Journal
OF THE
MARINE BIOLOGICAL ASSOCIATION
OF THE UNITED KINGDOM.

LONDON:
PRINTED FOR THE MARINE BIOLOGICAL ASSOCIATION BY ADLARD AND SON,
AND PUBLISHED BY THE ASSOCIATION AT ITS OFFICES ON THE CITADEL HILL, PLYMOUTH.
SENT FREE BY POST TO ALL MEMBERS OF THE MARINE BIOLOGICAL ASSOCIATION:
ANNUAL SUBSCRIPTION FOR MEMBERSHIP, ONE GUINEA.
SECRETARY AND RESIDENT DIRECTOR.
GILBERT C. BOURNE, The Laboratory, Citadel Hill, Plymouth.
Patron.—H.R.H. THE PRINCE OF WALES, K.G., F.R.S.

OFFICERS AND COUNCIL.

President.
Professor HUXLEY, F.R.S.

Vice-Presidents.
The Duke of ARLINGTON, K.G., F.R.S.
The Duke of SUTHERLAND, K.G.
The Duke of ABERCORN, G.B.
The Earl of ST. GERMAN.
Lord WALSINGHAM, F.R.S.
The Right Hon. A. J. BALFOUR, M.P.
The Right Hon. JOSEPH CHAMBERLAIN, M.P.

COUNCIL.

Elected Members.
C. SPENCE BATE, Esq., F.R.S. (Plymouth).
Prof. T. JEFFREY BELL, F.Z.S. (British Museum).
W. S. CAYNE, Esq., M.P.
W. H. CALDWELL, Esq., M.A.
JOHN EVANS, Esq., D.C.L. (Treasurer, R.S.).
W. F. R. WELDON, Esq., M.A.

GOVERNORS.
ROBERT BAYLY, Esq. (Plymouth).
JOHN BAYLY, Esq. (Plymouth).
The Prime Warden of the Fishmongers' Company.
E. L. BECKWITH, Esq. (Fishmongers' Company).

Hon. Treasurer.
FRANK CRISP, Esq. (V.P. and Treas. Linn. Soc.), 6, Old Jewry, E.C.
Hon. Secretary.
Professor E. Ray LANKESHER, LL.D., F.R.S., University College, Gower Street, W.C.

Secretary and Resident Director.
LIST
of
Governors, Founders, and Members.
30th JULY, 1888.

I.—Governors.
The University of Cambridge ... £500
The Worshipful Company of Clothworkers, 41, Mincing Lane, E.C. ... £500
The Worshipful Company of Fishmongers, London Bridge £2000
The University of Oxford ... £500
Bayly, Robert, Torr Grove, Plymouth £1000
Bayly, John, Seven Trees, Plymouth £600

II.—Founders.
The British Association for the Advancement of Science, 22, Albemarle Street, W. ... £300
The Corporation of the City of London £210
1888 The Worshipful Company of Drapers, Drapers’ Hall, E.C. £105
The Worshipful Company of Mercers, Mercers’ Hall, Cheapside ... £315
The Royal Microscopical Society, King’s College, W.C. £100
The Royal Society, Burlington House, Piccadilly, W. £250
The Zoological Society, 3, Hanover Square, W. £100
1884 Bulteel, Thos., Radford, Plymouth £100
1884 Burdett-Coutts, W. L. A. Bartlett, 1, Stratton Street, Piccadilly, W. ... £100
1888 Bury, Henry, B.A., Trinity College, Cambridge £100
1884 Crisp, Frank, LL.B., B.A., V.P. and Treas. Linn. Soc., 6, Old Jewry, E.C. .. £100
MEMBERS.

1884 Daubeney, Captain, Naval Bank, Plymouth £100
1885 Derby, The Rt. Hon. the Earl of, K.G., 33, St. James's Square, S.W. £100
1884 Eddy, J. Ray, The Grange, Carleton, Skipton, Yorkshire £100
1884 Gassiott, John P., The Culvers, Carshalton, Surrey £100
1884 Lanchester, Prof. E. Ray, F.R.S., 45, Grove End Road, N.W. £100
1884 Lister, S. Unliffe, Swinton Park, Masham, Yorkshire £100
1884 Lubbock, Sir John, Bart., M.P., F.R.S., High Elms, Bromley, Kent .. £100
1884 Moseley, Prof. H. N., F.R.S., 14, St. Giles', Oxford £100
1884 Romanes, G. J., LL.D., F.R.S., 18, Cornwall Terrace, Regents Park, N.W. .. £100
1884 Thomasson, John P., M.P., Woodside, near Bolton £100
1887 Weldon, W. F. R., St. John's College, Cambridge £100

III.—Members.

ann. signifies that the Member is liable to an Annual Subscription of One Guinea.
C. signifies that he has paid a Composition Fee of Fifteen Guineas in lieu of Annual Subscription.

1885 Adami, J. G., Christ's College, Cambridge ann.
1884 Adkins, J. E., Yealmpton, Plympton ann.
1884 Alger, W. H., Widey Court, near Plymouth C.
1884 Allman, Prof. G. J., F.R.S., Ardmore, Parkstone, Dorset £20
1884 Argyll, The Rt. Hon. the Duke of, K.G., Argyll Lodge, Kensington, W. ... C.
1885 Armstrong, Sir W. G., C.B., F.R.S., Crag Side, Rothbury ... C.
1884 Ashworth, J. W., M.R.C.S., 40, Benyon Road, Kingsland, N... ann.

1884 Bailey, Charles, F.L.S., Ashfield, College Road, Whalley Range, Manchester .. ann.
1888 Balfour, Henry, Trinity College, Oxford ann.
1884 Balfour, Prof. Bayley, Royal Botanic Gardens, Edinburgh ... C.
1888 Balkwill and Co., 106, Old Town Street, Plymouth ann.
1888 Balkwill, F. H., 3, Princess Square, Plymouth ann.
1884 Bate, C. Spence, F.R.S., 8, Mulgrave Place, Plymouth £21
1884 Bateson, Miss A., 8, Harvey Road, Cambridge ann.
1884 Bateson, Mrs. Anna, 8, Harvey Road, Cambridge ann.
1884 Bateson, Wm., Morphological Laboratory, New Museums, Cambridge ... ann.
1884 Bayliss* W. Maddock, B.Sc., St. Cuthbert's, Hampstead Heath, N.W. ... ann.
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Address</th>
<th>Membership Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1884</td>
<td>Bayly, Miss</td>
<td>Seven Trees, Plymouth</td>
<td>£50</td>
</tr>
<tr>
<td>1884</td>
<td>Bayly, Miss Anna</td>
<td>Seven Trees, Plymouth</td>
<td>£50</td>
</tr>
<tr>
<td>1884</td>
<td>Bayly, Miss Elizabeth</td>
<td>Seven Trees, Plymouth</td>
<td>£50</td>
</tr>
<tr>
<td>1884</td>
<td>Bean, Chas. E.</td>
<td>Buckland Terrace, Plymouth</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Beard, John, B.Sc.</td>
<td>Owens College, Manchester</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Beanmont, W. J.</td>
<td>Clyde Road, Didsbury, Manchester</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Beck, Conrad</td>
<td>Cornhill, E.C.</td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Beddard, F. E.</td>
<td>Zoological Society's Gardens, Regent's Park, N.W.</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Beddington, Alfred H.</td>
<td>Cornwall Terrace, Regent's Park, N.W.</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Bell, Prof. F. Jeffrey</td>
<td>Radnor Place, Gloucester Square, W.</td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Berrington, A. D.</td>
<td>Home Office, Whitehall</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Bignell, Geo. Carter</td>
<td>M.E.S., Clarence Place, Stonehouse</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Birkbeck, Sir Edward</td>
<td>Charles Street, Berkeley Square, W.</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Blandford, J. Fielding</td>
<td>Grosvenor Street, W.</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Blandford, W. F. H.</td>
<td>Trinity College, Cambridge</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Blundstone, E. R.</td>
<td>Christ's College, Cambridge</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Bompas, G. C.</td>
<td>Gt. Winchester Street, E.C.</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Bossey, Francis, M.D.</td>
<td>Mayfield, Redhill, Surrey</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Bostock, E.</td>
<td>Stone, Staffordshire</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Bourne, Gilbert C.</td>
<td>The Laboratory, Citadel Hill, Plymouth</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Bowman, Sir W., Bart.</td>
<td>L.L.D., F.R.S., 5, Clifford Street, Bond Street, W.</td>
<td>£20</td>
</tr>
<tr>
<td>1884</td>
<td>Bradford, J. Rose, B.Sc.</td>
<td>30, Bloomsfield Street, Upper Westbourne Terrace, W.</td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>Brent, Francis, F.S.A.</td>
<td>6, Tuthill Avenue, Plymouth</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Brett, John, A.R.A.</td>
<td>38, Harley Street, W.</td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>Brooksbank, Mrs. M.</td>
<td>Leigh Place, Godstone, Surrey</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Brown, Arthur W. W.</td>
<td>Sussex Square, W.</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Buckton, G. B.</td>
<td>Weycombe, Haslemere</td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>Bullar, Miss Anna K.</td>
<td>Basset Wood, Southampton</td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Burd, J. S. Cresswell</td>
<td>Higher Compton, Plymouth</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Burt, Major T. Seymour</td>
<td>F.R.S., M.R.A.S., Pippbrook House, Dorking, Surrey</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Caine, H. T.</td>
<td>Upper Wimpole Street, W.</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Caine, W. S., M.P.</td>
<td>132 and 133, Palace Chambers, Bridge Street, S.W.</td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Caldwell, W. H.</td>
<td>12, Harley Road, Cambridge</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Carpenter, Dr. P.</td>
<td>Herbert, F.R.S., Eton College, Windsor</td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>Carter, James, F.G.S.</td>
<td>30, Petty Cury, Cambridge</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Chamberlain, Rt. Hon. J., M.P.</td>
<td>40, Princes Gardens, S.W.</td>
<td>£22</td>
</tr>
<tr>
<td>1884</td>
<td>Chapman, Edward</td>
<td>Frewen Hall, Oxford</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Address</td>
<td>Payment</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1884</td>
<td>Christy, Thomas Howard</td>
<td>Malvern House, Sydenham</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Clarke, Rt. Hon. Sir E.</td>
<td>Malvern House, Sydenham</td>
<td>£25</td>
</tr>
<tr>
<td>1884</td>
<td>Clay, Dr. R. H.</td>
<td>Windsor Villas, Plymouth</td>
<td>ann.</td>
</tr>
<tr>
<td>1885</td>
<td>Clerk, Major-Gen. H.</td>
<td>Hobart Place, Eaton Square, S.W.</td>
<td>£21</td>
</tr>
<tr>
<td>1886</td>
<td>Coates and Co.</td>
<td>Southside Street, Plymouth</td>
<td>C.</td>
</tr>
<tr>
<td>1885</td>
<td>Collier Bros.</td>
<td>Old Town Street, Plymouth</td>
<td>C.</td>
</tr>
<tr>
<td>1885</td>
<td>Colquhoun, Sir James</td>
<td>Hastings</td>
<td>ann.</td>
</tr>
<tr>
<td>1885</td>
<td>Cooke, A. H.</td>
<td>King's College, Cambridge</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Crofton, Edward</td>
<td>West Cromwell Road, Earl's Court, S.W.</td>
<td>ann.</td>
</tr>
<tr>
<td>1885</td>
<td>Cunningham, Geo.</td>
<td>King's Parade, Cambridge</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Dallinger, W. H.</td>
<td>Wesley College, Sheffield</td>
<td>ann.</td>
</tr>
<tr>
<td>1885</td>
<td>Darwin, Francis</td>
<td>Trinity College, Cambridge</td>
<td>C.</td>
</tr>
<tr>
<td>1885</td>
<td>Darwin, W. E.</td>
<td>Basset, Southampton</td>
<td>£20</td>
</tr>
<tr>
<td>1885</td>
<td>Deby, Julien</td>
<td>Belsize Avenue, N.W.</td>
<td>ann.</td>
</tr>
<tr>
<td>1885</td>
<td>Dock, Arthur</td>
<td>King's Parade, Cambridge</td>
<td>ann.</td>
</tr>
<tr>
<td>1885</td>
<td>Dendy, Arthur</td>
<td>Victoria University, Melbourne, Australia</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Dewick, Rev. E. S.</td>
<td>Oxford Square, Hyde Park, W.</td>
<td>C.</td>
</tr>
<tr>
<td>1885</td>
<td>Dixey, F. A.</td>
<td>Wadham College, Oxford</td>
<td>£26 5s.</td>
</tr>
<tr>
<td>1884</td>
<td>Dobson, G. E.</td>
<td>Colyford Villa, Exeter</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Duff, W. Pirie</td>
<td>Oakfield Lodge, Champion Park, Denmark Hill, S.E.</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Duncan, J. Matthews</td>
<td>Brook Street, W.</td>
<td>C.</td>
</tr>
<tr>
<td>1884</td>
<td>Dunning, J. W.</td>
<td>Talbot Square, W.</td>
<td>£26 5s.</td>
</tr>
<tr>
<td>1885</td>
<td>Durham, A. E.</td>
<td>Christ's College, Cambridge</td>
<td>C.</td>
</tr>
<tr>
<td>1884</td>
<td>Dyer, W. T. Thiselton</td>
<td>Royal Gardens, Kew</td>
<td>C.</td>
</tr>
<tr>
<td>1887</td>
<td>Ebrington, Viscount</td>
<td>Castle Hill, North Devon</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Edmonds, R. G.</td>
<td>Mount Drake, Plymouth</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Evans, John</td>
<td>Nash Mills, Hemel Hempstead</td>
<td>£20</td>
</tr>
<tr>
<td>1885</td>
<td>Ewart, Prof. J. Cossar</td>
<td>University, Edinburgh</td>
<td>£25</td>
</tr>
<tr>
<td>1884</td>
<td>Fayrer, Sir Joseph</td>
<td>Wimpole Street, W.</td>
<td>ann.</td>
</tr>
<tr>
<td>1884</td>
<td>Fison, Frederick W.</td>
<td>Greenholme, Burley in Wharfedale, Leeds</td>
<td>C.</td>
</tr>
<tr>
<td>1884</td>
<td>Flower, Prof. C.B.</td>
<td>Director of the British Museum (Natural History), Cromwell Road, S.W.</td>
<td>ann.</td>
</tr>
</tbody>
</table>
1885 Fowler, G. Herbert, B.A., Ph.D., University College, Gower Street .. ann.
1884 Fox, George H., Dolvean, Falmouth ... ann.
1886 Freeman, F. F., S, Leigham Terrace, Plymouth C.
1884 Fry, George, F.L.S., The Warren, Chobham, Surrey £21
1884 Fryer, Charles E., Board of Trade, S.W. ann.
1885 Gadow, Dr. Hans, King's College, Cambridge ann.
1884 Galton, J. C., F.L.S., New University Club, St. James's Street, W. .. ann.
1887 Gamgee, Dr. A., F.R.S., 17, Great Cumberland Place, W. ann.
1885 Gaskell, W. H., F.R.S., Trinity College, Cambridge C.
1885 Gaskell, E. H., North Hill, Highgate C.
1884 Gibson, Ernest, F.Z.S., 1, Eglinton Crescent, Edinburgh ann.
1885 Glennie, W. R., Berkeley Lodge, Wimbledon ann.
1884 Gonne, William, 32, Sussex Gardens, W. £26 5s.
1885 Gotch, F., Physiological Laboratory, Oxford ann.
1888 Goulding, F. H., George Street, Plymouth ann.
1888 Grant, Rear-Admiral, W. B., 7, Elliott Terrace, The Hoe, Plymouth ... ann.
1885 Green, J. R., Trinity College, Cambridge ann.
1886 Gresswell, D. Astley, 5, Oakley Square, Camden Town ann.
1884 Grove, E., Saltburn ... ann.
1884 Groves, J. W., 90, Holland Road, W ann.
1884 Gull, Sir William W., Bart., F.R.S., 74, Brook Street, W ann.
1884 Günther, Albert, F.R.S., Natural History Museum, Cromwell Road, S.W. .. ann.
1884 Haddon, Prof. Alfred C., M.A., Royal College of Science, Dublin ... ann.
1884 Halliburton, W. D., M.D., B.Sc., Fellow of University College, London, University College, Gower Street, W.C. ann.
1884 Hannah, Robert, 82, Addison Road, Kensington, W C.
1885 Harmer, S. F., King's College, Cambridge C.
1885 Harker, Allen, F.L.S., Royal Agricultural College, Cirencester ... ann.
1884 Haslam, Miss E. Rose, Ravenswood, Bolton £20
1888 Hawker, W. H., Burleigh, Plymouth .. ann.
1884 Head, J. Merrick, F.R.G.S., London Road, Reigate ann.
1884 Healey, George W., Brantfield, Bowness, Windermere ann.
1884 Heape, Walter, Northwood, Prestwich, Manchester C.
1887 Heath, William, 24, George Street, Plymouth ann.
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Position</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1884</td>
<td>Heathcote, Fredk. G.</td>
<td>Trinity College, Cambridge</td>
<td>Cambridge</td>
</tr>
<tr>
<td>1884</td>
<td>Herdman, Prof. W. A.</td>
<td>University College, Liverpool</td>
<td>Liverpool</td>
</tr>
<tr>
<td>1884</td>
<td>Herschel, J., Col. R.E., F.R.S.</td>
<td>Collingwood, Hawkhurst Kent</td>
<td>Kent</td>
</tr>
<tr>
<td>1884</td>
<td>Herschel, Sir W. J., Bart.</td>
<td>Lawn Upton, Littlemore</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Heward-Bell, W., F.G.S.</td>
<td>Secad, Melksham, Wilts</td>
<td>Wilts</td>
</tr>
<tr>
<td>1884</td>
<td>Heywood, James, F.R.S.</td>
<td>Palace Gardens, W.</td>
<td>W.</td>
</tr>
<tr>
<td>1885</td>
<td>Hill, Alex., M.D.</td>
<td>Downing College, Cambridge</td>
<td>Cambridge</td>
</tr>
<tr>
<td>1884</td>
<td>Hillier, James T.</td>
<td>Chapel Place, Ramsgate</td>
<td>Ramsgate</td>
</tr>
<tr>
<td>1888</td>
<td>Hodge, H. Cotty</td>
<td>Redland House, Vinestone, Plymouth</td>
<td>Plymouth</td>
</tr>
<tr>
<td>1884</td>
<td>Hope, Robert Charles, F.S.A., F.R.S.L.</td>
<td>Albion Crescent, Scarborough</td>
<td>Scarborough</td>
</tr>
<tr>
<td>1884</td>
<td>Horniman, F. J.</td>
<td>Surrey Mount, Forest Hill</td>
<td>Forest Hill</td>
</tr>
<tr>
<td>1887</td>
<td>Howes, Prof. G. Bond</td>
<td>Science and Art Department, South Kensington</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Hudleston, W. H.</td>
<td>Oatlands Park, Weybridge</td>
<td>Weybridge</td>
</tr>
<tr>
<td>1885</td>
<td>Hurst, C. Herbert</td>
<td>Owens College, Manchester</td>
<td>Manchester</td>
</tr>
<tr>
<td>1885</td>
<td>Hurst, Walter, B.Sc.</td>
<td>Owens College, Manchester</td>
<td>Manchester</td>
</tr>
<tr>
<td>1884</td>
<td>Huxley, Prof. T. H., LL.D., F.R.S., F.R.S.L.</td>
<td>4 Marlborough Place, St. John's Wood, N.W.</td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>Inskip, Capt. G. H., R.N.</td>
<td>22 Torrington Place, Plymouth</td>
<td>Plymouth</td>
</tr>
<tr>
<td>1887</td>
<td>Iago-Trelawny, Major-Gen.</td>
<td>F.R.G.S., Coldmire, Liskeard</td>
<td>Coldmire</td>
</tr>
<tr>
<td>1885</td>
<td>Jackson, W. Hatchett, M.A., F.L.S.</td>
<td>Pen Wortha, Weston-super-Mare</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>James, C. H., Ingleside</td>
<td>Mutley, Plymouth</td>
<td>Plymouth</td>
</tr>
<tr>
<td>1884</td>
<td>Johnson, Miss Alice</td>
<td>Llandaff House, Cambridge</td>
<td>Cambridge</td>
</tr>
<tr>
<td>1884</td>
<td>Kellock, W. B., F.L.S., F.R.C.S.</td>
<td>Stamford Hill, N.</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>Kent, A. F. S.</td>
<td>33 New Street, Salisbury</td>
<td>Salisbury</td>
</tr>
<tr>
<td>1885</td>
<td>Langley, J. N., F.R.S.</td>
<td>Trinity College, Cambridge</td>
<td>Cambridge</td>
</tr>
<tr>
<td>1885</td>
<td>Latter, O. H., Keble College</td>
<td>Oxford</td>
<td>Oxford</td>
</tr>
<tr>
<td>1885</td>
<td>Lea, A. S., M.A.</td>
<td>Trinity College, Cambridge</td>
<td>Cambridge</td>
</tr>
<tr>
<td>1884</td>
<td>Lewis, George</td>
<td>88 Portland Place, W.</td>
<td>Portland Place, W.</td>
</tr>
<tr>
<td>1884</td>
<td>Lloyd, Thomas</td>
<td>Winchester</td>
<td>Winchester</td>
</tr>
<tr>
<td>1884</td>
<td>London, The Lord Bishop</td>
<td>The Palace, Fulham, S.W.</td>
<td>Fulham, S.W.</td>
</tr>
<tr>
<td>1888</td>
<td>Lopes, Sir Massey, Bart.</td>
<td>Maristowe, Roborough, South Devon</td>
<td>South Devon</td>
</tr>
<tr>
<td>1884</td>
<td>Lovell, Miss Matilda S.</td>
<td>Calke Abbey, Derby</td>
<td>Derby</td>
</tr>
<tr>
<td>1887</td>
<td>Lundgren, F. H.</td>
<td>29 St. Bartholomew's Road, Camden</td>
<td>Camden</td>
</tr>
</tbody>
</table>
1885 Macalister, Professor, F.R.S., St. John's College, Cambridge... ann.
1884 Mackrell, John, High Trees, Clapham Common, S.W...... C.
1886 MacMunn, Charles A., Oak Leigh, Wolverhampton......... ann.
1885 Marr, J. E., M.A., St. John's College, Cambridge... C.
1884 Marshall, Prof. A. Milnes, M.A., M.D., D.Sc., The Owens
College, Manchester .. £25
1884 Mason, Philip Brookes, Burton-on-Trent...................... ann.
1885 Matthews, J. Duncan, Springhill, Aberdeen.................. ann.
1884 McAndrew, James J., Lakeside, Ivy Bridge, South Devon £26 1s.
1884 McIntosh, Prof. W. C., F.R.S., 2, Abbotsford Crescent, St.
Andrews, N.B. .. C.
1887 Methuen, Rev. T. P., 7, Somerset Place, Bath............... ann.
1884 Michael, Albert D., Cadogan Mansions, Sloane Square, S.W. C.
1884 Milne-Home, Col., Paxton House, Berwick-on-Tweed........ ann.
1885 Mitchell, P. Chalmers, McLean Place, Dumfiermline...... ann.
1885 Mocatta, F. H., 9, Connought Place, W........................ C.
1886 Mond, Ludwig, 20, Avenue Road, Regent's Park, N.W..... C.
1884 Moore, Thomas John, C.M.Z.S.L., Curator Free Public
Museum, Liverpool .. ann.
1884 Morgan, O. Lloyd, University College, Bristol.............. ann.
1885 Morris, John, 13, Park Street, Grosvenor Square, W....... C.
1885 Morrison, Alfred, 16, Carlton House Terrace................ £52 10s.
1884 Newton, Prof. Alfred, M.A., F.R.S., Magdalen College, Cam-
bridge .. £20
1884 Noble, John, Park Place, Henley-on-Thames................. ann.
1884 Norman, Rev. A. M., Burnmoor Rectory, Fence Houses...... ann.
1885 Oliver, F. W., Trinity College, Cambridge................. ann.
1884 Ommaney, Admiral Sir Erasmus, C.B., F.R.S., The Towers,
Yarmouth, Isle of Wight .. ann.
1884 Ormerod, G. W., M.A., F.G.S., Woodway, Teignmouth...... ann.
1885 Paget, Sir James, Bart., F.R.S., 1, Harewood Place, Han-
over Square, W. .. C.
1884 Parker, J. J., 54, Eaton Terrace, S.W......................... ann.
1884 Parker, W. Newton, University College, Cardiff............. ann.
1884 Parsons, Chas. T., Norfolk Road, Edgbaston, Birmingham... ann.
1887 Pechev, Miss Edith, Cambalta Hill, Bombay................... ann.
1884 Peck, R. Holman, Elmfield, Penge Lane, Sydenham......... ann.
1885 Phillips, Chas. D. F., M.D., 10, Henrietta Street, Cavendish
Square, W. .. C.
1884 Pittock, George M., M.B. Lond., 23, Cecil Square, Margate... ann.
1885 Pochin, H. D., Bodnant Hall, Eglwysbach, Denbighshire..... C.
1884 Pollock, Henry, 18, Hanover Terrace, Regent's Park, N.W. ann.
1884 Potter, Michael C., M.A., Herbarium, New Museums, Cambridge ... ann.
1884 Powell, Thos. Harcourt, Drinkstone Park, Woolpit, Bury St. Edmunds ... C.
1886 Power, Henry, F.R.C.S., 37a, Great Cumberland Place, W. ann.
1888 Prance, C. R., M.D., 18, Princess Square, Plymouth ann.
1885 Pritchard, Urban, 3, George Street, Hanover Square, W. ann.
1884 Pye-Smith, P. H., M.D., 54, Harley Street, W. C.
1884 Radford, Daniel, Mount Tavy, Tavistock ann.
1884 Rae, John, LL.D., F.R.S., 4, Addison Gardens, Kensington, W. .. ann.
1885 Ralli, Mrs. Stephen, Cleveland House, Clapham Park £30
1885 Ransom, W. B., Trinity College, Cambridge C.
1887 Riley, W., Newcastle House, Bridgend, Glamorganshire ann.
1884 Rowe, J. Brooking, F.S.A., F.L.S., Lockyer Street, Plymouth .. ann.
1885 Roy, Professor Chas. S., Trinity College, Cambridge ann.
1885 Ruscoe, John, Albion Works, Henry Street, Hyde, near Manchester ... ann.
1885 Saunders, Rev. J. C., M.A., Downing College, Cambridge ... ann.
1884 Schäfer, Prof. E. A., F.R.S., University College, Gower Street, W.C. .. ann.
1888 Scharff, Robert T., M.D., Science and Art Museum, Dublin ... ann.
1884 Scatler, P. Lutley, F.R.S., 3, Hanover Square, W. ann.
1884 Scatler, W. Lutley, 44, Elveston Place, London, S.W. ann.
1885 Scott, D. H., The Laurels, Bickley, Kent C.
1884 Sedgwick, A., M.A., F.R.S., Trinity College, Cambridge C.
1888 Serpell, E. W., 19, Hill Park Crescent, Plymouth ann.
1885 Sheldon, Miss Lilian, Newnham College, Cambridge ann.
1884 Shipley, Arthur E., Christ's College, Cambridge ann.
1886 Shore, T. W., M.D., St. Bartholomew's Hospital ann.
1884 Sladen, W. Percy, Sec. Linn. Soc., Orsett House, Ewell, Surrey ... ann.
1884 Smith, Robert Mackay, Edinburgh C.
1884 Sowerby, William, Royal Botanical Society, Regent's Park, N.W. ... ann.
1884 Spencer, J., 82, London Street, Greenwich, S.E. ann.
1884 Spring-Rice, S. E., 113a, Queen's Gate, W. C.
1884 Stalbridge, The Rt. Hon. Lord, 12, Upper Brook Street, W. ann.
1884 Staples, Alderman, 87, Avenue Road, Regent's Park, N.W. ann.
1884 Stewart, Prof. Chas., F.L.S., Royal College of Surgeons ann.
1884 Strawbridge, George N., 11, Blandford Square, N.W. ann.
MEMBERS.

