD OF SILLIMAN

Silliman's data consisted of observations on the number of pilchard eggs in
hauls made with two identical nets, each hauled once at a number of different
stations. The data was not given as estimated catch, but as the numbers
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counted in laboratory samples. Two laboratory samples were taken from each
haul and both counts were given. This data, like that of Winsor & Clarke, has
a cop.stant coefficient of variation, and a logarithmic transformation was used.
The analysis of variance showed a highly significant variation between stations;
estimates of the' within station between haul' and the' between samples'
~ariances were obtained.

Winsor & Clarke suggested the use of confidence limits in order to compare
catches, and if these are calculated from the numbers obtained in several hauls
from a given station, or at a given time, they provide a test of significance for
a further observation from, say, a different station, or at a different time.

From equations (4) and (5) it is seen that the 95 % limits for the untrans-
formed distribution correspond to the antilogarithms of the values for the
95% limits for the transformed (normal) distribution; and are therefore
antilog1o(YJ- ray)and antilog1o(YJ+ tay). If these are to be expressed as pro-
portions of the mean of the untransformed distributions, we have

antilog1o (YJ- tay)

g
and antilog1o (YJ+ tay)

g

or 1 (lower limit)
oglO mean - t,J[0'43429logIO (I +. V~)] - t 10gIO(I + V;), (9)

(upper limit) I (
2
)

I 9
10giO - - = + t\l [O'43429log1O I + V x] - 2logIO (I + V ~), (10)mean

in which form they are expressed in terms of the coefficient of variation only.
Silliman, recognizing this property, has argued as follows:

Solution of these equations gives a1-;'"0'024 as the variance of hauls and a~=0'007

as the variance of samples. Therefore aH=.JO'024=0'155 and as=.JO'007= 0'084, The
95 %fiducial limits are of interest and may be calculated from these estimates of a, For
hauls 2 x 0'155 =0'310 (2a limitsinclude 95 % of the distribution). Since these values
are logarithmic, the antilogs are used to convert to ratios, The antilog of 0'310 is 2'04
giving fiduciallimits of 49% (100 x 1/2'04) to 204 % (100 x 2'04). Thus the egg num-
ber from one haul may not be considered significantly different from the egg number at
another, unless it is less than one half, or more than double, that of the other. Similarly,
the 95 % fiducial limits for samples are 68 % to 147 %, and may be interpreted in
a like manner.

This method implies that the ratios are-

antilog1o (YJ-2Uy) d antilog1o (YJ+2Uy)
'

I an ' I '
ant! oglO YJ ant! oglO YJ

i.e. the mean employed is the antilogarithm of the mean of the transformed dis-
tribution, the geometric mean of the untransformed data. Similarly, estimates
of the confidence limits for the mean of a sample are expressed as percentages
of the geometric mean of the sample. Throughout Silliman has used the
word mean, which is generally taken to apply only to the arithmetic mean.
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If the arithmetic mean is used in this way, where the method is strictly
only applicable to the geometric mean, anomalous results may be obtained.
A numerical example taken from Silliman's data may illustrate the different
results obtained with the use of the geometric and arithmetic means.

The laboratory counts of pilchard eggs for two samplesdrawn from each of
two hauls taken at twenty-four different stations were given. Do the mean
values of the first samples differ significantly between the two hauls? The
means of the first samples are:

Mean of actual numbers
Mean of logarithmic values
Geometric mean catch

Haul A
7°"5

1"6499
44"66

Haul B

85"6
1"7031

50"48

The variance to be associated with a single haul, obtained from the analysis of
variance, and based on 69 degrees of freedom, is 0.°31.

The variance of the mean of 24 hauls is therefore 0.031/24
and the standard deviation 0"°359
2 x standard deviations* 0.0718

and the confidence limits are antilog 1.6499+0.°718=52°69
antilog 1.6499-0.°718=37°85.

From which it is seen that the geometric mean of the samples for the B hauls
falls within the confidence limits derived from the A hauls. If the limits are
calculated following Silliman and applied to the arithmetic mean of the
untransformed observations, they are:

Lower limit 84.7% of 7°°5 = 59. II,
Upper limit II7% of7005=83.I9,

and the observed value of 85.6 for the B hauls appears to be significant as
it falls outside the confidence limits derived from the A hauls. This result
differs from that obtained above. .

For confidence limits for a single observation the limits in actual numbers
given by the two methods are equal as there is no difference between the
estimate of the arithmetic mean and the geometric mean for a sample of one.

DISCUSSION

Although the estimates of the coefficient of variation as given by Winsor &
Clarke have been shown to have been incorrectly obtained, the correct coeffi-
cient of variation does give a useful indication of the variability to be expected
with any particular method and gear. The estimates given in this paper are
lower than those given by them, but for their data are nevertheless high. For
critical comparisons of catches, using the same gear and method confidence

* In this case t = 2 for 95 % probability level and 69 degrees of freedom.
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limits are more useful. These may be calculated from the transformed data
and expressed as actual numbers for a single observation, or as limits for the
geometric mean of a number of catches calculated as percentages of the
geometric mean of the observed data. This is equivalent to performing the
comparisons on the logarithmic values.

It must be emphasized that the derivation of estimates, both of the coeffi-
cient of variation and of confidencelimits, given in this paper, relies on the
assumption that the logarithmictransformation employedhas normalized the
observed distribution. In practice this willnot be completelyrealized,but the
estimates given will be better than those obtained by the methods of Winsor
& Clarke and Silliman,which take little account of the mathematical relations
involved.

For some observed data, a logarithmic transformation of the form
y=loglo (x+a) is more appropriate and, from the equations given above,
estimates of the coefficientof variation can be obtained. For such a trans-
formation, the varianceof the untransformed data remains a;, but the mean
becomes (g+ a). From Fig. I it willbe seen that confidencelimits for a single
observation depend only on area, and may therefore be obtained for any
normalizingtransformation, even when the mathematical relations between
the parameterSof the two distributions are not readily available. Comparisons
of sample means may be carried out on the transformed values.

Thanks are due to Mr N. W. Please for his helpful comments on this paper.
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