1884 Sutherland, The Rt. Hon. the Duke of, K.G., Stafford House,
 St. James', S.W. ... C.
1884 Thompson, Prof. D'Arcy W., Dundee ann.
1884 Thornycroft, John L., Eyot Villa, Chiswick Mall ann.
1884 Upcher, Henry R., Sherringham, Cromer ann.
1885 Vaizey, J. Reynolds, Peterhouse, Cambridge ann.
1884 Vines, Professor Sydney H., M.A., D.Sc., F.R.S., Botanical
 Gardens, Oxford .. ann.
1884 Walker, Alfred O., Lead Works, Chester ann.
1884 Walker, P. F., 36, Princes Gardens, S.W. ann.
1884 Walsingham, Lord, Eaton House, Eaton Square, S.W. £20
1884 Watkins, F. Louis, Rosemont, Greenhill Road, Hampstead ... ann.
1884 Welch, H. Kemp, 32, Onslow Gardens ann.
1884 Wilson, Scott B., Heather Bank, Weybridge Heath C.
1884 Woodall, John W., St. Nicholas House, Scarborough ann.
1884 Woolcombe, W. G., M.A., F.R.A.S., F.L.S., Cathedral Close,
 Exeter ... ann.
1886 Woolcombe, Surgeon-Major R. W., 14, Acre Place, Devon-
 port ... ann.

IV.—Donors, not being Members.

£ s. d.
H.R.H. the Prince of Wales (Patron) 25 0 0
The Worshipful Company of Goldsmiths 100 0 0
The Worshipful Company of Skinners 42 0 0
Abercorn, The Duke of, C.B., Baron's Court, Ireland 5 0 0
Acland, Sir Henry W. D., K.C.B., F.R.S., Broad Street, Oxford 5 0 0
Albright, A. P., Birmingham ... 5 0 0
Ash and Son, C., 9, Broad Street, Golden Square, W. 1 1 0
Ball, Prof. R. S., LL.D., F.R.S., Observatory, Dunsink 1 1 0
Barrett, G. R., Portland Square, Plymouth 1 1 0
Bewes, Rev. Thomas A., Beaumont, Plymouth 5 0 0
Blomefield, Leonard, 19, Belmont, Bath 5 0 0
Braithwaite, Isaac, 4, Gloucester Square, W. 5 5 0
Brooks, H. St. John, M.B., Dublin 1 1 0
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>£ s. d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burd, J. S.</td>
<td>Mannamead, Plymouth</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Carter, Henry J.</td>
<td>The Cottage, Budleigh, Devon</td>
<td>5 5 0</td>
</tr>
<tr>
<td>Casella, Louis P.</td>
<td>F.R.A.S., The Lawns, Highgate</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Champernowne, A.</td>
<td>Dartington Hall, Totnes</td>
<td>10 0 0</td>
</tr>
<tr>
<td>Clarke, Hyde</td>
<td>32, St. George's Square, S.W.</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Darbishire, S. D.</td>
<td>60, High Street, Oxford</td>
<td>3 3 0</td>
</tr>
<tr>
<td>Devonshire, The</td>
<td>Rt. Hon. the Duke of, K.G.</td>
<td>25 0 0</td>
</tr>
<tr>
<td>Drysdale, J. J. M.D.</td>
<td>36A, Rodney Street, Liverpool</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Ducie, The Earl of,</td>
<td>16, Portman Square, W.</td>
<td>25 0 0</td>
</tr>
<tr>
<td>Farrer, Sir Thos. H.</td>
<td>Bart., 27, Bryanston Square, W.</td>
<td>10 0 0</td>
</tr>
<tr>
<td>Fox, H. B.</td>
<td>Pengenick, Falmouth</td>
<td>3 3 0</td>
</tr>
<tr>
<td>Fry, The Lord Justice</td>
<td></td>
<td>1 0 0</td>
</tr>
<tr>
<td>Fung, Yee</td>
<td>49, Portland Place, W.</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Gay, F. W.</td>
<td>113, High Holborn, W.C.</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Goulding, Francis H.</td>
<td>George Street, Plymouth</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Guy, William A. M.B.</td>
<td>12, Gordon Street</td>
<td>5 0 0</td>
</tr>
<tr>
<td>Harris, A. Saunders</td>
<td>5, Gascoigne Place, Plymouth</td>
<td>3 3 0</td>
</tr>
<tr>
<td>Heap, Richard</td>
<td>Blackmoor, West Derby, Liverpool</td>
<td>5 0 0</td>
</tr>
<tr>
<td>Hingston, C. A. M.D.</td>
<td>2, Sussex Terrace, Plymouth</td>
<td>5 0 0</td>
</tr>
<tr>
<td>Hodgson, Shadworth H.</td>
<td>45, Conduit Street, Regent Street, W.</td>
<td>5 5 0</td>
</tr>
<tr>
<td>Hooker, Sir Joseph, K.S.T., C.B.</td>
<td>Royal Gardens, Kew</td>
<td>10 10 0</td>
</tr>
<tr>
<td>Hughes, Professor</td>
<td>Clare College, Cambridge</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Hull, Edward, LL.D.</td>
<td>F.R.S., 14, Hume Street, Dublin</td>
<td>3 3 0</td>
</tr>
<tr>
<td>Joshua, Samuel</td>
<td>18, Westbourne Terrace, Hyde Park, W.</td>
<td>5 5 0</td>
</tr>
<tr>
<td>Lemann, F. C.</td>
<td>Black Friars House, Plymouth</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Lowthian, M. J.</td>
<td>Glenlora, Loch Winnoch, N.B.</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Macmillan & Co.</td>
<td>29 and 30, Bedford Street, Covent Garden, W.C.</td>
<td>25 0 0</td>
</tr>
<tr>
<td>Marshall, C. F.</td>
<td>B.Sc., Owens College, Manchester</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Matthey, G.</td>
<td>78, Hatton Garden, E.C.</td>
<td>5 5 0</td>
</tr>
<tr>
<td>Metnen, Rev. Thomas P.</td>
<td>Abbey Lodge, St. Albans</td>
<td>5 5 0</td>
</tr>
<tr>
<td>Miers, Edw. J.</td>
<td>Zoological Department, British Museum, Cromwell Road, S.W.</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Morley, The Earl of,</td>
<td>31, Prince's Gardens, S.W.</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Neild, Dr.</td>
<td>Sussex Terrace, Plymouth</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Pengelly, Wm.</td>
<td>F.R.S., Torquay</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Ridley, Stuart O.</td>
<td>F.L.S., 3, Christchurch Road, Hampstead, N.W.</td>
<td>5 5 0</td>
</tr>
<tr>
<td>Roberts, Isaac</td>
<td>Kennessee, Maghull, Liverpool</td>
<td>6 1 0</td>
</tr>
<tr>
<td>Roget, John L.</td>
<td>5, Randolph Crescent, Maida Hill</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Rosseter, T. B.</td>
<td>Fleur de Lis, Canterbury</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Russell, Lord Arthur</td>
<td>M.P., 2, Audley Square, W.</td>
<td>5 0 0</td>
</tr>
<tr>
<td>Russell-Rendle, E. M.</td>
<td>11, Athenaeum Place, Plymouth</td>
<td>1 1 0</td>
</tr>
<tr>
<td>Sanders, T. C.</td>
<td>46, Cleveland Square</td>
<td>2 0 0</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>£</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sanderson, Prof. J. Burdon, F.R.S.</td>
<td>Bambury Road, Oxford</td>
<td>10</td>
</tr>
<tr>
<td>Saunders, Sir Edwin</td>
<td>13, Hanover Square, W.</td>
<td>10</td>
</tr>
<tr>
<td>Shepherds, Mrs. A. B.</td>
<td>17, Great Cumberland Place, W.</td>
<td>5</td>
</tr>
<tr>
<td>S. K. I. P., per Arthur W. W. Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square, W. J., F.R.C.S., Portland Square, Plymouth</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Square, Wm., F.R.C.S., F.R.G.S., Portland Square, Plymouth</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>St. Germans, the Earl of</td>
<td>Port Eliot, Cornwall</td>
<td>10</td>
</tr>
<tr>
<td>Teign Naturalists’ Field Club, Teignmouth</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Trist, Major</td>
<td>Tristford, Harberton, South Devon</td>
<td>2</td>
</tr>
<tr>
<td>Verney, E. H., Capt. R.N., Travellers’ Club, Pall Mall, S.W.</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

PRESENTED AT THE FOURTH ANNUAL GENERAL MEETING OF THE ASSOCIATION, HELD ON JUNE 27th, 1888, IN THE ROOMS OF THE ROYAL SOCIETY, BURLINGTON HOUSE, LONDON.

I. The Council has met twelve times since the last Annual General Meeting of the Association in June, 1887. The business transacted by the Council has chiefly had reference to the completion of the machinery and fittings of the Plymouth Laboratory. The Council report that the Laboratory is now complete, the apparatus for pumping and circulating sea-water is at work, the tanks are stocked with various fishes and other marine animals and plants, the work-rooms are fitted and actually occupied by naturalists, and a considerable collection of books of reference on marine zoology and botany and on fishery questions is in place in the Library.

On Saturday, June 30th, as already announced to the Members of the Association, the Council will formally open the Laboratory at Plymouth. They have great pleasure in acknowledging the generous assistance afforded to them on this occasion by the Court of the Fishmongers' Company, who not only will be represented at the ceremony by the Prime Warden and other members, but have invited the Members of the Association to a banquet at Plymouth in celebration of the opening of the Laboratory. The interest taken by the Fishmongers' Company in the affairs of the Association has further led them to take a step which will ensure the attendance of nearly all the Members of the Council of the Association at Plymouth on June 30th, and will enable them to examine
the building and appliances which have come into existence through their labours. Through Mr. E. L. Beckwith, the representative of the Company on the Council of the Association, the Members of the Council have been invited to travel to and from Plymouth and to stay there on the occasion of the ceremony of June 30th as the guests of the Fishmongers' Company. The Council desire not only to record their appreciation of the kind consideration shown by this invitation, but to express the belief that the opportunity thus afforded to the Council of inspecting the arrangements of the Laboratory will be of advantage to the Association.

II. On July 26th last Mr. J. T. Cunningham, Fellow of University College, Oxford, was appointed Naturalist to the Association, and at once proceeded to Plymouth, where he has since been steadily occupied in the investigation of the breeding and general natural history of food fishes, especially of the sole, conger, pilchard, and herring. He has furnished the Council with quarterly reports of the work done by him, and will shortly be in a position to publish some results.

III. Mr. W. F. R. Weldon, Fellow of St. John's College, Cambridge, has spent some months at the Laboratory in the study of the development of the common lobster and of the spiny lobster, and in a general study of the Crustacea of the Sound. In this work Mr. Weldon has been assisted, so far as expenditure on boats, fishermen, and material is concerned, by a grant from the Government Grant Fund of the Royal Society, entrusted by the Government Grant Committee to the President of the Association, the Hon. Secretary, Prof. Moseley, and Mr. Adam Sedgwick.

IV. In October Mr. Walter Heape resigned the post of Resident Superintendent, his resignation taking effect in March. The Council determined to appoint, in succession to Mr. Heape, a Director who should be also Secretary of the Association, and attend the meetings of the Council in London. In addition to the salary of £200 a year and a residence, the Council agreed to provide the new Director with funds for the payment of a clerk-assistant. The
terms of the appointment were advertised in the 'Times,' 'Athenæum,' 'Nature,' and in the Plymouth newspapers. There were twelve applications for the post, the list including some of the most distinguished of the younger naturalists of this country as well as foreigners. The choice of the Council fell upon Mr. Gilbert C. Bourne, M.A., Fellow of New College, Oxford, who proceeded to Plymouth in the beginning of June, and has now entire charge of the Laboratory and of the general business and correspondence of the Association.

The Honorary Secretary, Professor Lankester, retains his office, but having during four years personally carried on the correspondence and general management of the affairs of the Association whilst its resources were in course of development and organisation, he has expressed a desire, now that a solid and permanent realisation of the plans of the Association has been secured, to hand over the more laborious portion of the Secretary's duties to a paid official. Accordingly the Council has arranged to provide a salary for a clerk who will assist Mr. Bourne, that gentleman acting as both Resident Director of the Laboratory and Secretary of the Association.

V. Amongst donations to the funds of the Association during the past year the Council has to report £100 from the British Association for the Advancement of Science, £25 from the Goldsmiths' Company, and £25 from Sir Edward Clarke, M.P., the Solicitor-General. The Treasurer's report shows that on completion of the payments for the buildings and fittings and Naturalist's salary, the Association will have about £2000 in hand, apart from investments and annual income, and that it will have disbursed up to the present date about £13,700, of which £12,500 is represented in the actual buildings, fittings, and machinery of the Laboratory. The estimated income of the Association from subscriptions, investments, and subsidies is £900. The Council have determined to expend £440 a year for three years out of the balance of £2000 mentioned above, in the general maintenance of the Laboratory and Staff, so that during these three years they have provided for a budget of £1340. This
expenditure is calculated on an extremely economical scale. The Council feel confident that as the work of the Laboratory progresses and becomes generally known additional funds will be forthcoming for the prosecution of its objects.

At the present moment the most serious deficiency in the equipment of the Laboratory is the want of a small steam vessel which can be used by the Staff of the Laboratory for the purpose of exploring the fishing grounds of the neighbourhood of Plymouth. A special appeal for funds for the purchase and maintenance of such a steamer has been drawn up by the Director and authorized by the Council of the Association, and it is hoped that those who visit the Laboratory on the 30th may mark their approval of the arrangements there made by starting the steamboat fund.

VI. The Council has adopted the following regulations with reference to the admission of naturalists to the use of the Laboratory:

(1) Any Governor or Founder of the Association is entitled to occupy in propriá personá a table at the Plymouth Laboratory without payment. He shall also have the privilege, upon signifying to the Director his intention to forego permanently the right of personally occupying a table in the Laboratory, of nominating an eligible person to make use of a table for one month in each year free of charge.

(2) The charge for a table shall be £40 a year, £25 for a half year, and £5 for a month, to be paid in advance. No table shall be let for less than a month, and the monthly charge shall be as above for any number of months less than six.

(3) Members of the Association have the first claim to become renters of tables.

(4) Life Members of the Association are entitled to occupy in propriá personá a table at a reduction of one fourth from the above rates.

(5) The Council of the Association may remit, in whole or in part, the payment of rent for a table in special cases. No charge will be made to a State-recognized authority for the use of a table.

(6) Applications from Members and others desiring to occupy tables must be made to the Director of the Laboratory of the Marine Biological Association, Plymouth.

(7) The Association undertakes, so far as possible, to supply the material required for any investigation, and such facilities for obtaining it as may be at the command of the Association.

(8) The Association supplies to the occupant of each table ordinary glass jars, dissecting dishes, bottles, pans, &c., not to be
removed from the Laboratory; also ordinary chemical reagents, and a limited amount of ordinary methylated alcohol. The Association does not supply absolute alcohol, nor does it provide microscopes or other instruments. The more expensive reagents, as well as glass slips and covers, and other portable apparatus, may be purchased of the attendant.

(9) For the purpose of enabling the Director to draw up the half-yearly statement of the work of the Laboratory required by H.M. Government, and for the information of the Association, all naturalists working in the Laboratory at the completion of their work, or if not completed after three months then at intervals of three months, are expected to furnish the Director with a summary statement of the investigations carried on by them in a form suitable for publication in the Journal of the Association.

(10) Any Member of the Association is at liberty to view the Laboratory and tanks between the hours of 10 a.m. and 6 p.m. on presenting his card to the Director.

VII. A committee of the Council, consisting of Dr. Günther, Mr. Sedgwick, and Prof. Bell, has undertaken during the past year the formation of the nucleus of a Library. They have been authorized to expend £188 on the purchase of books, and have also made applications for gifts of books to various sources. A valuable collection of works has thus been brought together, and in future it will be the business of the Director to make purchases for the Library and to apply for gifts of books. A sum of £100 a year has been assigned by the Council for the maintenance of the Library and purchase of books.

A catalogue of the Library will be printed in the next number of the Journal of the Association (No. 2), and it is hoped that Members and friends of the Association will assist in making the Library as complete as possible by presenting their own publications or other works which they can spare.

VIII. The Council has to record the death during the past year of one of its most energetic supporters and a Vice-President of the Association, the Earl of Dalhousie. The late Earl, as Chairman of the Royal Commission on Trawling, took a deep interest in the study of fishery problems, and made himself practically acquainted with sea fisheries by accompanying the fishermen in their cruises. It is largely due to the advocacy of the late Earl of Dalhousie and the
report of the Commission over which he presided, that the Association owes the support which it has received from public funds.

IX. The Council desire to record the indebtedness of the Association to the Councils of both the Linnean Society and the Royal Society for kindly permitting the Association to make use of rooms belonging to those societies for the purpose of the periodic meetings of the Council and Association.

X. The following is the list of officers, Vice-Presidents, and Council proposed by the Council for the year 1888-89. The President of the Association, Professor Huxley, has consented to remain in office for the present, although he has expressed a wish to retire on account of his health not permitting him to give so much attention as heretofore to the business of the Association. Owing to illness, Professor Moseley is also unable to act any longer as Chairman of the Council. It is with the deepest regret that the Council record the retirement of Professor Moseley, whose work in connection with the plans for the Laboratory and its fittings was of the greatest value, whilst in all matters and at all times he has been the most earnest and generous supporter of the enterprise taken in hand by the Association.

President.—Professor Huxley, F.R.S.

Hon. Treasurer.—Mr. Frank Crisp, V.P.L.S.

Hon. Secretary.—Professor Ray Lankester, F.R.S.

Council.—Mr. C. Spence Bate, F.R.S.; Prof. Jeffrey Bell; Mr. W. S. Caine, M.P.; Mr. W. H. Caldwell, M.A.; Mr. Thiselton Dyer, C.M.G., F.R.S.; Dr. John Evans, Treas. R.S.; Prof. Ewart, M.D.; Dr. A. C. L. G. Günther, F.R.S.; Mr. E. W. H. Holdsworth, F.L.S., F.Z.S.; Mr. E. B. Poulton, M.A.;
Dr. G. J. Romanes, F.R.S.; Dr. P. L. Sclater, F.R.S.; Mr. Adam Sedgwick, F.R.S.; Prof. Charles Stewart; Mr. W. F. R. Weldon, M.A.

In addition to the above the following gentlemen, as Governors of the Association, are *ex officio* members of the Council:—Mr. Robert Bayly; Mr. John Bayly; The Prime Warden of the Fishmongers' Company; Mr. E. L. Beckwith; Mr. Bazley White; Prof. Burdon Sanderson, M.D.; Prof. Michael Foster, F.R.S.

Mr. E. L. Beckwith to be Chairman of the Council.

The Fourth Annual General Meeting of the Association was held in the Royal Society's rooms on Wednesday, June 27th, at 5 p.m. In the absence of the President, Prof. Flower, one of the Vice-Presidents of the Association, took the chair.

The Hon. Secretary (Prof. Ray Lankester) read the Report of Council (printed above), which was adopted unanimously.

The Hon. Treasurer (Mr. F. Crisp) read the statement of accounts for the past year, and his report was agreed to unanimously.

On the motion of Prof. Jeffrey Bell a vote of thanks was passed to the Treasurer for his services.

Dr. Evans moved a vote of thanks to the Hon. Secretary (Prof. E. Ray Lankester) for his services to the Association. He said that before separating the meeting would be glad to offer a hearty vote of thanks to Prof. Lankester for all the services that he had rendered to the Association. It was true, and it was gratifying that it was true, that he was not retiring from the post of Honorary Secretary, but he would now be relieved, at all events to some extent, from that part of the labours of the office that could be performed by others. Dr. Evans had been a member of the Council ever since the day when the Association was first started, and had thus had some opportunity of forming an idea of the enormous amount of thought, time, and labour that Prof.
Lankester had bestowed in promoting the welfare of the Association. Not only had he brought his great scientific knowledge and experience to bear in every department of the work, but the amount of actual drudgery that he had gone through was almost incredible,—in raising funds, in negotiating with public bodies, in carrying on correspondence, in drawing reports, in examining plans, and in all the varied details of the great undertaking of erecting and starting this Laboratory, it was always Prof. Lankester who took the labouring oar. He was happy to think that his invaluable services would still be freely rendered to the Association, while some of the more irksome routine work would be performed by others, and he was sure that the meeting would be unanimous in offering to Prof. Lankester their warmest and most cordial thanks for all the work he had so successfully carried out, the results of which would shortly be more apparent when the Laboratory was formally opened to the public and became available for occupation by naturalists.

The Hon. Treasurer (Mr. F. Crisp) in seconding the motion said that he had, by reason of his office, a better opportunity of knowing the work done for the Association by Prof. Lankester than any other person. It surprised him that amongst his many and various engagements Prof. Lankester should have been able to find the time and give the thought that he had given to the affairs of the Association. The work to be done must have often been distasteful to a man of his attainments, and most of it was sheer drudgery, yet Prof. Lankester had applied himself to it in a most cheerful and determined spirit, and had carried it through in spite of great difficulties. To him belonged the credit of starting the Marine Biological Association, and to his ability and perseverance the realisation of the objects of the Association was due. The time had come when he, having organised the work of the Association and seen the completion of the Laboratory, was about to hand over his duties to others, and it was only fitting that he should receive a due acknowledgment of his great services, and he (Mr. Crisp) had great pleasure in seconding the motion.
Prof. Flower in putting the motion said that he did so with the greatest pleasure. The Association owed its very existence to the ability and energy of Prof. Lankester, and it was entirely through his self-sacrifice and spirit that they found themselves in the position they now were. Prof. Lankester having borne the work of starting the Association on its career would now leave details and routine work to other hands, but he was glad to see that he would retain office as Hon. Secretary, and hoped that he would long be able to assist the Association with his experience. The motion was carried enthusiastically.

Prof. Ray Lankester in returning thanks referred to the assistance that he had received from scientific men, and from various societies and corporations, particularly from the Royal and Linnean Societies, who had placed their rooms at the disposal of the Association. He had in addition received cordial assistance from private individuals and from the great City companies, among whom the Fishmongers’ Company were conspicuous for their liberal and enlightened patronage of the Association. In the heavy work of arranging the details of the building of the Laboratory he had had the warmest assistance from his scientific friends, and especially from Mr. Thiselton Dyer, Prof. Moseley, and Mr. Adam Sedgwick, nor must he omit to mention the services of Mr. Frank Crisp, the Hon. Treasurer of the Association.

A vote of thanks to Prof. Flower for his services in the chair was moved and carried, and the proceedings then terminated.

The Treasurer’s report shows that during the year there was received from Donations and Subscriptions £848 13s., with £2500 from H.M. Treasury and from Interest on Investments £159 2s. 10d., whilst there was paid to the contractors £5043 7s. 6d., for salaries £840 0s. 3d., for books £177 19s. 3d., for apparatus and chemicals £228 7s. 9d., for printing, stationery, and advertising £26 5s. 3d., and for sundries £31 7s. 4d. The Donations assured but not yet received from all sources (exclusive of the annual grant of £500 a year for five years to be paid by Her Majesty’s Government during the years 1888–92), amount to £700, leaving a total estimated balance at date of nearly £6000. A considerable portion of this balance is, however, due to the contractors for building the Laboratory and fitting the tank-room.
Opening of the Marine Biological Laboratory.

The ceremony of opening the Laboratory at Plymouth on Saturday, June 30th, was favoured by magnificent weather, and those who travelled down to Plymouth on that occasion, and saw for the first time the building which has been erected on the Citadel Hill, had ample cause to be satisfied with the Laboratory itself and the situation in which it is placed.

The success of the ceremony was assured when the Fishmongers’ Company undertook to add to their already munificent patronage of the Association by providing a déjeuner for the entertainment of the visitors after the opening of the Laboratory. To their hospitality and kindness much of the success that attended the gathering is due.

It was unfortunate that from ill-health, pressure of Parliamentary work, absence from England, and other causes, many distinguished members of the Association were unavoidably absent from so interesting a gathering. Above all, the absence of Prof. Huxley, the President of the Association, was regretted; ill-health prevented him from undertaking the fatigue of the long journey, and for the same reason Prof. Moseley, who has taken so active a share in the formation of the Association, and has had a large share in the arrangement and fitting of the Laboratory, was unfortunately unable to be present. Prof. Allman, to his own and his friends’ great regret, was unable to undertake the journey, and various causes prevented the Duke of Argyll, the Duke of Abercorn, the Earl of Derby, Lord Walsingham, Sir Edward Birkbeck, the Right Hon. Joseph Chamberlain, the Right Hon. A. J. Balfour, Sir John Lubbock, Mr. W. S. Caine, and several others, from attending the ceremony. These noblemen and gentlemen have been among the most
active and generous supporters of the Association, and wrote
to express their extreme regret that they were unable to be
present.

The proceedings commenced at 10 a.m., and in a short
time the laboratories and tank room, which had been
decorated for the occasion, were filled with visitors. Amongst
those present were: the Prime Warden of the Fishmongers' Company, Sir James Clarke Lawrence, accompanied by
Messrs. George Weston, W. C. Venning, J. S. Lister, J.
Travers Smith, R. B. Martin, and E. L. Beckwith, Members
of the Court of the Company; the Earl of Morley, Sir
Edward Watkin, Sir George Paget, the Mayors of Plymouth and
Devonport, Sir Edwin Saunders, Prof. E. Ray Lankester,
Prof. Michael Foster, Prof. Flower, Mr. Thiselton Dyer, Prof.
Milnes Marshall, Captain Wharton, Mr. John Evans, Dr. A.
 Günther, Mr. Adam Sedgwick, Major-General Lyons, Vice-
Admiral Grant, Prof. Charles Stewart, Messrs. E. W. Holdsworth,
W. Pengelly, Frank Crisp, Spence Bate, H. Trueman
Wood, Prof. D'Arcy Thompson, Mr. Robert Bayly, Arch-
deacon Wilkinson, Prof. Jeffrey Bell, Prof. J. W. Groves,
Dr. Sydney Hickson, Mr. A. D. Berrington, Mr. H. D.
Pochin, Mr. J. W. Woodhall, Prof. G. B. Howes, Mr. Allen
Harker, Mr. J. Wrench Towse, Mr. T. Bulteel, and many
others.

The building has been fully described in the first number
of the Journal. Although it was practically complete, time
had not allowed the full equipment of the Laboratory to be
carried out, and the shelves of the library bore witness to
the necessities of the Association in the matter of zoological
and botanical literature. Circulation had been established
in the tanks for some time previous, and the tanks themselves
contained a few marine forms collected by the dredge and
trawl during the preceding week. The short time at the
disposal of the staff, and the numerous interruptions and
delays accompanying the completion of the building, had not
allowed them to exhibit more than the most meagre present-
ment of the rich and varied Fauna and Flora that is to be
found in Plymouth Sound and the neighbourhood. All that
could be done was to show the capacity of the Association
for carrying on marine investigations in the future, and all those who had the opportunity of inspecting the arrangements were able to express their complete satisfaction with the manner in which its funds had been expended.

Shortly after eleven o'clock Prof. Flower, taking the Chair in the absence of Prof. Huxley, delivered the following address:

Before entering upon the actual business of the day, I must express my deep regret, which I am sure is shared by everyone here, that the inauguration of this important undertaking is not to be performed by one who in every way would be best qualified for such an office. Our President is not only the foremost biologist of the day, but one whose great reputation as an original observer was first established by that remarkable series of researches into the structure of oceanic organisms conducted while serving as a medical officer on board one of Her Majesty's ships, who has since, amid all his varied avocations, been continually associated, both officially and as a scientific investigator, with problems concerning the life-history of marine animals, who has been intimately connected with the working of this Association since the day he presided over the meeting held at Burlington House in 1884, at which it was first launched into the world, and whose eloquent words would certainly have added interest, pleasure, and instruction to such an occasion as this. Nothing but the severe indisposition from which he is now unhappily suffering would have prevented his being here, as this Association is one in the success of which he feels the deepest interest. Next to our President, we also lament the absence from a similar cause of one who, as Chairman of the Council, has worked hard to bring the Association into its present successful condition, and who, from his great experience of the conditions of animal and plant life in the ocean, gained during the memorable voyage of the "Challenger," and his profound acquaintance with the scientific aspects of all those questions the solution of which we propose to ourselves, would have been eminently fitted to perform the functions which I have been asked now to undertake.
The objects of this Association are familiar to everyone here. As originally and briefly defined, they are "to promote accurate researches leading to the improvement of Zoological and Botanical science, and to an increase of our knowledge as regards the food, life-conditions, and habits of British food-fishes and molluscs." In the present day there can be little necessity for endeavouring to impress upon an assembly of educated persons that any institution which has for its object the increase of our knowledge of natural phenomena must be a good one. Though I am far from believing that such knowledge can prove by itself a panacea for all human ills, the desire to obtain it is, without doubt, a necessary accompaniment of the high civilisation of our age. The knowledge of nature is valued by many for its own sake. It is valued by many more for the practical advantages to the material welfare of mankind that are certain to flow from it sooner or later. It is scarcely possible to name one of the marvellous improvements which have taken place in late years, that have added so much to the convenience, the comfort, the capabilities of human life, that has not been, when traced back to its source, the outcome of scientific search undertaken originally for its own sake. The means by which such knowledge can be obtained are manifold, and a people who wish to occupy a foremost place in the ranks of civilisation and culture cannot afford to neglect any of them. The special one for the inauguration of which we are assembled to-day is characteristic of the modern development of biological science. The necessity for such institutions as this has been felt almost simultaneously throughout the cultivated nations of the world. The British Isles, with their extensive and varied seaboard, offering marvellous facilities for the investigation of marine life, and with their vast economical interests in the denizens of the waters that bathe their shores, have been rather behind some other countries in adopting this line of research. Let us hope, however, that being so, we may profit by the example and experience of others, and ultimately, as in so many other similar cases, may outrun our neighbours in a department of work for
which our maritime and insular position seems so specially to fit us. That our country should be alone in neglecting this branch of scientific inquiry was impossible. Stations for the investigation of the phenomena of marine life have been founded at several places on the northern coasts of our island, but all on a very limited scale. An institution commensurate with the importance of the subject and of the nation had to be established sooner or later. The only questions to be solved were, when it was to be founded and where it was to be placed. Much of the success of an enterprise must depend upon the particular time selected for embarking upon it. If delayed too long, the world is a loser by the non-existence of the knowledge that is to be gained from it. On the other hand, premature attempts, before sufficient interest in the subject is awakened, and before sufficient information as to the best means of carrying it out has been gained, often end in failure. I think that in this respect we have taken the right medium. The Fisheries Exhibition at South Kensington in 1883 brought the importance of the enormous food-supply that the sea yields, and the necessity of obtaining more knowledge of how it might best be cultivated and harvested, prominently before the public, and although the profits of the Exhibition were of no direct benefit to our institution, it was doubtless a means of exciting attention to our work. The interest which H.R.H. the Prince of Wales took in that Exhibition was extended to this Association when he became its patron and a liberal contributor to its funds. I think that I may say the same of the Worshipful Company of Fishmongers of the City of London, without whose enlightened and munificent support we should certainly not be in the position we occupy at present. We were also fortunate at the time of our foundation in having a Government in office which recognised the practical importance of our work, as calculated to benefit not only the interests of the fishing industry, but those of the community at large, and liberally responded to our appeal for assistance in this national undertaking, both in providing funds and a site for a building.
Next, as to the place at which our headquarters were to be established. That was at first a matter of considerable difficulty. Many were the rival claimants, but Plymouth was finally chosen, as best affording the requisite physical and geographical surroundings for such an institution, and the liberality with which the Association was welcomed by its leading citizens was in itself a ground of justification for the choice. Though a portion of the old military defences of the town have been given up to our peaceful enterprise, we trust the safety of the inhabitants will not suffer. The Laboratory now stands between the citadel of Plymouth and the sea, and an enemy entering the town by the most direct way would have to march over the ruins of this building. That consideration alone should be enough to secure your safety in a war with any of the enlightened, science-loving nations of Europe, should such an event ever unhappily arise.

As to the institution itself, few words are needed to describe how excellent is its adaptation to the purpose for which it is founded. Although still not in all respects in full working order, we have all been enabled to see today how carefully it has been planned, and how well the design has been carried out. We have secured a capable and energetic working staff; students are already taking their places at our Laboratory tables, and already a commencement has been made in their original investigations and contributions to knowledge, which we hope will be of such a character and of such abundance as to give this Laboratory a high place among the scientific institutions of the world. Our present financial position and future needs are fully set forth in the Report of the Council just issued. This shows that of our capital already subscribed the greater part has been expended upon the building and necessary apparatus for its equipment. We still want a small steam vessel for the use of the staff in exploring the fishing grounds of the neighbourhood and for collecting materials to stock our tanks. For the means of providing this, and for the annual maintenance of our establishment in a state of efficiency, we shall require further pecuniary assistance. But as the
Report is or will shortly be in your hands, I need not detain
you longer by enlarging upon its contents, which part of
the ceremony is still to come elsewhere. I will therefore
now, in the name of the President and Council of the Marine
Biological Association of the United Kingdom, thank all
those who have by their generous contributions of money,
or by expenditure of their time, labour, and thought,
brought us so far on our way, and declare the Laboratory of
the Association open for work. May we all join in the
earnest hope that the expectations which have been raised
of its future usefulness may never be disappointed!

After Prof. Flower’s address the company adjourned to
the déjeuner at the Grand Hotel. The Prime Warden of
the Fishmongers’ Company presided, and at the conclusion
of the meal the following speeches were made:

The Prime Warden proposed “The Queen.” Referring
to the fifty years of the Queen’s reign, he asked them to
consider how great had been the progress in art, in science,
and in commerce during that period. But greater than all,
greater than the progress in art or in science, had been the
progress in the material welfare of the masses of the
people. He believed that no sovereign who had ever
reigned had had her name mentioned in the same genuine
terms of sincere admiration as that of Queen Victoria was
received in all parts of the kingdom. Long might the
Queen reign over a loyal and a prosperous people, and
might she long continue the Queen of the United Kingdom
of Great Britain and Ireland!

The Earl of Morley gave “The Marine Biological
Association of the United Kingdom.” He said that he felt
very grateful for the compliment paid him in associating his
name with the toast as its proposer, but he feared that the
qualifications he had for performing that duty were very
meagre indeed. This came home to him especially when
he saw around him so distinguished a company, among
which were many of the greatest and best known scientific
men in England. But he presumed that the reason this
important toast had been entrusted to him was that he was
connected with the neighbourhood in which they had
selected the site for their first Laboratory, and as such he gratefully accepted the duty, and would do the best he could to do justice to it. Before making any remarks as to the work which was to be performed in that Laboratory, he might perhaps be allowed—and he was sure that the Mayors of Plymouth and Devonport would join with him—to wish a hearty welcome to the distinguished company present to the West of England, and to express the hope that the Laboratory which Professor Flower had opened with such an admirable and instructive address that morning would attract scientific men like themselves to pay constant visits to the town and neighbourhood. It was not necessary for him to explain the importance and interest of the present occasion. If he wished to call witnesses he should merely ask them to look at the company assembled around the hospitable board of the Worshipful Company of Fishmongers. And if they had any doubts as to the practical value of the work, any such doubts would be dissipated by the simple fact that they found the Prime Warden and his colleagues coming from the atmosphere of actual work on the banks of the Thames to found this interesting Laboratory. If, on the other hand, he wished to call witnesses as to the probable scientific value of the work, he should merely have to appeal to the revered and well-known names of many gentlemen around him, and among them the directors of the great national institutions at South Kensington and Kew, and to show what they at any rate anticipated would be the results of the investigations which would be conducted under the care of the able superintendent and his assistants. There was, in fact, such a consensus of opinion, both from a practical and scientific point of view, of the value of the work that would be done there, that the thing which surprised him was why it had not been done before. How was it that we, who more than any other nation in the globe reaped the richest harvest from the sea, had never yet endeavoured scientifically to inquire into the sources of this great industry and article of food? How was it that we had lagged behind other nations, some of whom might be almost regarded as inland countries? France, he believed, had
already not less than four institutions of a similar kind, namely, at Roscoff, Concarneau, Villefranche, and one in the Mediterranean at Cette. Austria, with only a small sea coast, had one at Trieste; and, more important than all, at Naples the German Government were annually giving £1500 a year to a laboratory of the same kind, and he believed that he was right in saying that it was the most complete in existence. If we went to the other side of the Atlantic we found that Professor Agassiz had instituted at Newport a most admirable institution, the work of which had already been rewarded with marked practical success. He desired to say a few words as to the importance of British fisheries. Certain statistics were lately given to Parliament by the Board of Trade which he might summarise very shortly. The production of fish in the United Kingdom of Great Britain and Ireland amounted to no less than 598,000 tons last year, and the value of this fish at the port of landing was £6,390,000. The whole industry was not, however, represented by that sum, for he believed that the retail value of the fish would amount to at least £13,000,000 a year. The East coast was, of course, by far the most fruitful of all our coasts for fishing. Grimsby, Hull, Lowestoft, and Yarmouth between them produced no less than £2,846,000 worth of fish during the year. Though Plymouth followed at a long interval, yet at this port they had no less than £96,000 worth of fish during the year. That amount was for Plymouth only, but there were also various fishing ports in the district, such as Brixham, with £56,000, and Penzance, £41,000, which gave a very good idea of what a vast harvest there was to be reaped from the sea, a harvest by the way which we had never sown. He would compare those results with other countries which had already done something for the scientific investigation of fisheries. Canada did not produce in 1886 more than £3,892,000 worth of fish, and France even less, namely, £3,709,000 worth. Another aspect of the trade was the amount of traffic it gave to the railways, on which he might appeal to his friend Sir Edward Watkin for confirmation; even from Plymouth no less than 5000 tons were conveyed annually. He would
not go further into statistics, but he thought it desirable to give them an idea of the great industry they were seeking to promote. Every other branch of industry had invoked the aid of science, and not invoked it in vain. Our fisheries, from the nature of the case, and from the condition in which the animals we were anxious to catch lived, were extraordinarily difficult for observation and experiment, which could only be conducted at a cost which was not within the means of private individuals. It seemed extraordinary, however, that so many years should elapse without scientific efforts being made; for we must recognise more and more that the wealth of nations and individuals depended on the economical and ample use of the powers of nature. The use of those powers depended on our knowledge of them, and that knowledge could only be obtained by observation and experiment; not conducted haphazard, but by scientific men and in a methodical way. From day to day, as science broadened down and increased its area, and its great generalisations became applied in all directions, we became more and more impressed with the fact that man is the minister and interpreter of nature, and, in the words of the great father of inductive science, in both of these science must and can only depend on accurate experiment and observation. If they read some of the interesting reports of the Trawling and Fishing Commissions that had appeared lately they could not fail to be struck with the utter ignorance as to the habits of fish, as to their modes of existence, their food, the manner and the places in which they multiplied their species, the climatic and other effects which influenced them in their migrations, and in all their modes of life, shown by the fishermen. But he was afraid that that ignorance was not confined to the fishermen. The great authorities that he saw around him—and there were none greater in England, or perhaps in Europe—would, he believed, confirm his remarks that we know very little indeed of the migrations of fish. That great want was, he now hoped, about to be supplied. They had seen the Laboratory, and though he did not for a moment express an opinion on it, himself, yet he gathered
from his friends around him that it was admirably equipped and supplied with all the apparatus required for these investigations. For this result they were indebted to the Prime Warden and his colleagues, and also to another distinguished Company in the City, and further, to the munificent donation of a gentleman of this locality, whom he was proud to see among them that day. If funds were wanting to carry on a work that had been inaugurated under such favorable auspices, he sincerely hoped that they would be found, and that Mr. Bourne, the able curator of the institution—would have a successful career before him, both from a scientific and practical point of view. Perhaps practical results might not be expected, but he would recall the interesting remarks made by Sir Lyon Playfair—who he regretted was not present—of how the American laboratories succeeded in artificially producing immense numbers of cod (which sometimes left the shores of the New England coast for the colder shores of Newfoundland), to the great benefit of the consumer. Again, a certain fish much esteemed on those coasts, the American shad, required for the fertilization of its eggs a certain condition of temperature, and the Commission was able to hatch them when under certain conditions of climate they would not have been hatched naturally. These were striking instances of what science was able to do, and he felt certain that from that Laboratory numberless suggestions would emanate as the habits of various fish became thoroughly known and investigated. They would ascertain what grounds the fishes liked, what foods they liked, what were the causes of their migration; very likely would improve the fisheries themselves; but, still more, might make regulations to prevent the fish being unduly disturbed or destroyed at wrong seasons. These were all things which would develop themselves in future; but before concluding he should like to say one word more on the purely scientific aspect of the Laboratory, though, perhaps, he was a little over-bold in alluding to it. Biological research is the highest though most complicated of any branch of science, and when they considered the large amount of organic life in the sea—forms leading up from the lowest and
least specialised to the greatest fish—what a field there was
for research and for tracing out evidences of that wonderful
revelation of continuous development from the lower to
higher forms—a revelation which we owed mainly to the
indefatigable observation and marvellous structural genius of
that great man whose biography was now interesting us!
Who could tell what results would follow from scientific
observations on the practice of the industry they were met to
promote? He would conclude by heartily wishing, as he was
sure that all present did, “Success to the Laboratory,” and
he had great pleasure in coupling with the toast the name of
one to whom the Laboratory and the Association owed so
depth a debt of gratitude—Professor Ray Lankester.

Prof. Ray Lankester said it was with feelings of pride
that he rose to return thanks. He felt in the happy position
of one who had seen a dream realised. The Laboratory
which had been that day opened was due entirely to the
associated work of a number of individuals, and, in fact,
he thought that the Marine Biological Association must
be regarded as a remarkable example of the combination of
individuals for a common purpose. The Association was
started in the first instance by a few scientific men, who
gradually obtained the co-operation of practical and wealthy
men and of great Corporations, until they were at last able
to bring into existence the institution they had seen that
day. Perhaps he might be allowed on that occasion to give
a brief history of the steps which the Association had gone
through in the gradual evolution of that building, but before
doing so he wished to say just a word as to the general
purposes of the Laboratory and the work of the Association.
It had been stated elsewhere—though he thought no one
present was likely to make the mistake—that the Association
was not intended for purely scientific research but for
inquiries with a practical end in view. He thought he
might be allowed to say that such a distinction could not be
drawn. All purely scientific research had a practical end.
They might not be able to tell what the practical end might
be; but they pursued scientific research with the conviction
that the progress of knowledge must lead to practical
benefits. On the other hand, they also knew that any attempt to make inquiry with a practical end in view which should ignore scientific methods and aim too directly at the practical end was fraught with danger and almost certain failure. The only way to attain success was to cultivate the tree of science first, and then gather the fruit; they could not grow the fruit without attending to the tree. It was in that spirit that a large number of the friends of science, not only scientific men, but friends of science throughout the country, and civic Corporations—for in addition to the important and valued aid of the Fishmongers’ Company they had had the help of the Corporation of London and other bodies—had come forward to contribute to the funds of the Association. He should say that the notion of forming the Association originated with that most important and admirable exhibition, the great Fisheries Exhibition, which they owed to the initiative of Sir Edward Birkbeck, whom he had hoped to have seen with them that day. That was what suggested to him the movement for the formation of a laboratory where fishery studies could be carried on. The idea he had in view at that time, or rather the institution existing elsewhere which he wished to copy, was that established by Dr. Dohrn at Naples, with which they were all familiar. The question was, how could such a laboratory be put up on the British Coast? It was to his friend Dr. Günther, of the British Museum, that he owed the suggestion of the formation of an association. It was to the officers of the Royal Society that he owed the opportunity of starting the Association at a meeting called in the rooms of that Society and presided over by the illustrious President of that great scientific institution, which was also the first public body to support the funds of the Association with a large and handsome subscription. The meeting was very largely attended by men of science and gentlemen interested in fisheries. The late Earl of Dalhousie, one of their most ardent supporters, the Duke of Argyll, and other public men took part in it. The newspaper Press had all along helped them in a most admirable and cheering manner. The ‘Times’ had been their warmest friend, and he hoped
it would continue to be so for years to come. No sooner had the first start been made at the meeting in the rooms of the Royal Society and the subscription list put forward, than many other big societies came in and individuals throughout the country put down their money. Including the Universities of Oxford and Cambridge, subscriptions had been received from purely scientific bodies and individuals to the amount of £3000, and from various sources a total sum of £16,000 to £17,000 had been obtained. The most important item of support given to the Association was the grant from Her Majesty’s Government of £5000 and £500 a year. The remaining £10,000 they owed to the great civic companies and to munificent individuals, among whom he must not omit to mention with hearty gratitude their friends Mr. John Bayly and Mr. Robert Bayly, of Plymouth. No sooner had the enterprise been put on foot than H.R.H. the Prince of Wales expressed his willingness to become a patron of the institution, and support came in on every side. The Inspector-General of Fortifications (Sir Andrew Clarke) and the Earl of Morley were instrumental—were, in fact, the actual causes of their receiving the grant of the splendid site on which the building had been erected, and the co-operation and consent of the Town Council of Plymouth, who had certain rights over the area, were cheerfully given. They had now arrived at a definite stage in their work. The building was completed, the laboratory was equipped, the naturalists were on the spot, and they had thus, as he had said, accomplished what he considered to be the first step in the work of the Association. But it was only the first step. Beyond the mere existence of the Laboratory building, they had still to justify themselves in the eyes of their supporters by the work that was done within it. He thought they might rely upon the staff they had been fortunate enough to obtain. He had the greatest confidence in the work that would be done in the institution, and in the direction which would be given to that work by his friend Mr. Gilbert Bourne, assisted by the experience of his friend Mr. Cunningham, who had come to them fresh from his work in Scotland, and students of all ages and of all groups of marine animals would make
use of the Laboratory now it was once finished. Before concluding what he had to say he should like to express, on behalf of the Association, their great indebtedness to the gentleman who had erected the building and had acted as engineer,—Mr. Inglis. Mr. Inglis had acted throughout with true friendship to the Association, and with the greatest skill and courtesy he had given all possible attention and labour, sparing himself in no way, in order to do the work thoroughly, to obtain the best of everything for the Association, and to carry out the whole scheme in the best manner. He would mention once more a subject which had been already alluded to. They wanted a yacht of their own, not a pleasure yacht, but a steam sea-going vessel which could accompany the trawlers on their expeditions, and which should be a thoroughly seaworthy boat. He hoped that those who were able to place additional funds at their disposal, and who had been pleased and gratified with the way in which they had expended the money already entrusted to them, would not delay to add to the resources of the Association so as to enable them to purchase this steamer.

The Prime Warden then proposed "Prosperity to Plymouth." Not many words were necessary on that subject. Plymouth was no new town. It had a fine history; and if time permitted, one might sketch that time of England's peril when out of that fine harbour went forth that glorious fleet to attack and destroy the Spanish Armada. Near him sat his Worship the Mayor of Plymouth, adorned with the chain which Sir Francis Drake himself wore three hundred years ago. He would not detain them by dwelling on those themes, but he might be permitted to say that it had been a delight to the Biological Association to find itself so well supported by the Corporation of Plymouth, who were doing so much to adorn the immediate neighbourhood of the Laboratory. He had therefore very great pleasure in proposing the toast of "Plymouth," and connecting it with the Mayor who so worthily presided over Plymouth.

The Mayor of Plymouth, in returning thanks, said Plymouth was indebted to the Biological Association for the
very noble building which they had placed within the borough. If they were proud of Plymouth before they should be doubly proud of it now that it had an institution which it had never possessed before. He had visited the Laboratory at Naples, and knew that it was visited by hundreds and thousands of English people. Probably few people were aware of the magnificent view obtainable from the Laboratory. Plymouth people were very proud of their bay; it was not certainly so large as that of Naples, but it was quite as beautiful. It had been called the Bay of Naples in miniature, and he was quite certain that, whatever attractions it had before, the Biological Laboratory would prove an additional one.

Sir George Paget proposed "The Health of the Prime Warden," and paid a graceful compliment to his hospitality. Alluding to the practical results arising from science, he pointed out that navigation would be impossible except for the appliances of science. Again, travelling by steam was the practical outcome of scientific discovery, and the same might be said of the telegraph. But whether practical advantages were speedily advanced or not they were casting their bread upon the waters.

The Prime Warden, in response, said it was a great pleasure to him that his other engagements enabled him to revisit Plymouth. He had often visited the town before; but, as he told his friend the Mayor yesterday, he scarcely recognised some portions of it on account of the great improvements which had been made. Reference had been made to the great progress made generally during the last few years. Certainly in this age of progress Plymouth had not been behindhand, and he thought it had at length attained the position of the Metropolis of the West. Long might it hold that position, and long might the Fishmongers' Company feel that in contributing in any way to the benefit of the town of Plymouth and to the advancement of science at the same time, they were in their proper place, doing their proper duty.

In the afternoon those who had not to return to London were able, through the kindness of Lord John Hay, Admiral
of the Port, to take a cruise round Plymouth Sound and up the Hamoaze as far as Saltash Bridge. Lord John Hay courteously placed his fine steam yacht "Vivid" at the disposal of the Association, and hospitably entertained his visitors on board. A smaller party took advantage of the kindness of Mr. G. F. Watson, the owner of the trawler 'Lola,' which has several times been requisitioned for the purposes of the Association, and enjoyed a sail round the Breakwater and bays of the Sound.

This account of the opening ceremony cannot be concluded without an acknowledgment of the hospitable welcome given to the Members of the Association by the citizens of Plymouth. The courtesy of the Port Admiral has already been mentioned, the Royal Western Yacht Club admitted the visitors to its privileges during their stay in Plymouth, and private individuals vied with one another in providing entertainment for their guests. The hearty goodwill which the undertaking of the Association has evoked cannot but be considered as an earnest of its future success.
Report of the Resident Superintendent,
5th December, 1887.

To the Council of the Marine Biological Association.

Gentlemen,—I beg to report to you that after finishing in the middle of January, 1887, the “Preliminary Report on the Fishing Industry of Plymouth,” printed in the first number of the Journal of the Association, my attention was directed to the preparation of a series of Statistics connected with the Fishing Industry.

This work occupied me until the middle of March, from which time, until the end of July, I was engaged in drawing up a “Preliminary Report of the Fauna and Flora of the Sound.”

A short résumé of these Reports is given below, vide Reports No. 1, No. 4, and No. 14.

During the early months of the year I examined various salt-water ponds, situated either along the Hamoaze or the Cattewater, in order to make arrangements to put live soles into the one which appeared to me to be the most suitable.

The first fortnight in May I spent in a trawling smack, and obtained live soles, and placed them in a pond into which the tide flows from the Cattewater. (Vide Report No. 12.) Unfortunately the means of keeping the fish in the pond, although it appeared satisfactory, was not so, and the fish have escaped.

Further, during May, June, and July, I examined soles from time to time, recording the contents of their stomachs and the condition of their sexual organs.

From the limited number of fish examined by me I am led to believe that the proportion of males to females is about as 5 to 14; but possibly the proportion is greater than this,
for owing to the immature condition of some fish I was unable to satisfy myself of their sex. I also commenced inquiries as to the movements, breeding grounds, and times of breeding of this fish along the coast; but upon the arrival of Mr. Cunningham with instructions to work at these matters I discontinued my observations.

During the whole of the year, but chiefly since March, I have been from time to time engaged in collecting specimens, either along the shore or by trawling, dredging, or surface netting; owing, however, to constant interruptions necessitated by my various other duties, this work has not been regularly followed. I have nevertheless made myself acquainted with the characteristic features of the Fauna in various localities within the Sound, and along the coast on the east side to the river Yealm, and on the west side to the middle of Whit-sand Bay, while my journeys in trawling vessels have enabled me to obtain a fair knowledge of the character of the fishing grounds frequented by the Plymouth trawlers, and of the work of these fishermen. The elaboration of a scheme for the systematic recording of species collected has also had my attention. (Vide Appendix.)

The work of the Assistant Secretary has been carried on by me during the year, and has almost daily occupied a considerable portion of my time. The formation of a Library has been a subject of consideration, and I have been successful in obtaining from the Canadian, Danish, Dutch, French, German, Japanese, Norwegian, and United States Governments expression of their willingness to exchange their publications upon fisheries, &c., for the publications of the Association, and, indeed, with the exception of the Danish and Japanese, all these Governments have forwarded a considerable number of their Reports for past years.

The Trustees of the Australian Museum, Sydney, have forwarded a parcel of catalogues, and signified their wish to exchange publications. The Trustees of the British Museum have sent the Association a considerable number of their catalogues on natural history subjects, and the Radcliffe Library, catalogues of their natural science books from 1872—1886. The Board of Trade has sent a small selection
of blue books, and the following gentlemen and publishing firms have presented copies of books or papers.

Dr. Anderson, The Right Hon. Arthur Balfour, Mr. C. Spence Bate, Messrs. R. Bentley and Son, Messrs. Cassell and Co., Messrs. J. and A. Churchill, the Committee for the Investigation of the Fauna of the 100 fathom line off the south-west of Ireland, Mr. Doidge, Prof. Haddon, Dr. Meyer, Prof. Mitsukuri, Dr. Minot, Mr. Parfitt, and Mr. Whitley.

Arrangements for forwarding the work of Mr. Cunningham, who arrived here early in August, and Mr. Weldon, who came in November, have been regularly attended to by me. The matter of obtaining a satisfactory fisherman as servant to the Association has had my attention since I arrived here, and when Mr. Cunningham came I represented the advisability of having a man at once, and have engaged on trial William Roach. He is a married man, thirty-four years of age, works most willingly, has abundant energy, and is, in my opinion, a most intelligent man, and likely to be a very valuable servant to the Association. He is paid twenty-five shillings a week while on trial, time being given him to look after his own business, on the understanding that he should receive thirty shillings a week if permanently engaged, and that then his whole time should be at the disposal of the Association.

Matters concerned with the building of the Laboratory and with the land, the fittings, gas and water supply, &c., have entailed continually consultations and work.

With regard to the building, I have to report the stonework is practically finished, and the roof is on. The windows are all in, and the glass fixed everywhere except in the large laboratory. The flooring is laid throughout, except in the laboratory, tank room, cellars, and the ground floor of the east wing. The engine beds are laid and the concrete floor of the engine room is finished.

Plastering, painting, and joiners’ work is in progress throughout the building.

The circulating reservoirs are finished, and the tanks are in course of erection.

The pumps are all fixed, and the gas engines have arrived. The heating apparatus has been put in, and is now in use
daily. The fittings of the laboratory, library, and chemical rooms are in progress.

Temporary trestle tables have been put up in the small work-room on the second floor of the west end and in the library, and these rooms are now occupied by Mr. Cunningham and Mr. Weldon.

The concrete walls of the main reservoirs are done; the subway to the sea and the excavation for ejector are in progress.

A considerable amount of rock, &c., has still to be removed in order to completely clear the ground allotted to the Association, and when this is done the levelling of the remainder of the ground will be proceeded with.

I have been engaged during the year in drawing up various reports, and beg to conclude this report with a list of these, together with a short account of the subject of each.

1. "Preliminary Report upon the Fishing Industry of Plymouth." This report being printed in the first number of the Journal of the Association, I will not allude to it further here.

2. "Report of the work done by me up to Christmas, 1886." This report was forwarded to you when the "Preliminary Report" (No. 1 above) was presented. The nature of the difficulties I had encountered in the preparation of the Report on the Fishing Industry were mentioned, and the progress made in the investigation of the Fauna and Flora of the Sound during the first six months of my residence was noted; an account of the manner in which my time had been spent was then placed before you, and the report concluded with

3. "Report upon a plan of work to be carried out by the Association." This was briefly as follows:

a. That a diagram should be prepared showing the relation of the weather to the products of the Plymouth fishery, and the financial relations of capital, expenditure, and profit in certain instances.

b. That an experiment of putting live soles into a pond of salt water, which had been placed at the disposal of the Association for that purpose by Mr. Thomas Bulteel, of Radford, should be proceeded with.
c. That endeavours should be made to induce fishermen of this port and the neighbourhood, both trawlers, hookers, and drift fishermen, to assist the work of the Association, by recording daily details of the ground fished and the fish caught. The outline of a plan for this work was suggested, and it was urged that the information so gained should be published regularly in the Journal of the Association, and the opinion expressed that these results, when considered in relation to weather reports of the district, would be likely to throw much light upon the movements of fish, especially of non-migratory fish.

d. That a similar experiment should be carried on in Plymouth Sound, in order to compare the results obtained from the larger area outside the Sound with those obtained within the Sound, it being suggested that thus some idea might be gained of the influence of sewage and of traffic, &c., upon the movements of both migratory and non-migratory fish.

e. That certain persons in Plymouth and the neighbourhood, having recognised qualifications, should be requested, and in certain instances employed, to write accounts of what they know about fishes and the fishery of this district.

f. That investigations upon the Fauna and Flora of the Sound, and of the Fishing Industry of the district, should be continued.

g. That experiments should be made upon preserving and curing squid for bait.

h. That the Admiralty should be approached with a view to the lending of dredging and other instruments used in the ‘Challenger’ expedition.

4. “Statistical Report upon the Fishing Industry of Plymouth.” This report was divided into six sections and contained statistics of the following subjects:

A. Statistics of fresh fish landed in Plymouth. Tables were given of the quantities and value of—
(1) White fish
(2) Crustacea and mollusca } landed at Plymouth from July, 1885, to June, 1886;
and also Tables showing the value of fish landed at Plymouth from—
(3) A trawling vessel } from July, 1884, to
(4) A hooking vessel } June, 1886.
Tables 3 and 4 showed the value of the daily catch of the different kinds of fish caught by
these boats. The total value of fish landed was estimated, and the amount of money earned by the
boats, and the profits made by the owners, was calculated.

b. Statistics of the carriage of fish. Tables were given of the quantities of fish despatched by rail from
Plymouth at various times from 1859 to 1885, and these amounts compared with those of other fishing
ports of England. Tables were also given of the railway rates charged from Plymouth and other
ports.
c. Statistics of fish exported from and imported to Plymouth.
d. The local consumption of fish was estimated.
e. Statistics of fishing boats owned in Plymouth at various dates (1833—1886), giving the number of boats,
their tonnage and price.
f. Statistics of persons employed in the fish trade in Plymouth. The Report concluded with a list of
published and unpublished documents referred to.
5. "Report upon the best method of pumping water from the sea to the main reservoirs." Details of the cost of
ten different methods were given and the advantages of each were laid before you.
6. "Report upon the best kind of pipes to be used for carrying water from the sea to the main reservoirs." In-
formation was received from seven of the principal foreign aquariums upon this subject, and was laid before you, together
with an account of experiments which had been carried on by myself for two months. Estimates of the price of five
different kinds of pipes were given and the advantages of each discussed.

7. “Details of the fittings of various rooms in the Laboratory.”

8. “Details of the water supply throughout the building.”

9. “Details of the gas supply throughout the building.”

These three reports were accompanied by sketches of furniture and plans of the rooms concerned.

10. “Report upon the duties of the Superintendent.”

This report set forth my opinion that—

a. The Superintendent should organise and direct the working of the Laboratory, and—

b. That he should be responsible to the Council for the management of the Association in Plymouth.

c. That he should organise and superintend the collection of specimens for the museum for the students working in the Laboratory and for correspondents.

d. That he should officiate as Librarian.

e. That he should manage monetary matters in Plymouth.

f. That he should control the servants of the Association in Plymouth. It was then urged that the duties of the Superintendent, if he was a man who had the welfare of the Association at heart, would continually be on the increase (as, for instance, the daily recording of the observations of say twelve fishermen, meteorological recording, tabulating and arranging and recording specimens, &c.), and that he should, in order to efficiently discharge his duties, be recognised by the Council as a trusted officer of the Association, and left by them to dispose of his time and to direct his work as might seem to him from day to day most advisable.

11. “Report upon the depth at which various deep-sea fisheries are conducted in various parts of the world. Haddock, Halibut, Cod, and Tile-fish fisheries were mentioned, and the depths given at which these line fisheries are conducted in different parts of the world. Trawl fisheries were then mentioned, and the depths at which this instrument is
used stated. Attention was finally drawn to surface fishing in deep water, and to drift net fishing.

12. "Report of a fortnight's work collecting soles and putting them into a pond up the Cattewater."

The result of this work was that 103 fish were placed alive in Mr. Bulteel's pond, viz. —

 39 Solea vulgaris.
 58 „ lascaris.
 6 „ variegata.

13. "An account of the Laboratory of the Association." This appeared in the first number of the Journal.

14. "Preliminary Report of the Fauna and Flora of the district." This Report, which was forwarded to the Hon. Secretary in July, consists of lists of species recorded by various authorities from Plymouth or the neighbourhood, a certain number of species found by myself being also inserted.

I am, gentlemen,

Yours faithfully,

WALTER HEAPE.

APPENDIX.

In concluding this Report I beg to lay before you certain conclusions which my experience at the station has led me to believe may have reference to some of the work to be carried on in the future by the Association. The reasons which have mainly influenced me in arriving at these conclusions are:

1. The importance of treating questions of Fauna in the widest sense.

2. The necessity of collecting and systematically tabulating observations for some years, before any attempt is made to generalise from them.

3. That accurate meteorological data and statistics of marine temperature, specific gravity, &c., will be absolutely necessary before it will be possible to understand, or, indeed, to consider at all such great questions as migration, distribution, and the daily and hourly movements of animals living at the surface and in mid-water.
4. That besides the trained morphologists and zoologists, some of whom are now at work in the Laboratory, strong efforts should be made to induce such of the fishermen who are sufficiently intelligent and trustworthy to record observations.*

5. The condition of the Sound is such, artificially bounded as it is by a huge breakwater, diluted continually by two relatively large streams of fresh-water, carrying down with them sewage from Devonport, Stonehouse, Stoke, and Plymouth, and refuse from china clay works, &c.; constantly invaded and stirred up by fleets of vessels and steamers, many of them drawing thirty feet of water, when the depth of the Sound is (with the exception of some few places) not more than six fathoms, that I am of opinion that all observations of any kind whatsoever carried on in the Sound must be considered only in relation to similar observations carried on at sea and along the coast outside the Sound. Results formulated from data collected only within the Sound would, in my opinion, be entirely misleading, while, on the other hand, it would be of extreme interest to observe the effects of the streams of fresh-water, of the artificial conditions, sewage, &c., within the Sound, by comparing observations collected there with observations obtained outside the Sound.

6. That the facility of ultimate generalisation will depend upon the completeness of the system used throughout in recording observations.

A. Scheme for recording specimens.

1. The capture of each species should be recorded on a sheet. Whenever a specimen is obtained it should be recorded on the sheet set apart for it and the required information, data, station, depth at which it is obtained, nature of bottom, tide, wind, temperature of sea and air, density of the water, &c., recorded in the columns prepared. It would thus be seen at a glance under what con-

* I do not doubt a sufficient number of intelligent men could be obtained whose practical knowledge and independent observation would be of great help to the Association.
ditions and in what localities any species is found, the range of depth, the extremes of temperature, the nature of the ground, &c.; and the information thus tabulated could at any time be manipulated to show, for example, the different species found in any particular locality, or the effect of temperature or wind, or specific gravity of the water, &c., on any species or group of animals.

2. On small lithographed copies of the various charts, the localities and range of a species or genus or group should be indicated by coloured markings.

3. And on an enlarged Admiralty chart, on which the nature of the ground, currents, depths, &c., should be accurately shown, the exact position of the various "stations" where collecting work has been done should be marked.

b. Meteorological observations, &c.

Systematic daily meteorological records should be kept, both for Plymouth and for some point out at sea, say, the Eddystone Lighthouse. Similarly daily records of the temperature of the sea at the top and bottom, both in the Sound and out at sea should be tabulated,* while finally, observations on the specific gravity and composition of the water in the Sound and out at sea should be regularly obtained and recorded.

c. The movements of Deep Sea Fishes.

This, it appears to me, is one of the questions connected with the Fauna most strongly pressing for attention. It affects both the migratory and so-called non-migratory fishes. The movements of both these classes of fish are very little known, and the causes influencing their movements are, I believe, not known at all.

My intercourse with fishermen, especially with trawlers, leads me to believe that much valuable information on this

* Mr. Weldon has suggested the possibility of constructing a self-recording thermometer which could be either floated or sunk to any required depth at sea, and informs me that after consultation he has reason to believe his suggestion is perfectly feasible.
subject is to be obtained from these men; and I would sug-
gest the advisability of employing, say, three trawlers, three
drift fishermen, and three hook-fishermen from this port, at,
say, two shillings and sixpence a week each, to record the
details of their daily fishing.

The information so obtained should be recorded in a	tabular form, a scheme for which I am prepared to submit
to you, and the knowledge so gained should point out the
changes which are undoubtedly continually taking place in
the nature of the bottom, even at a depth of thirty or forty
fathoms, the movements of certain fish from one locality to
another, the appearance or disappearance of others, their
number, condition, size, time of spawning, &c. The area of
observation should be extended east and west along the coast
as suitable men in other districts are found to undertake the
work. The mass of facts so accumulated would, in my opinion,
when considered in relation to accurate records of weather,
sea, temperature, &c., be of the greatest value.

d. Local knowledge of fish.

I would suggest that men like Mr. Dunn, of Mevagissy,
Mr. Wilcock, of Plymouth, and others who are in possession
of information bearing upon matters concerned with fishing
and the movements of fish, information at present known
only to themselves, should be invited to communicate what
they know to the Journal of the Association, and in certain
instances should receive payment for doing so.

e. Bait.

I would suggest that the question of the kind of bait it is
advisable to use in “Butter” fishing, and the supply of that
bait, should be a subject of investigation by a competent
man.—WALTER HEAPE.

Note.—I have not in this Appendix mentioned the work of
morphologists in the Laboratory upon the development and
breeding of the sole, pilchard, lobster, &c., as this work is
already in progress.
Preliminary Report upon the Fauna and Flora of Plymouth Sound.

By

Walter Heape, M.A.

This Preliminary Report upon the Fauna and Flora of Plymouth Sound is almost entirely composed of lists of species which have been recorded as either actually taken in Plymouth Sound, or common to the neighbourhood.

The list of Marine Algae is a reprint of the late Mr. T. Boswarva’s catalogue, with a few additions kindly furnished me by Mr. Holmes.

Mr. C. Spence Bate has been kind enough to prepare a list of Crustacea, and is largely responsible for the information upon that group of animals contained herein.

Mr. Baker has been good enough to provide a list of the Mollusca of the Sound and neighbouring coast, which has been of great use to me; while to several fishermen I am indebted for the names of some of the rarer fishes caught in the locality.

To all these gentlemen I would now express my best thanks.

A CATALOGUE OF THE MARINE ALGÆ OF PLYMOUTH.

By Mr. J. Boswarva.

Sub-Class I.—MELANOSPERMÆ or Fucales.
(Olive Seaweeds.)

Order I. Fucaceae.

Halidrys siliquosa (Podded Halidrys). In rock-pools, and on rocks, from Mount Batten outwards, at and below half-tide level. Perennial. Winter and spring.

C. granulata (Granulated Cystoseira). From Bovisand outwards. Perennial. Summer.
C. fwniculacea (Fennel-leaved Cystoseira). From Bovisand outwards. Perennial. Summer.

C. fibrosa (Fibrous Cystoseira). From Bovisand outwards. Perennial. Summer.

Pycnophycus tuberculatus (Tubercled Pycnophycus). In rock-pools, from Mount Batten outwards. Perennial. Summer and autumn.

Fucus canaliculatus (Channelled Fucus). On rocks, between high water and half-tide. Perennial. Summer and autumn.

F. nodosus (Knobbed Fucus). On rocks and large boulder stones. Perennial. Spring and summer.

F. serratus (Serrated Fucus). On rocks, half-tide level. Perennial. Winter and spring.

F. ceranoides (Horn-like Fucus). In a brackish stream, Laira embankment. Perennial. Spring and summer.

Himanthalia lorea (Leather-thong Himanthalia). Abundant on the shore. Spring and summer.

Order II. Sporochnaceae.

Desmarestia aculeata (Prickly Desmarestia). On rocks on the coast, near low-water mark, and at a greater depth. Perennial.

D. ligulata (Tapering Desmarestia). On rocks on the coast, near low-water mark, and at a greater depth. Perennial.

D. viridis (Green Desmarestia). Firestone Bay; Mount Edgcumbe; low water. Annual. Spring and early summer.

Order III. Laminariaceae.

Laminaria digitata (Fingered Laminaria). Common on rocks in deep water, and in pools. Perennial.

L. saccharina (Sugared Laminaria). Common at low-water mark, and in deep water. Perennial.

L. phylitis. On rocks. Spring. Rare.

L. fascia (Banded Laminaria). Mount Edgcumbe; Hoe; Mount Batton; and on buoys in the harbour.

Chorda filum (Thread Chorda). On rocks, stones, and in deep water. Annual. Summer and winter.

C. lomentaria (Jointed Chorda). On stones and rocks, Breakwater; Firestone Bay. Annual. Summer and autumn.

Order IV. Dictyotaceae.

Cutleria multifida (Many-slit Cutleria). Dredged in the Sound, and washed on the shore. Perennial. Summer and autumn.

Dictyota dichotoma (Forked Dictyota). In pools, and on rocks and stones. Annual. Summer.

Taonia atomaria (Banded Taonia). In tide-pools, and on rocks at low water. Bovisand and Whitsand Bay. Annual. Summer.

Dictyosiphon fwniculatus (Fennel Dictyosiphon). In pools, and on rocks and stones. Torpoint. Annual. Spring and summer.

Striaria attenuata (Tapering Striaria). In pools. Firestone Bay; Trevol; Hoe. Annual. Summer.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Punctaria latifolia (Broad-leaf Punctaria). In pools, and on rocks. Mount Batten. Annual. Summer.

P. plantaginea (Plantain Punctaria). In pools, and on rocks. Mount Batten. Annual. Summer.

Asperococcus compressus (Compressed Asperococcus). In pools, and on rocks. Bovisand. Annual. Summer.

A. echinatus (Prickly Asperococcus). In pools, and on rocks. Firestone Bay; Hoe. Annual. Summer.

Order V. Chordariae.

L. Berkeleyi (Berkeley’s Leathesia). Wembury Bay; Mewstone. Annual. Summer.

Myrionema strangulans (Choking Myrionema). Parasitical on *Ulva* and Entero-morpha.

Order VI. Ectocarpaceae.

C. spongiosus (Spongy Cladostephus). Common. Hoe; Firestone Bay; Mount Edgecumbe; Bovisand. Annual. Summer.

Sphacelaria filicina (Fern-like Sphacelaria). Whitsand Bay; Mewstone; Sound. Annual. Summer.

S. plumosa (Feathery Sphacelaria). Mount Batten. Annual. Summer.

Ectocarpus siliculosus (Pod-fruited Ectocarpus). Parasitical on other algae; sides of rocks. Summer.

E. fasciculatus (Fasciculate Ectocarpus). Parasitical on *Laminaria*. Summer.

E. Hincksii (Miss Hincks’ Ectocarpus). Parasitical on *Laminaria*, in rock-pools; summer and autumn.

E. sphèrophor'us (Warted Ectocarpus). Parasitical on Fuci, at half-tide mark.
Mewstone; Bovisand. Annual. Summer. Rare.
E. brachiat'us (Cross-branchèd Ectocarpus). Parasitical on Rhodymenia palmata.
Firestone Bay. Annual. Summer.
E. Mertensii (Mertens' Ectocarpus). In pools and on sand-covered rocks. Mount
Edgcumbe; Whitsand Bay. April and May.
Rare.
Myriotrichia claviformis (Club-shaped Myriotrichia). Parasitical on Chorda
lomentaria. Annual. Summer.
M. filiformis (Thread-like Myriotrichia). Parasitical on
Chordalomentaria. Annual. Summer.

Sub-Class II.—RHODOSPERMEE OR CERAMIALES.
(Red or Brown Seaweeds.)

Order VII. Rhodomelaceae.
Rhodomela subfusca (Brownish Rhodomela). Common on rocks and shells between
tide-marks. Perennial. Spring and summer.
Bostrychis scorpioides (Scorpion Bostrychia). Hollows of sea-walls. Trevol;
Pompeii.
Rytiphlecia pisunoides (Pine Rytiphlecia). On rocks, low-water mark. Whitsand
Bay. Perennial. Autumn and winter.
R. thyoides (Cypress Rytiphlecia). In tide-pools, and on corallines and flat rocks.
Annual. Summer.
R. fruticulosa (Shrubby Rytiphlecia). In tide-pools, and on corallines. Mount
Batten; Bovisand. Perennial. Summer.
R. complanata (Compressed or flattish Rytiphlecia). On rocks at low-water mark.
Bovisand.
Polysiphonia urceolata (Pitchered Polysiphonia). Very common on rocks, stones,
and in pools. Annual. Spring and summer.
P. formosa (Beautiful Polysiphonia). In tide-pools, on stones. Torpoint. Annual.
Summer.
P. pulminata (Cushioned Polysiphonia). On rocks between tide-marks. Hoe;
Whitsand Bay. Annual. Summer.
P. fibrata (Fibred Polysiphonia). On rocks, and in tide-pools. Mount Batten.
Annual. Summer and autumn.
P. elongeta (Divaricate Polysiphonia). On rocks, stones, and small algae. Mount
P. elongata (Lobster-horn Polysiphonia). On rocks and shells, in tide-pools and
depth water. Mount Batten; Mount Edgcumbe; Torpoint. Perennial. Spring
and summer.
P. violacea (Violet Polysiphonia). On rocks and stones, low-water mark. Mount
Edgcumbe; Bovisand. Annual. May and June.
P. fibrillosa (Fibrillos Polysiphonia). On rocks and stones, low-water mark.
Mount Batten; Whitsand Bay. Annual. Summer.
P. Brodiei (Brodie's Polysiphonia). On rocks, and in pools. Corbeal; Torpoint.
P. variegata (Variegated Polysiphonia). On mud-covered rocks. Beggar's Island;
Torpoint.
P. simulans (Deceptive Polysiphonia). On rocks, and in tide-pools, low-water
mark. Bovisand.
P. nigrescens (Blackish Polysiphonia). Common at half-tide mark. Perennial.
Spring and summer.
P. atrorubescens (Dark-red Polysiphonia). In pools, and on stones. Common.
Annual. Spring and summer.
P. fastigiata (Level-topped Polysiphonia). On Fuci. Perennial. Summer and
winter.
FAUNA AND FLORA OF PLYMOUTH SOUND.

P. byssoides (Byssoid Polysiphonia). On rocks and stones, near low-water mark, and in deep water. Annual. Summer.
D. arbuscula (Shrub Dasya). On rocks, low-water mark, Mewstone; Mount Edgcumbe. Annual. Summer.

Order VIII. Laurenciaceae.

Laurencia pinatifida (Pinatifid Laurencia). Abundant on rocks.
C. rosea——[Chylocladia rosea]——(Rosy Chrysymenia). In pools, and on sides of rocks. Mount Edgcumbe; Firestone Bay. January to June. Rare. Taken by J. Gattombe.

Order IX. Corallinaceae.

M. calcarea (Chalk Melobesia). On rocks round the coast. Perennial.
M. membranacea (Membranaceous Melobesia). On rocks round the coast. Perennial.
M. polymorpha (Many-shaped Melobesia). On rocks round the coast. Perennial.
Hildenbranditia rubra (Red Hildenbranditia). On smooth stones, pebbles, and deep water. At all seasons.
Order X. Delesseriaceae.

Delesseria sanguinea—[Wormskioldia sanguinea]—(Blood-red Delesseria). In pools, sea, and on the sides of rocks. Abundant. Perennial. Spring and summer; fruiting in winter on old stems.

D. hypoglousum (Proliferous Delesseria). On rocks and algae, and in deep water. Annual. Spring and summer.

Nitophyllumpunctatum (Dotted Nitophyllum). In deep water. Mount Edgcumbe; Firestone Bay. Annual. Summer.

N. HiltiaJ (Miss Hill's Nitophyllum). In deep water. Mount Edgcumbe; Mount Batten. Annual. Summer.

N. Gmelini (Gmelin's Nitophyllum). Mount Edgcumbe; Anthony-passage; Firestone Bay. Annual. Summer.

N. versicolor (Changeable Nitophyllum). Bovisand, and deep water. Annual. Summer.

Order XI. Rhodymeniaceae.

Stenogramme interrupJta (Interrupted Stenogramme). Dredged in summer, and washed on shore at different seasons of the year. Sound. Perennial. Rare.* Taken by J. Gatcombe.

* "This very interesting plant, by far the most important addition lately made to the British Marine Flora, was discovered on the 21st October, 1846, by Dr. John Cocks, of Plymouth, among rejectamenta on the shore at Bovisand, near Plymouth. A few days subsequently it was met with in a neighbouring station by the Rev. W. S. Hore, who at the same time gathered the equally rare and curious Carpoonitran Cabreræ; and to the untiring perseverance of both these gentlemen, who, day by day, during the inclement month of November—in all weathers—visited the shore, and preserved every scrap of these plants which the waves threw up, we are indebted for all the British specimens which have yet been taken of the Stenogramme, and for all, except Miss Ball's original one, of the Carpoonitran."

R. bijoda var. cristata—[Euthora cristata]—On sides of rocks and stones, in deep water. Annual. Summer and autumn.

R. palmetta (Little-palm Rhodymenia). On rocks at low-water mark, also in pools, and on stems of Laminaria. Annual. Summer and autumn.

R. palmar (Dulse or Dillisk Rhodymenia). On rocks and Laminaria. Abundant. Perennial.

Spharococcus coronopifolius (Buck's-horn Spharococcus). Sound. Summer and winter.

Gracilaria confervoides (Conferen-like Gracilaria). On rocks and stones on the shore. General. Spring to winter.

G. multipartita (Many-divided Gracilaria). On rocks and stones on the shore. Tait's Hill; Firestone Bay. Perennial. Summer and winter.

Cystocladium purpurascens—[old name, Hypnea purpurascens]—(Purple Cystocladium). Mount Batten; Redding Point. Annual. Summer.

Order XII. Cryptonemiaceae.

Grateloupia filicina (Fern-like Grateloupia). Whitsand Bay; Mount Batten. Perennial. Winter and spring.

C. norvegicus—[Gymnogongrus norvegicus]—(Norwegian Chondrus). In pools; occasionally on shore-rocks. Perennial. Autumn to summer.

P. membranifolia (Membrane-leaved Phyllophora). In rock-pools, but not frequent.

K. Dubyi—[Schizymenia Dubyi]—(Duby's Kallymenia). Firestone Bay; Hoe; Mount Edgcumbe; Mount Batten. Annual. Winter and spring.

Nemalion multiformis (Many-slit Nemalion). On rocks, at low-water mark. Cawsand Bay; Bovisand. Summer.

Order XIII. Ceramiaceae.

Ptilota seriaca—[Ptilota elegans]—(Silken Ptilota). On rocks, and in pools. General. Perennial. Summer and autumn. An elegant variety is sometimes found on the outer shores, which approaches very near to Ptilota plumosa.

Ceramium rubrum (Red Ceramium). In pools and deep water on the shores. General. Perennial. All seasons.

C. nodosum (Knobbed Ceramium). Washed up from deep water. Annual. Summer.

Spyridia filamentosa (Filamentose Spyridia). At low-water mark. Firestone Bay; Bovisand. Annual. Summer.

G. demorii (Devonshire Griffithsia). Low-water mark. Mount Edgcumbe; Torpoint; Beggar's Island. Annual. Summer.

W. multifida, var. pilifera. On rocks. Mount Edgcumbe; Mount Batten; Bovisand. Annual. Summer.

Callithamnion Plumula (Little Feather Callithamnion). General. Annual. Spring to winter.
C. pluma (Feather Callithamnion). On stems of Laminaria. Summer.
C. spongiosum (Spongy Callithamnion). Bovisand; Firestone Bay. Annual. July and August.
C. pedicellatum (Pedicellate Callithamnion). In rock-pools. Cremill; Mount Batten. Annual. Summer.

Sub-Class III.—Chlorosperme or Confervales.
(Grass-green Seaweeds.)

Order XIV. Siphonaceae.
Codium Bursa (Purse Codium). One found on a buoy in Stonehouse Pool. Summer.
Bryopsis plumosa (Feathery Bryopsis). General. Seldom appearing in the same place two following years. Annual. Summer.
B. hypnoides (Hypnum-like Bryopsis). Trevol; Mount Batten. Annual. Summer and autumn.

Order XV. Confervaceae.
Cladophora pellucida (Transparent Cladophora). In rock-pools, and on stones. Firestone Bay; Hoe. Annual. Spring and summer.
C. Hutchinsiae (Miss Hutchins' Cladophora). In rock-pools, and on stones. Firestone Bay; Hoe. Annual. Spring and summer.
C. gracilis (Slender Cladophora). In rock-pools, and on stones. Firestone Bay. Annual. Spring and summer.
C. albida (Whitish Cladophora). In rock-pools, and on stones. Bovisand; Cawsand Bay. Annual. Spring and summer.
Conerva tortuosa (Twisted Conerva). On rocks around the coast. Annual. Summer.

Order XVI. Ulvaceae.

Ulva latissima (Very broad Ulva). In rock-pools, and on rocks. Annual. Summer.
U. Linza (Narrow Ulva). In rock-pools, and on rocks. Annual. Summer.
B. ciliaris (Fringe-like Bangia). On rocks. Mount Batten. Summer.

Order XVII. Oscillatoriaceae.

Lyngbya majuscula (Large Lyngbya). Washed up from deep water. Mount Edgcumbe.

The following additional names of species observed by Mr. Holmes in Plymouth Sound have been kindly forwarded to me by that gentleman:
Mitophyllum venulosum. Torpoint mud bank in June.
Arthrocladia villosa. Firestone Bay only.
Sporochines pedunculata. Torpoint.
Gratelopnia dichotoma. Renny Rocks.
Nannaria Wiggii. Torpoint.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Ginnania funellata. Torpoint.
Unangelia multifida. Torpoint.
Callithamnion ventricolor. Torpoint.

And the following localities especially rich in seaweed mentioned by him:
Beggars Island and Rat Island, at the mouth of St. Germans River.
Treval mill pond, Hamoaze.
Renny Rocks, Wenbury Bay.
Mewstone.
Laia.
Mount Batten.
Mount Edgcumbe Beach.
Barn Pool.
Mill Bay.

The following species named in the foregoing list have other names.

<table>
<thead>
<tr>
<th>Rhodospermeae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurencia dasyphylla</td>
<td>Chondria dasyphylla.</td>
</tr>
<tr>
<td>L. tenuissima</td>
<td>Chondria tenuissima.</td>
</tr>
<tr>
<td>Chrysymenia clavellosa</td>
<td>Chylocladia clavellosa.</td>
</tr>
<tr>
<td>C. rosea</td>
<td>Chylocladia rosea.</td>
</tr>
<tr>
<td>Chylocladia ovalis</td>
<td>Lomentaria ovalis.</td>
</tr>
<tr>
<td>C. kaliformis</td>
<td>L. kaliformis.</td>
</tr>
<tr>
<td>C. reflexa</td>
<td>L. reflexa.</td>
</tr>
<tr>
<td>C. parvula</td>
<td>L. parvula.</td>
</tr>
<tr>
<td>Delesseria sanguinea</td>
<td>Wormskioldia sanguinea.</td>
</tr>
<tr>
<td>Rhodymenia cristata</td>
<td>Ruthora cristata.</td>
</tr>
<tr>
<td>R. bifida</td>
<td>Rhodophyllis bifida.</td>
</tr>
<tr>
<td>R. laciniata</td>
<td>Calliphyllis laciniata.</td>
</tr>
<tr>
<td>R. ciliata</td>
<td>Calliblepharis ciliata.</td>
</tr>
<tr>
<td>R. jubaeta</td>
<td>C. jubaeta.</td>
</tr>
<tr>
<td>Gracilaria erecta</td>
<td>Cordylecladia erecta.</td>
</tr>
<tr>
<td>Cystoclonium purpurescens</td>
<td>Hypnea purpurescens.</td>
</tr>
<tr>
<td>Chondrus norvegicus</td>
<td>Gymnogongrus norvegicus.</td>
</tr>
<tr>
<td>Gymnogongrus plicatus</td>
<td>Ahnfeltia plicata.</td>
</tr>
<tr>
<td>Ginnania furcellata</td>
<td>Scinaia furcellata.</td>
</tr>
<tr>
<td>Kallymenia Dubyi</td>
<td>Schizymenia Dubyi.</td>
</tr>
<tr>
<td>Iridea edulis</td>
<td>S. edulis.</td>
</tr>
<tr>
<td>Nemalion purpureum</td>
<td>Helminthocladia purpurea.</td>
</tr>
<tr>
<td>Dudresnaya divaricata</td>
<td>Helminthora divaricata.</td>
</tr>
<tr>
<td>Ptilota sericea</td>
<td>Ptilota elegans.</td>
</tr>
<tr>
<td>Callithamnion spongiosum</td>
<td>Callithamnion granulatum.</td>
</tr>
<tr>
<td>C. pedicellatum</td>
<td>Corynespora pedicellata.</td>
</tr>
<tr>
<td>Crucoria pellita</td>
<td>Petrocelis cruenta.</td>
</tr>
</tbody>
</table>

PROTOZOA.

Foraminifera.

Imperforata.

Biloculina (D'Orbig.).
ringens (D'Orbig.). In the Sound and at the Eddystone.

var. carinata (D'Orbig.).

Millolina (Will.).
trigonula (Lam.).

Spirulina (Ehren.).
foliacea (Phillips).
LAGENOPSIS (Lag.).

Perforata. (Walk.)

vulgaris (Planci).

| var. clavata (Willm.) |
| var. pellucida (Willm.) |
| var. striata (Willm.) |

Entosolenia (Ehren.).

globosa (Walk.), var. lineata (Willm.).

marginata (Walk.), var. lucida (Willm.).

var. lagenoides (Willm.).

equosa (Maton and Rackett).

LINGULINA (D'Orbig.).

carinata (D'Orbig.).

Nodosaria (Lam.).

radicula (Linn.).

pyrula (D'Orbig.).

Dentalina (D'Orbig.).

subacuata (Mont.).

Cristellaria (Lam.).

calcar (Linn.).

subacuata (Walk.).

Polymorphina (D'Orbig.).

lactea (Adams).

| var. oblonga (Brown). Near Eddystone. |
| var. communis (D'Orbig.). |
| var. myristiformis (Willm.). Near Eddystone. |

Orbulina (D'Orbig.).

universa (D'Orbig.).

Rotallina (D'Orbig.).

beae (Linn.). Common on oyster-shells.

oblonga (Willm.).

nitida (Willm.).

Planorbulina (D'Orbig.).

mediterranea (D'Orbig.). Near Eddystone in abundance.

Globigerina (D'Orbig.).

bullioidea (D'Orbig.).

Truncatulina (D'Orbig.).

lobatula (Walker). Attached to Sertularians in coralline zone.

Bulimina (D'Orbig.).

pupoides (D'Orbig.).

| var. marginata (Willm.). |
| var. elongata (Willm.). |
| var. subacuata (Walk.). |

Textularia (Defr.).

cuneiformis (D'Orbig.).

| variabilis (Willm.). |

Nonionina (D'Orbig.).

crasula (Walk.). Very common.

jeffreysii (Willm.).

Polystomella (Lam.).

umbilicata (Walk.). On oysters.

PORIFERA.

Calcarea.

Grantia (Flem.).

compressa (Flem.). Very common.

ciliata (Johns.).
Leucosolenia (Bow.).
botryoides (Bow.).
Leuconia (Grant).
fistulosa (Bower.). Eddystone rocks.
Clathrina
clathrus. Under sides of rocks. Hoe. Rare. (Stewart.)

Silicea.
Pachymatisma (Bow.).
johnstonia (Bow.). Wenbury Bay. (Stewart.)
Tethea (Lam).
lyncurium (Johns.).
Hymeniacidon (Bow.).
suberea (Bow.). Common.
carnosua (Bow.).
clata (Bow.). Stone of Cremyll beach.
medius (Bow.).
Halichondria (Flom.).
pnieca (Johns.). Common.
Isodictya (Bow.).
invalida (Bow.).
lobata (Mont.).
Desmacidon (Bow.).
fruticosa (Bow.).

Keratosa.
Chalina (Grant).
montaguii (Bow.).

CELENTERATA.

Actinzoa.

Octactinia.

Aleyonium.
digitatum (Linn.). Common in deep water off the coast.
Gorgonia (Edw.).
verrucosa (Linn.). Common in deep water off the coast.

Hexactinia.

Actinoloba (Blainv.).
dianthus (Blainv.). In the Sound.
Sagartia (Gosse).
bells (Gosse). Deep pools, Whitsand Bay.
miniata (Gosse). In the Sound.
rosea (Gosse). Recorded from the neighbourhood by Rogers.
ichthystoma (Gosse). Deep water.
venusta (Gosse). In the neighbourhood (Rogers).
nirca (Gosse). Crevices and rock-pools in the Sound.
sphyrodicta (Gosse). Crevices and pools at low-water mark.
pallida (Gosse). In the neighbourhood (Rogers).
viduata (Gosse). Whitsand Bay.
parasitica (Gosse). Coralline zone.
troglydes (Gosse). In the neighbourhood (Rogers).
Adamsia (Forb.)
palliata (Johnst.). Deep water.
PRELIMINARY REPORT UPON THE

Anthea (Johnst.).
cereus (Johnst.). Common in Plymouth Sound.

Aiptasia (Gosse).
conchii (Gosse). In the neighbourhood (Rogers).

Actinia (Linn.).
mesembryanthemum (Ellis and Sol.). Common at low-water mark.

Bolocera (Gosse).
tuediae (Gosse). Trawled in deep water.

Bunodes (Gosse).
gemmacea (Gosse). Common in deep pools.
bailii (Gosse). In holes in rocks at low-water.

Tcaha (Gosse).
crasicornis (Gosse). Common in tide-pools.

Peachia (Gosse).
hastata (Gosse). In the neighbourhood (Rogers).

Halcopea (Gosse).
chrysantheium (Gosse). In deep pools with sandy bottom. Whitsand Bay.

Edwardia (Quatr.).
carnen (Gosse). In the neighbourhood (Rogers).

Cerianthia (Della Chiaje).
loydii (Gosse). In the neighbourhood (Rogers).

Corynactis (Allm.).
viridis (Allm.). Very common and in great variety.

Zoanthus (Cuv.).
conchii (Johnston). In the neighbourhood (Rogers).
rubicornis (Houldaw). Within the Sound in twenty fathoms.

Caryophyllia (Lam.).
smithii (Johns.). Fairly common at low-water mark on rocks in the Sound.

Balanophyllia (Wood.).
regia (Gosse). One specimen has been found in the Sound.

Hydrozoa.

Gymnoblastea.

Clava (Gmelin).
multicornis (Pallas). Between tide-marks.

Hydractinia (v. Beneden).
echinata (Flem.). On old shells.

Coryne (Gaert.).
vaginata (Ehren.). In tide-pools.

Eudendrium (Ehren.).
ramosum (Linn.). On Sertularians or alone.
capillare (Alder). In Sound.

Tubularia (Linn.).
indivisa (Linn.). Between tide-marks and in deep water.
larynx (Ellis). In rock-pools and on Sertularians from deep water.
gracilis (Harvey).

Corymorpha (Sars).
nutans (Sars.). On sand, in six fathoms. Whitsand Bay.

Syncoryne (Ehren.).
eximia (Allm.). Along the coast.

Bimeria (S. Wright).
vestita (Wright). Along the coast.

Bougainvillia (Lesson).
ramosa (v. Beneden). Along the coast.

Cladonema (Dujard.),
radiatum (Dujard.). Along the coast.
Myriothena (Sars.).
 phrygia (Fabric.). Along the coast.
Clavatella (Hincks).
 prolifera (Hincks). Along the coast.

 Calyptoblastea.

Plumularia (Lam.).
 myriophyllum (Linn.). Common in trawl refuse.
 setacea (Ellis).
 echinulata (Lam.). Abundant in tide-pools.
 similis (Hincks). Abundant on weed.
Sertularia (Linn.).
 polyzonias (Linn.). Between tide-marks and in deep water.
 gayi (Lamouroux). Trawl refuse from deep water.
 rosacea (Linn.). Near Plymouth.
 tamarisca (Linn.). Near Plymouth.
 abietina (Linn.). Common on the coast.
 argentea (Ellis and Sol.). Common on the coast.
 falcata (Linn.). Common.
Antennularia (Lam.).
 ramosa (Lam.). Near Plymouth. Not common.
Laomedea (Lam.).
 dichotoma (Linn.). On other zoophytes.
 longisima (Linn.). In coralline zone.
 flexuosa (Hincks). Between tide-marks.
Campanularia (Lam.).
 volubilis (Linn.). In Sound in deep water.
 johnstonii (Alder). Between tide-marks and in deep water.
 hincksii (Alder). Between tide-marks and in deep water.
 verticillata (Linn.). In coralline zone.
Calyccella (Hincks).
 dumosa (Flem.). Near Plymouth very fine.
 fruticosa (Sars.). In Sound or neighbourhood.

 Echinodermata.

 Crinoidea.

Antedon (Frem.).
 rosacea (Linck.). Rocks of Drake's Island and off the Cobbler Buoy in the Sound (Stewart). Also rocks south-west of Eddystone in forty fathoms.

 Asteroida.

Asterias (Linn.).
 rubens (Linn.). Trawled in shallow water.
 violacea (Mull.). In the neighbourhood (Rogers).
Asterina (Nardo).
 gibbosa (Penn.). Rock-pools.
Goniaster (Ag.).
 equestris (Gmel.). In the neighbourhood (Rogers).
Solaster (Forb.).
 papposus (Linn.).
Porania (Gray).
 pulvillus (Gray). In the Sound.
Astropecten (Linck.).
 irregularis (Penn.). Sandy shores.
PRELIMINARY REPORT UPON THE

Cribrella (Ag.).
 oculata (Penn.). Plentiful.
Luidia (Forb.).
 savignii (And.). Taken off Plymouth.
 sarsii (Duben and Koren). Taken off Plymouth.

Ophiuroidea.

Ophiura (Lam.).
 texturata (Lam.). Sandy shores.
 albida (Forb.). In the neighbourhood (Rogers).
Ophiocoma (Ag.).
 neglecta (Johnston). Under stones under the Hoe (Bellamy).
 filiformis (Müll.). Inside east end of breakwater (Stewart).
 granulata (Link.). Off Plymouth in deep water (Bellamy).
Ophiosthrix (M. Tr.).
 fragilis (Müll.). Common.

Echinoidea.

Echinus (Bond).
 esculentus (Penn.). In the Sound.
 acutus (Lam.). In the neighbourhood (Rogers).
Echinocyamus (Leske).
 pusillus (Müll.). Dredged in crevices of stone.
Spatangus (Klein).
 purpureus (Müll.). Off Plymouth, occasional.
Amphidotoerus.
 cordatus (Penn.). Very common.

Holothuroidea.

Holothuria (Linn.).
 nigra (Penn.). Not uncommon.
Cucumaria (Blainv.).
 pentactes (Müll.). Frequent.
 hydramy (Thompson). In holes outside Breakwater.
Ocnus (Forb. and Good.).
Synapta (Esch.).
 digitata (Montg.). On rocky shores.
Thyone (Oken).
 papillosa (Müll.). In the neighbourhood (Rogers).

VERMES.

Platyhelminthes.

Turbellaria.

Leptoplana (Hempr., Ehrenb.).
 tremellaris (O. F. Müll.). Fairly numerous on seaweed, on rocks in Sound.

Nemertina.

Nemertes (Cuv.).
 borlasii (Cuv.). In the neighbourhood (Rogers).
 neesi (Oerst). Rocks. Drake’s Island.
Micrura (Ehrb.).
 fasciata (Ehrb.). Trawled in the Sound.
Amphiporus (Ehrb.).
 pulcher (O. F. Müll.). Rocks. Drake’s Island.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Gephyrea.

Sipunculus (Linn.).
 nudus (Linn.). In holes in rocks inside Breakwater.
 bernhardus. In holes in rocks inside Breakwater.
Thalassia (Gaertn.).
 neptuni (Gaertn.). In holes in rocks outside Breakwater.

Annelida.

Hirudinea.

Pontobdella (Leach).
 areolata (Leach.). Recorded from the Sound.
 muricata (Lam.). In the neighbourhood (Rogers).
 verrucata (Grube). On skate from deep water.

Ochtopoda.

Tubifex (Lam.).
 lineatus (O. F. Müll.). Amongst fuci in coralline zone.
Terebella (Mont.).
 conchilega (Pall.). In the neighbourhood (Rogers).
Arenicola (Lam.).
 piscatorum (Lam.). Common.
Cirratulus (Lam.).
 cirratus (O. F. Müll.). Plentiful in mud under stones.
 tentaculatus (Mont.). Plentiful in mud under stones, Jennycliff Bay, the Sound.
Sabella (Savig.).
 species various. In the neighbourhood (Rogers).
Spio (Turton).
 seticornis (Fahr.). In the neighbourhood (Rogers).
Spirographis (Daudin.).
 spirorbis (Linn.). Very common.
Serpula (Linn.).
 vermicularis (Linn.). On old shells.
 var. tubes solitary.
 var. tubes clustered.
 intricata (Linn.).
Aphrodite (Linn.).
 aculeata (Linn.). Not common.
Leptonotus (Leach, Mgn.).
 squamatus (Linn.). Common.
Harmonieae (Kimb.).
 umbricata (Linn.). Common.
Nereis (Cuv.).
 brevimana (John.). Pelagic (Linn.). Common from low-water mark up to the mud of brackish estuaries.
 viridis (John.). Common amongst seaweed on rocks in the Sound.
Heteronereis (Oerst.).
 lobulata (Savig.).
 longissima (Johnst.).
Glycera (Savig.).
 dubia (Blain.).
Phyllodoce (Cuv.).
 viridis (Linn.). Very common in old tubes of Sabella anglica.
ARThropoda.

Crustacea.

Brachyura.

Stenorhynchus (Lam.).
 phalangium (Penn.). Common. 3—45 fathoms.
 tenuirostris (Leach). Common. 6—40 fathoms.

Achaenus (Leach).
 cranchii (Leach). Occasional. 6—20 fathoms.

Inachus (Fabr.).
 dorsettensis (Penn.). Occasional. 5—30 fathoms.
 dorhynchus (Leach).
 leptorinchus (Leach).

Pisa (Leach).
 gibba (Leach).
 tetraodon (Leach). Not common. 10—20 fathoms.

Hyas (Leach).
 coarctatus (Leach). 40 fathoms.
 aranea (L.). Frequent. 6—40 fathoms.

Maia (Lam.).
 squinado (Herbst.). Frequent. 3—8 fathoms.

Eurynome (Leach).
 aspera (Leach). 4—40 fathoms.

Xantho (Leach).
 florida (Leach). Rocky coast. Occasional. 6—20 fathoms.
 ribulosa (Edw.). Occasional. 6—20 fathoms.
 tuberculata (Conch). Frequent. 4—45 fathoms.

Cancer (Linn.).
 pagurus (Linn.). Rocky coast. 0—3 fathoms.

Pilumnus (Leach).
 hirtellus (Leach). 0—3 fathoms.

Primula (Leach).
 denticulata (Mont.). Frequent. 4—30 fathoms.

Carcinus (Leach).
 moenas (Linn.). Common in estuaries and creeks. 0—½ fathom.

Portunus (Leach).
 variegatus (Leach) (latipes, Penn.).

Portunus (Leach).
 puber (Linn.). Abundant in crab-pots in September.
 corrugatus (Leach). Rare in Sound. 0—½ fathom.
 arcuatus (Leach).
 depurator (Leach). Occasional. 4—45 fathoms.
 marmoreus (Leach). Occasional. 3—45 fathoms.
 holsatus (Fabr.). Occasional.
 pusillus (Leach). Occasional. 5 fathoms.

Polybina (Leach).
 henslowii (Leach). Occasional in herring and other nets, or trawled.

Pinnothetes (Latr.).
 pismum (Penn.). Found in mussel at Saltash.
 veterum (Box). Found in Pinna. 30 fathoms.

Gonoplax (Leach).
 angulata (Leach). Not uncommon. 12 fathoms.

Planes (Leach).
 inaequalis (Leach). Rare. Found on living turtle near French coast.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Ebalia (Leach).
 pennisii (Leach). (tuberosa, Penn.) Frequent. 40 fathoms.
 bryeri (Leach). Frequent. 4—45 fathoms.
 cranchii (Leach). Sound. Frequent. 40—45 fathoms.

Atelecyclus (Leach).
 heterodon (Leach). Occasional. 45 fathoms.

Corystes (Leach).
 cassivelanaus (Leach). Common. 12 fathoms.

Thia (Leach).
 polita (Leach).

Anomoura.

Pagurus (Fabr).
 bernhardus (Linn.). Very common. 0—30 fathoms.
 prideauxii (Leach). Sound. Occasional. 6—45 fathoms.
 cuanensis (Thomp.). Off Plymouth. Not common. 3—10 fathoms.
 hyndmanni (Thomp.). Near Plymouth. Occasional. 6 fathoms.
 levis (Thomp.). Dredged off Eddystone. Occasional. 4—10 fathoms.
 forbesii (Bell).
 thompsonii (Bell).
 ulidianus (Thomp.).
 fasciatus (Bell).
 dillwynii (S. Bate). Mouth of Yealm River near Plymouth. Occasionally. 6 fathoms.

Porcellana (Lam.).
 platycheles (Penn.). Common. 0—3 fathoms.
 longicornis (Penn.). Common. 4—40 fathoms.

Galathea (Fabr).
 squamifera (Leach.). Occasional. 12 fathoms.
 dispersa (S. Bate). Common. 4—40 fathoms.
 nexa (Emb.). Occasional. 40 fathoms.
 andrewsii (Kinahan). Frequent. 10—45 fathoms.
 bammica (Penn.). (Rondeletii, Bell.) Common in stomach of cod-fish, or 20—30 fathoms.
 digitidistantis (S. Bate). 30 fathoms.
 strigosa (Fabr.). Common. 0—10 fathoms.

Macrowra.

Arctus (Fabr).
 arctus (Linn.). (Ursus, S. B.) Rare. 6 fathoms.

Palinurus (Fabr).
 vulgaris (Latr.). Common. 3—10 fathoms.

Homarus (Linn.).
 vulgaris (Edw.). (Marinus, Fabr.). Common. 1—6 fathoms.

Callianassa (Leach).
 subterranea (Leach). One specimen. 4 fathoms. Rare.

Gebia (Leach).
 stellata (Mont.). Shores of Sound.
 deltura (Leach).

Axia (Leach). Rare.
 stirhynchus (Leach). Near Plymouth.

Crangon (Fabr.). Common.
 vulgaris (Fabr.). 0—40 fathoms.
 fasciatus (Risso). Occasional. 20 fathoms.
 spinosus (Leach). Frequent. 6—15 fathoms.
 sculptus (Bell). 20 fathoms.
 trispinosus (Hailstone). Rare. 6 fathoms.
Alpheus (Fabr.).
 ruber (Edw.). Not common. 30 fathoms.
 affinis (Guise). Not common. 30 fathoms.

Typton (Hellar).
 spongiosum (S. Bate). Rare, within sponge. 4 fathoms.

Nika (Risso).
 edulis (Risso). Occasional. 30 fathoms. Rare.

Athanas (Leach).
 nitescens (Mont. Leach). Off Polperro.

Hippolyte (Leach).
 varianus (Leach). In rock-pools, and dredged 6—10 fathoms in Sound.
 cranchii (Leach). Common.
 tenuirostris (S. Bate). Several specimens. 4—6 fathoms.
 varius (S. Bate).
 spirontocaris (S. Bate) (Hippolyte).
 spinus (Leach). 30 fathoms.

Palaeomon (Fabr).
 serratus (Penn). Common. 1—40 fathoms.
 squilla (Fabr.).

leahii (Bell).
 varianus (Leach).

Caridion (Goës).
 gordonii (Sp. Bate).

Stomatopoda.

Mysis (Jan.):
 chameleon (Thomp.). 5 fathoms.
 vulgaris (Thomp.).
 griffithsiae (Bell).

Thysanopoda (Edw.).
 eouchi (Bell).

Cuma (Edw.).
 scorioides (Mont.).
 uunguiculata (S. Bate).

Vannthomsonia (S. Bate).
 edwardsii (Kroyer).
 cristata (S. Bate).

Diastylis (say, Alana, Goodsir, Bell).
 rathkii (Kroyer) (rostrata, Goodsir, Bell).

Endora (S. Bate).
 truncatula (S. Bate).

Iphithoe (S. Bate) (Halia, S. Bate, White).
 trispinosa (Goodsir).

Cyrianassa (S. Bate) (Venilia, S. Bate, White).
 gracilis (S. Bate).

Squilla (Fabr.).
 desmarestii (Risso). Rare.

Phyllosoma (Leach).
 cranchii (Leach). Surface. Rare.

Amphipoda.

Talitrus (Lateille).
 locusta (Linn.). Abundant in rock-pools between tide-marks.

Orchestia (Leach).
 littorea (Mont.). Under Mount Batten.
 deshayesi (Savigny). Under Mount Batten. Rare.
 mediterranea (Costa) (laevis, S. Bate).
FAUNA AND FLORA OF PLYMOUTH SOUND.

Allorchestes (Dana).
- nilssonii (Kröyer) (Danai, S. Bate). Shores of Sound.
- imbricatus (S. Bate). Holes in Breakwater.

Nicea (Nicolet) (galanthis, S. Bate).
- lubbockiana (S. Bate).

Montagna (S. Bate).
- monoculoides (Mont.) (Typhis monoculoides, White, Gosse).
- marina (S. Bate).
- alderii (S. Bate).
- pollexiana (S. Bate).

Danaia (S. Bate).
- dubia (S. Bate). Trawled off Plymouth.

Lysianassa (M. Edw.).
- costae (M. Edw.).
- audoniiniana (S. Bate). Dredged in Sound.
- longicornis (Lucas). Dredged in Sound.
- atlantica (Edw.) (marina, S. Bate). Dredged in Sound.

Anonyx (Kröyer).
- edwardsii (Kröyer). Dredged in Sound.
- minutus (Kröyer). Dredged in Sound.
- holbolli (Kröyer).
- ampulla (Kröyer).
- denticulatus (S. Bate).
- longipes (S. Bate).
- obesus (S. Bate).
- longicornis (S. Bate).
- typica (Kröyer).

Callisoma (Hope).
- crenata (S. Bate). Near Eddystone.

Ampellisca (Kröyer).
- gaimardii (Kröyer) (typica, S. Bate). Dredged in Sound.
- belliana (S. Bate). In Sound.

Westwoodilla (S. Bate).
- caeca (S. Bate). In trawl refuse near Eddystone.
- hyalina (S. Bate). In trawl refuse near Eddystone.

Kröyeria (S. Bate).
- arenaria (S. Bate).

Phoxus (Kröyer).
- simplex (S. Bate) (Kröyeri, S. Bate). Dredged in Sound.
- plumosus (Höbøll). Dredged in Sound.
- holbolli (Kröyer). Dredged in Sound.

Monoculodes (Stimp.).
- stimpsoni (S. Bate). Near Plymouth.

Urothoe (Dana).
- elegans (S. Bate).

Lilgeborgia (S. Bate).
- pallida (S. Bate). East of Drake's Island.

Isnea (M. Edw.).
- montagui (M. Edw.). In trawl refuse near Eddystone.

Iphimedia (Rathke).
- obesa (Rathke). North-west of Drake's Island.
- eblanec (S. Bate).

Acanthonotus (Owen).
- testudo (Mont.).

Dexamine (Leach).
- longirinii (S. Bate). 5 fathoms.

Atyius (Leach).
- bispinosus (S. Bate). Whitsand Bay.
- huxleyanus (S. Bate).
- swammerdami (M. Edw.). In Sound.
Pherusa (Leach).
 fucicola (Edw.). On rocky shores.
Calliope (Leach).
 larinula (Krøyer).
Leucothoe (Leach).
 articulosa (Mont.). Plymouth Sound.
Lembo (S. Bate).
 versiculatus (S. Bate).
 clavonius (S. Bate).
Aöra (Krøyer). (Lalaria, Nicolet.)
 gracilis (S. Bate). In trawl refuse near Eddystone.
Eurystheus (S. Bate).
 tridentatus (S. Bate).
 tuberculosus (S. Bate).
 erythrophthalmus (S. Bate). In Sound.
Gammarida (S. Bate).
 brevicaudata (M. Edw.). (Orchestiformis, S. Bate.)
Melita (Leach).
 palmata (Leach). Brackish water.
 gladiosa (S. Bate). Sound.
Amathia (Rathke).
 sabinii (Leach). In Sound.
Grammarus (Fabr.).
 locusta (Fabr.)
 gracilis (Rathke).
 camptolopa (Leach).
 longimanus (Leach).
 palmatus (Mont.). (Inæquimanus, S. Bate.)
 grossimanus (Mont.).
 maculatus (Johns.).
 marinus (Leach). Trawled off Plymouth.
Megagama (S. Bate).
 semiserrata (S. Bate). Near Mallard Buoy in Sound.
 brevicaudata (S. Bate).
Bathygorea (Landström). (Thersites, S. Bate.)
 pilosa (Lindst.).
 pelagica (S. Bate).
Leucothoe (Leach).
 articulosa (Mont.). In Sound.
 farina (Savig.). (Procera, S. Bate.)
Microdeutopus (Costa).
 anomalous (Rath.). In sponge under Hoe.
 versiculatum (S. Bate). Dredged near Plymouth.
Amphithoe (Leach).
 rubricator (Mont.). Dredged in Sound.
 littorina (S. Bate). On shore been tide-marks.
 gammaroides (S. Bate).
Melita (Leach).
 obduzata (Leacč). In Sound.
Mora (Leach).
 grossimanus (Mont.). Frequent in Sound.
 brevicaudata (S. Bate). Dredged off Plymouth.
Sunamphithoe (S. Bate).
 conformata (S. Bate).
Podocerus (Leach).
 falcatus (Mont.).
 variegatus (Leach). Among confervæ and rock corallines.
 pulchellus (Leach).
 capillatus (Rath.). Trawled off Plymouth.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Cerapus.
 abditus. In Sound.
Naenia (S. Bate).
 tuberculosa (S. Bate). Dredged off Plymouth.
Jassa (Leach).
 pelagica (Leach).
Siphonocutus (Kröyer).
 whitei (Gosse).
Erichthonius (M. Edw.).
 difformis (M. Edw.).
Cyrtophium (Dana).
 darwinii (S. Bate).
Corophium (Latreille).
 longicornis (Fabr.). In Sound.
 bonellii (M. Edw.).
Chelura (Phillip).
 terebraus (Phil.). In Sound.
Hyperia (Latr.).
 galba (Mont.). (Latreillii, Edw.)
 fabricii (M. Edw.).
Proto (Leach).
 pedata (Leach).
 goodsi (S. Bate).
Protella (Dana).
 longispina (Kröyer). (Phasma.)
Caprella (Lam.).
 linearis (Latr.).
 pennantii (Leach).
 tuberculosa (Goodsir).
 lobata (Müll.). Near Plymouth.
 acanthifera (M. Edw.). Drake's Island, low water, and dredged.
 acutifrons (Latreille). In the neighbourhood.
 hystrix (Kröyer). In the neighbourhood.
 equilibra (S. Bate). In the neighbourhood.

Isopoda.

Arcturus (Latr.). (Astacilla, Johns.).
 leachia (Johns.).
 longicornis (Sowerby). Off Plymouth, attached to Echinus.
Anthura (Leach).
 gracilis (Mont.).
Conifera (Leach).
 cylindricus (Mont.). Knap Buoy. 6 fathoms.
Tanais (M. Edw.).
 dulongii (Audouin).
 hirticaudatus (S. Bate).
Paratanais (Dana).
 foreipatus (Lilli.). Dredged in Sound.
Apseudes (Leach).
 talpa (Mont.). Dredged in Sound.
Anceus (Risso).
 maxillaris (Mont.).
 rapax (M. Edw.).
Pranixa (Leach). (Tem of Anceus).
 ceruleata (Mont.).
 fusca (Johns.).
 edwardialii (S. Bate).
PRELIMINARY REPORT UPON THE

Ione (Mont.).
 thoracica (Mont.)
Bopyrus (Latr.).
 squillarum (Latr.).
 hippoclytes (Roth.).
Munna (Kröy.).
 kroyeri (Good).
 whiteana (S. Bate).
Jacea (Leach).
 albritons (Leach).
 nordmanni Rath.).
Oniscoda (Latr.).
 maculosa (Leach).
 deshayesii (Lucas).
Limnoria (Leach).
 liguorum (Rath.). (Terebrans, Leach.) In wood-work in sea.
Idotea (Fabr.).
 pelagica (Leach). Eddystone.
 tricuspidata (Desm.).
 emarginata (Fabr.).
 linears (Fabr.). Near Plymouth.
 acuminata (Leach).
 appendiculata (Risso).
 parallela (S. Bate).
Ligia (Fabr.).
 oceanica (Linn.). Abundant on shore.
Spheroma (Lutr.).
 serratum (Fabr.). Sound. Dredged.
 rugiculata (Leach).
Dynamene (Leach).
 rubra (Leach). Near Plymouth.
Cymodocea (Leach).
 truncata (Leach).
 emarginata (Leach). Mount Edgecumbe.
 montagui (Leach).
 rubra (Leach).
 viridis (Leach).
Nerea (Leach).
 bidentata (Adams). Rocky shores.
Campecopea (Leach).
 hirsuta (Mont.).
 cranchii (Leach).
Burydice (Leach).
 pulchra (Leach).
Æga (Leach).
 bicarinata (Leach). Trawled in Sound.
 tridentes (Leach).
Ciroiana (Leach).
 cranchii (Leach). Knap buoy. 6 fathoms.
Rocinela (Leach).
 dannoniensis (Leach). Rare, in Sound.

Ostracoda.*

Pontocypris.
 mytiloides (Norman).
 trigonella (Sars).
 augusta (Brady).

* The following species were dredged at 40 fathoms in the neighbourhood of the Eddystone.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Bairdia.
- inflata (Norm.).
- acanthigera (Brady).

Cythere.
- pellucida (Baird).
- tenera (Brady).
- ladia (Brady).
- convexa (Baird).
- fusmaichica (Sars).
- villosa (Sars).
- emaciata (Brady).
- somipunctata (Brady).
- cuneiformis (Brady).
- antiqua (Baird).
- jonesii (Baird).
- acerosa (Brady).

Eucythere.
- parva (Brady).

Loxoconcha.
- impressa (Baird).
- guttata (Norm.).
- tamarindus (Jones).

Xestoleberis.
- aurantia (Baird).

Cytherura.
- angulata (Brady).
- cuneata (Brady).
- thita (Sars).
- similis (Sars).
- acuticosta (Sars).

Cytheropteron.
- punctatum (Brady).
- nodosum (Brady).
- multiform (Norman).
- subcircinatum (Sars).

Bathyocythere.
- constricta (Sars).
- turgida (Sars).

Pseudocythere.
- caudata (Sars).

Sclerochilus.
- contorus (Norman).

Paradoxostomata.
- cuneiforme (Brady).
- abbreviatum (Sars).

Polycope.
- compressa (Brady).

Cirripedia.

Alcipe (Hauc.).
- lampas (Hauc.).

Balanus (Auct.).
- balanoides (Linn.).
- porcatus (Costa).

Pyrgoma (Leach.).
- anglicum (Sowerby).

Chthamalus (Ranz.).
- stellatus (Ranz.).
Preliminary Report upon the

Lepas (Linnaeus).
 hillii (Darwin).
 anatifera (Linnaeus).
Scalpellum (Leach).
 vulgare (Leach). Attached to Plumularia.

Pygnaugonum (Brün)
 littorale (Müller). Sound; Drake’s Island.

MOLLUSCA.
 Lamellibranchiata.

Teredo (Sellin).
 norvegica (Spengel). In submerged wood in Sound.
 navalis (Linnaeus). In wood piles in rocks.
 megotara (Haul.)
 var. mioniota. Drift wood in Plymouth.
 malleolus (Turtle). In Plymouth.

Pholus (Linnaeus).
 dactylus (Linnaeus). In stones of Breakwater (Bellamy).
 striata (Linnaeus). In mahogany in ship-building yards.
 crispata (Linnaeus). Bellamy records it.
 parva (Pennant). Bellamy records it.

Saxicava (F. de Bél.)
 arctica (F. & H.). In limestone rocks, around Sound and at Breakwater.
 rugosa (Linnaeus). In limestone rocks, around Sound and at Breakwater.

Venerupis (Lamarck).
 irus (Linnaeus). In crevices of limestone rocks.

Mya (Linnaeus). -35 fathoms.
 arenaria (Linnaeus). Common all along south coast.
 truncata (Linnaeus). Only one specimen found.

Panopea (M. de la Groye).
 plicata (Montagu). Trawl refuse off Plymouth.

Corbula (Bruguière).
 gibba (Olivier). Probably in Sound.

Lyonia (Turtle).
 gibba (Olivier). Probably in Sound.

Thracia (Leach).
 30-100 fathoms.
 pubescens (Pulten). In Plymouth Sound.
 convexa (Wood). Probably in the Sound.
 papyracea (Poli). In the Sound.

Tvrentus (Pulten).
 Praetenus (Pulten). Probably near Sound.

Solen (Linnaeus).
 0-8 fathoms.
 siligua (Linnaeus). Abundant in Whitsand Bay, near Rame Head.
 vagina (Linnaeus). Probably in deep sand, Whitsand Bay.
 ensis (Linnaeus). In Whitsand Bay.

Solecurtis (de Blainville).
 15-25 fathoms.
 antiquatus (Pulten). Rare in Sound. 25 fathoms.
 candidus (Renier). Rare. Probably in Sound.

Ceratsolea (Forbes).
 legumen (Linnaeus). Probably in Sound.

Psammobia (Lamark).
 vespertina (Chemnitz). Probably in Sound. Muddy sand at low water.
 ferricentris (Chemnitz). Probably in Sound. Muddy sand at low water.
 tellinella (Lamark). In the Sound. 25 fathoms.
 costulata (Turtle). Probably in the Sound in deep water.
Gastrana (Schum.).
fragilis (Linn.). Probably in the Sound.

Tellina (Linn.).
crassa (Gmel.). In the Sound. Dredged.
donacina (Linn.). Probably in the Sound in 20 fathoms.
pusilla (Phil.). Whitsand Bay, near Raeme Head. 3—85 fathoms.
tenuis (da Costa). Whitsand Bay.

fabula (Gron.). Whitsand Bay.
balthica (Linn.). In the Sound.
balaustina (Linn.). In trawl refuse from 20 fathoms off the coast.

Scrobicularia (Schum.). Low-water to 4 fathoms.
piperata (Bellon.). Common in sandy mud. Probably in estuaries of Plym and Tamar.

alba (Wood). Whitsand Bay.
prismatica (Mont.). Whitsand Bay.

Donax (Linn.). Littoral or sublittoral.
trunculus (Linn.). Whitsand Bay.

politus (Poli). Whitsand Bay.
vittatus (Da Costa). Common all along coast (Parfitt).

Amphidesma (Lam.). 20 fathoms.
castaneum (Mont.). Probably in Sound. Rare.

Mactra (Linn.). Low-water to 50 fathoms.
solida (Linn.). In the Sound and Whitsand Bay.

var. truncata (Mont.). In the Sound.

var. elliptica (Brown). In the Sound.

sturtorum (Linn.). Whitsand Bay. Abundant.

subtruncata (da Costa). In the Sound.

Lutraria (Lamk.). Low-water to 25 fathoms.
elliptica (Lamk.). Whitsand Bay.
oblongata (Chem.). Probably in Sound or Whitsand Bay. Rare.

Tapes (Mühlf.). Littoral to 140 fathoms.
aureus (Gmel). Off Plymouth. 3—10 fathoms.

virginus (Linn.). In trawl refuse. 5—35 fathoms.
pullastra (Mont.). In the Sound. 0—7 fathoms.

var. perforans. In limestone in the Sound.
decussatus (Linn.). Probably in Sound at low-water mark.

Venus (Linn.).
verucosa (Linn.). Probably in Sound. Littoral to 7 fathoms.
casina (Linn.). Probably in Sound. 12—145 fathoms.

var. reflexa (Mont.). Probably in Sound.
galli (Linn.). In the Sound. Common 0—100 fathoms.
fasciata (da Costa). In the Sound. Littoral to 60 fathoms.

ovata (Penn.). In the Sound. 3—100 fathoms.

chione (Linn.). In trawl refuse. Not uncommon.

exoleta (Linn.). Probably in Sound.

lincta (Pult.). Common in Sound.

Circe (Schum.).

minima (Mont.). Probably in Sound.

Lucinopsis (Forb. and Han.). 3—80 fathoms.

undata (Penn.). Whitsand Bay. Not common.

Cyprina (Lamk.).

islandica (Linn.). Probably in Sound.

Astarte (Sower.).
sulcata (da Costa). Dredged in the Sound and Whitsand Bay. 8—80 fathoms.

var. elliptica (F. and H.). In the neighbourhood (Rogers).

triangularis (Mont.). Dredged in the Sound. 5—55 fathoms.

Isocardia (Lam.).

cor (Linn.). In trawl refuse from deep water.
Cardium (Linn.). Littoral or sublittoral in general.

aculeatum (Linn.). In Plymouth Sound in deep water. Rare.

echinatum (Linn.). In the Sound in deep water. Common.

edule (Linn.). In sand or sandy mud. Estuaries of Plym and Tamar. Common.

nodosum (Turt.). Whitsand Bay, near Raeme Head. 3—80 fathoms.

fasciatum (Mont.). Whitsand Bay. 5—50 fathoms.

norvegicum (Speng.). Probably in Sound. 15—30 fathoms.

tuberculatum (Linn.). In deep water (Bellamy).

exiguum (Gmelin). Oozy ground. Probably in Sound. 13—15 fathoms.

Lucina (Brug.).

borealis (Linn.). Probably in the Sound. Low-water to 90 fathoms.

spinifera (Mont.). In the Sound. 28 fathoms.

Axinus (Sowby.)

flexuosus (Mont.). Probably in the Sound.

Loripes (Poli.)

lacteus (Linn.). Probably in the Sound.

Diplodonta (Brown).

rotundata (Mont.). Found dead in Sound in 22 fathoms.

Cyamus (Phil.).

minutum (O. Fabr.). Whitsand Bay. Between tide-marks.

Kellia (Turt.). Low-water to 60 fathoms.

suborbicularis (Mont.). Probably in Sound.

Lasaea (Leach).

rubra (Mont.). Whitsand Bay.

Lepton (Turt.).

squamosum (Mont.). In the Sound in 22 fathoms.

clarkie (Clark). In the Sound. 18—80 fathoms.

Galeomma (Turt.).

turtoni (Ed. of 'Zool. Journ.'). Probably in Sound. 3—4 fathoms.

Mytilus (Linn.).

edulis (Linn.). In the Sound and estuaries. Abundant. Generally littoral.

modiolus (Linn.). In the Sound.

adriaticus (Lam.). Probably in the Sound.

barbatis (Linn.). Probably in the Sound. Rare.

Modiolaria (Beck).

discors (Linn.). On roots of laminaria (Parfitt).

costulata (Risso). Probably in Sound, low-water mark. Rare.

Crenella (Brown).

rhombea (Berk.). Probably in Sound. 20 fathoms. Rare.

Nucula (Lam.).
nucleus (Linn.). Probably in Sound. 7—90 fathoms.

Arca (Linn.).
tetragona (Poli.). In crevices in rocks. Hamoaze.

lactea (Linn.). Whitsand Bay. 7—27 fathoms.

Pectunculus (Lam.).
glycymeris (Linn.). In Sound. 15—25 fathoms.

Avicula (Klein).

hirundo (Linn.). In trawl refuse from offing.

Pinna (Lister).
rudis (Linn.). In trawl refuse from deep water.

Lima (Brug.).

subauriculata (Mont.). In Sound. 25 fathoms. Whitsand Bay. 15—50 fathoms. Rare.

loseombi (Sowerby). Probably in Sound. Low-water to 50 fathoms.

hians (Gmelin). Probably in Sound. Low-water to 50 fathoms.

Ostrea (Linn.).
edulis (Linn.). Cattewater. Prince Rock. Hamoaze.
Peetin (Pliny).

- **varius (Linn.).** Probably in Sound. 3—33 fathoms.
- **pusio (Linn.).** Probably in Sound. 12—50 fathoms.
- **tigrinus (Müll.).** From stomachs of flat-fish in Sound. 12—60 fathoms.
- **similis (Laskey).** In Sound. 2—60 fathoms.
- **maximus (Linn.).** In Sound.
- **opercularis (Linn.).** In Sound.
- **var. lineata.** In Sound.
- **var. tumida.** In Sound.

Anomia (Linn.). Low-water to 30 and up to 100 fathoms.

- **ephippium (Linn.).** In the Sound. Frees or attached to Pinna.
- **var. aculeata.** In the Sound. Attached to corallines.
- **patelliformis (Linn.).** 15 fathoms.

Scaphopoda.

Dentalium (Linn.).

- **entalis (Linn.).** In Sound, and from hake's stomachs.
- **tarentinum (Lamk.).** In Sound, 12—15 fathoms, and 5 to 6 miles from land 7—25 fathoms.

Gasteropoda.

Chiton (Linn.).

- **hanleyi (Bean).** In trawl refuse.
- **fascicularis (Linn.).** Whitsand Bay. Littoral to 25 fathoms in deep water (Bellamy).
- **ruber (Linn.).** Probably in the Sound.
- **cinereus (Linn.).** In Millbay, low spring tide.
- **cancellatus (Sow.).** Probably in Sound.
- **marginatus (Penn.).** Doubtless in Sound.

Patella (List.). Littoral and laminarian zones.

- **vulgata (Linn.).** In the Sound. "Rock limpet."
- **var. 1, elevata.** In Sound.
- **var. 2, picta.** In Sound.
- **var. 3, intermedia.** In Sound.
- **var. 4, depressa (Penn.).** In Sound.
- **var. 5, cerulea (Linn.).** In Sound.

Helcion (De Mont.).

- **pellucidum (Linn.).**
- **var. lobatus.** In Sound.

Tectura (Cuv.).

- **virginia (Müll.).** In Sound. "Sea-weed limpet."

Calyptrrea (Lamk.).

- **chinensis (Linn.).** In Sound. 7—10 fathoms.

Fissurella (Brug.).

- **greca (Linn.).** Probably in Sound.

Emarginula (Lamk.).

- **fissur (Linn.).** In Sound, in deep water.
- **rosea (Bell).** In Sound. 20—25 fathoms.

Haliotis (Linn.).

- **tuberculata (Linn.).** In the neighbourhood (Rogers).

Trochus (Rond.).

- **zizyphinus (Linn.).** Common in Sound.
- **var. 1.** Common in Sound.
- **var. 2.** Common in Sound.
- **var. 3.** Common in Sound.
- **granulatus (Born).** In Sound.
- **exasperatus (Penn.).** Probably in Sound.
- **millegranus (Phil.).** Probably in Sound.
PRELIMINARY REPORT UPON THE

striatus (Linn.). Probably in Sound.

montacuti (Wood). Probably in Sound.

tumidus (Mont.). In Sound. Coralline zone. 7–80 fathoms.

cinerarius (Linn.). In Sound. Abundant. Sub-littoral.

umbilicatus (Mont.). In Sound. Abundant. Sub-littoral.

tagus (Linn.). Probably in Sound. 10–15 fathoms.

Cyclostraema (Mart.). Probably in Sound. 10–40 fathoms.

cutlerianum (Clark). Probably in Sound. Found both east and west of Plymouth.

serpuloïdes (Mont.). Probably in Sound.

Phasianella (Lamk.).

pulla (Linn.). In Sound and Whitsand Bay.

Ianthina (Bolt.).

rotundata (Leach). Whitsand Bay.

exigua (Lamk.). Cast up in Whitsand Bay during storms. Not British.

Crepidula (Lamk.).

plana (Say). Dredged in the Sound.

Truncateella (Risso).

truncateula (Drap.). Under stones between tide-marks in Sound.

Rissoa (Frém.).

costata (Adams). Whitsand Bay.

parva (Da Costa). Whitsand Bay.

fulgida (Adams). Whitsand Bay.

retractata (Mont.). On south coast, Devon.

soluta (Phil.). In Sound.

cingillus (Mont.). In Sound.

calathus (F. and H.). Whitsand Bay.

punctora (Mont.). Whitsand Bay.

inconspicua (Ald.). Trawl refuse in Plymouth.

membranacea (Adams). Plentiful on south coast, Devon.

proxima (Ald.). In sound.

vitrea (Mont.). Whitsand Bay.

violacea (Desm.). Probably in Sound.

Barlesea (Clark).

rubra (Mont.). Whitsand Bay.

Hydrobia. ulve (Penn.). Doubtless in estuaries of Sound.

Lacuna (Turt.).

pallidula (Da Costa). On oar-stone.

divaricata (Fabr.). Probably in Sound.

puteolus (Turt). Probably in Sound.

Skenea (Flem.).

planorbus (Fabr.). Doubtless in Sound.

Littorina (Peruss.).

littorea (Linn.). In the Sound and its estuaries.

rudis (Mat.). In the Sound and its estuaries.

var. tenebrosa. Probably in the Sound.

var. patula. On Eddystone Rocks.

obtusata (Linn.). In the Sound and its estuaries.

Scalaria (Lamk.).

communs (Lamk.). In the Sound and Hamoaze.

trevelyan (Leach). In the Sound.

turtonia (Turton). Coralline zone.

Cæcum (Flem.).

trechea (Mont.). Probably off Sound. Coralline zone.

glabrum (Mont.). Probably off Sound. Coralline zone.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Turritella (Lamk.).
- var. nivea. In Mill Bay. Low spring tide.
- var. gracilis. In Mill Bay. Low spring tide.

Aclis (Lovén).
- ascaris (Turt.). In Sound.
- supranitida (Wood). In Sound.
- unica (Mont.). In Sound.

Aporrhais (Da Costa).
- pes-pelieani (Linn.). Shores of Mount Edgecumbe. Low-water.

Cerithium (Adan.).
- reticulatum (Da Costa). In Sound.
- perversum (Linn.). In Sound.
- pulchella (Jeff.). Coraline zone. Sound.
- tuberculata (Mont.). Probably in Sound.

Cerithiopsis (F. and H.).
- barleei (Jeff.). Among trawl refuse. Plymouth.

Stilifer (Brod.).
- turtori (Brod.). Attached to Echinus miliaris (Stewart).

Eulima (Risso).
- polita (Linn.). In Sound.
- intermedia (Cantr.). Off Plymouth.
- subulata (Don.). In Sound. Coraline zone.

Odostomia (Flem.).
- truncatula (Jeff.). In trawl refuse from off Plymouth.
- clavula (Lov.). Rare. Dredged Plymouth. 6—50 fathoms.
- lukisi (Jeff.). In trawl refuse from off Plymouth.
- conoidea (Brocchi). Probably in Sound.
- acuta (Jeff.). Coraline zone, probably in Sound.

Otina (Gray.).
- otis (Turt.). On rocks under Hoe.

Lamellaria (Mont.).
- perspicua (Linn.). Dredged in Sound.

Natica (Adan.).
- catena (Da Costa). Whitsand Bay.

Adoeorbis (S. Wood).
- subcarinatus (Mont.). Whitsand Bay. In 12 fathoms.

Cypraea (Linn.).
- europaea (Mont.). Common.

Ovula (Brug.).
- patula (Penn.). Probable in Sound.

Marginella (Lamk.).
- levis (Don.). Probably in Sound.
Defrancia (Mill.).
leuropyi (Mich.). Probably in Sound.
teres (Forbes). Dredged. 15—85 fathoms.
gracilis (Mont.). Not uncommon on coast in coralline zone.
linearis (Mont.). Common on coast in laminarian and coralline zones and
deep water.
reticulata (Ren.). In Sound. Coralline zone.
purpurea (Mont.). Doubtless at mouth of Sound.

Pleurotoma (Lamk.).
attenuata (Mont.). On coast. Coralline zone.
costata (Don.). Low-water mark in pools in Sound.
brachystoma (Phil.). On muddy sand. 10—50 fathoms.
nebula (Mont.). Common in sand, low-water.
var. elongata. In deep water.
rufa. In deep water.

Pleurobranchia.

Cylichna (Lov.).
acuminata (Brug.). In trawl refuse. Plymouth.

tentaculata (Mont.). Probable in Plymouth.
cylindracea (Penn.). Probably near Plymouth.

Uttriculus (Brown). Laminarian zone.
mammillatus (Phil.). Probably near Plymouth.
trunculatus (Brug.). Doubtless at Plymouth.

Acteon (de Mont.).
tornatilis (Linn.). Whitsand Bay.

Bulla (Klein).
hydatis (Linn.). In Sound. Muddy sand.

Seaphander (De Mont.).
lignarius (Linn.). In the Sound.

Philine (Ascanius).
catera (Mont.). Probably in Sound.
punctata (Clark). Whitsand Bay.

Aplysia (Linn.).
punctata (Cuv.). Whitsand Bay. On rocks.
deplans (Linn.). Mouth of Sound. 5 fathoms.
FAUNA AND FLORA OF PLYMOUTH SOUND.

Pleurobranchus (Cuv.).
membranaceus (Mont). In the Sound.
plumula (Mont.). In the Sound.

Nudibranchia.

Elysia (Risso).
viridis (Mont.). In the neighbourhood (Rogers).

Eolis (Cuv.).
papillosa (Linn.). Low-water Cremill.
coronata (Forbes). In the neighbourhood (Rogers).
rufibranchialis (John.). Trawled 10 miles south-east of Plymouth.

Polycera (Cuv.).
quadrilineata (Müll.). Tide pools and Yam Gut. 4 fathoms.

Goniobranchus (Cuv.).
nodosa (Mont.). Fairly frequent at low-water. Under the Hoe.

Doris (Linn.).
tuberculata (Cuv.). Fairly common in Sound.
coccinea (Forbes). On shore and trawled in Sound.
testudinaria (Risso). Trawled in Sound.

Dendronotus (A. and H.).
arborescens (Müll.). Off coast.

Doto (Oken).
coronata (Gmel.). 5 miles south of Eddystone. 35 fathoms.

Limsontia (John.).
nigra (John.). On shore of Sound.

Pulmonata.

Onchidium (Buchanan).
celticum (Cuv.). Whitsand Bay. On rocks about high-water mark.

Pteropoda.

Spiralis (Eyd. and Soul.).
retroversus (Flem.). On the coast.

Cephalopoda.

Ommatostrephe (D'Orb.).
sagittatus (Lamk.). On the coast.

Loig (Schn.).
vulgaris (Lamk.). Common in Sound and off coast.

Sepiula (Rond.).
rondeleti (Leach). In the neighbourhood (Rogers).

Sepia (Pliny).
officinalis (Linn.). Off the coast and in the Sound.
biiserialis (De Mont.). Off the coast.

Octopus (Lamk.).
vulgaris (Lamk.). Along the coast.

Eledone (Leach).
cirrosa (Lamk.). In the neighbourhood (Rogers).

BRACHIOPODA.

Testicardinea.

Terebratula (Lhwyd.).
caput-serpentis (Linn.). In neighbourhood (Rogers).

Argiope (Deslong.).
capsula (Jeff.). Off Plymouth. 18—25 fathoms.
POLYZOA.

Entoprocta.

Pedicellina (Sars).
 cernua (Pallas). In tide pools on shores of Sound.
 gracilis (Sars). Common between tide-marks on coast.

Ectoprocta.

Crisia (Lamour.).
 eburnea (Linn.). On roots of laminaria all along coast.
 denticulata (Lam.). On roots of laminaria all along coast.
 cornuta (Linn.). On surface rocks along coast.

Diastopora (Lamour.).
 obelia (Johns.). On shells from deep water.
 suborbicularis (Hincks). On stones, &c. Shallow to deep water.
 patina (Lam.). On shells and stones along coast.

Lichenopora (Defr.).
 hispida (Flem.). On shells and stones from deep water.

Stomatopora (Broun).
 deflexa (Couch). Common off Deadman.
 fungia (Couch). Common from Eddystone to Deadman.

Tubulipora (Lam.).
 flabellaris (Fabr.). On Pecten maximus shells.

Idmona (Lam.).
 serpens (Linn.). On shells, &c., all along coast.

Aphya (Lam.).
 gelatinosum (Linn.). Common, low-water mark on coast.
 hirsutum (Flem.). On shells, low-water mark.
 mytili (Dalyell). On stones between tide-marks.

Flustra (Gray).
 hispida (Fabr.). Common on Fucus serratus.

Vesicularia (Thomp.).
 spinosa (Linn.). Off the Deadman. Rare.

Amathia (Lam.).
 luedigera (Linn.). On algae.

Buskia (Alder).
 nitens (Alder). Obtained from the Sound.

Valkeria (Flem.).
 uva (Linn.). In shallow water, on fuci, &c.

Mimosella (Hincks).
 gracilis (Hincks). On Halidrys siliquosa.

Scrupocellaria (v. Beneden).
 scruposa (Linn.). Very common.
 reptans (Linn.). Roots of large algae on coast.

Buettnera (Lam.).
 chelata (Linn.). Common on large algae.

Anthea (Lam.).
 anguina (Linn.). Very abundant, on algae.
 truncata (Landsb.). On shells. Not common.

Bicellaria (Blainv.).
 cielata (Linn.). Roots of large algae on coast. Trawled near Eddystone.

Bugula (Oken).
 turbinata (Alder). Rocks near low-water mark.
 flabellata (Thomp.). Common. From moderate to deep water.
 avicularia (Thomp.). Roots of laminaria. Not common.
 calathus (Norm.). Off the coast.

Cellaria (Lam.).
 fistulosa (Linn.). Eddystone and thereabouts.
 sinuosa (Hassal). Eddystone and eastward.
Flustra (Linn.).
ofohacea (Linn.). Washed ashore.
papyracea (E. and Sol.). Shallow water on coast.
Membranipora (Blainv.).
Jacroii (Aud.). Frequent.
catenularia (Jameson). Most common.
pilosa (Linn.). Very common.
membranacea (Linn.). On algae. Abundant.
lineata (Linn.). Common between tide-marks to deep water. On weed, stone, &c.
flustroides (Hincks). Off Deadman. 60 fathoms.
dumerii (Aud.). Abundant on shells, &c. Shallow water.
imbellis (Hincks). Off coast, east and west of Sound. 60 fathoms.
flemingii (Busk). Common on shells, &c. Shallow to deep water.
nodulosa (Hincks). Off Brixham.
Cribrina (Gray).
punctata (Hassall). Between tide-marks.
Membraniporella (Smitt).
nitida (Johns.). Common on stones between tide-marks.
Microporella (Hincks).
ciliata (Pallas). Common, shallow and deep water.
malusii (Aud.). On the neighbouring coast.
impresa (Aud.). Off Deadman and coast to eastward.
violeca (Johns.). Off coast.
Chorizopora (Hincks).
bronniartii (Aud.). Abundant on shells, &c., in shallow water.
Schizoporella (Hincks).
unicorns (Johns.). Common on stones between tide-marks. Common.
spinifera (Johns.). Common. Roots of large laminaria,
linearis (Hassal). On coast. Abundant.
hyalina (Linn.). Not scarce on coast.
Mastigophora (Hincks).
dutertrei (Aud.). Off Deadman. 60 fathoms.
Schizotheca (Hincks).
fissa (Busk.). On coast and off Deadman.
Lepralia (Johns.).
pallasiiana (Moll.). Abundant between tide-marks.
edax (Busk.). In the Sound on Turitella.
Porella (Gray).
concina (Busk.). Off Deadman,
Smittia (Hincks).
affinis (Hincks). Start Bay on a shell.
trispinosa (Johns.). Very common shallow to deep water.
Phylactella (Hincks).
eximia (Hincks). Off Deadman.
Mucronella (Hincks).
variolosa (Johns.). Off Deadman. 60 fathoms.
cecina (Abild.). Common littoral.
Palmicella (Alder).
skenei (E. and Sol.). Off Deadman. Rare.
Rhyncopora (Hincks).
bispinosa (Johns.). Off Deadman. 60 fathoms.
Cellepora (Fabr).
punicosa (Linn.). Common, encrusting old shells, &c.
aviculatares (Hincks). Common on Sertularians at moderate to great depths.
costatii (Aud.). On Anomia.
TUNICATA.

Ascidia simplices.

Ascidia (Linn.).
intestinalis (Linn.) Common in Sound.
virginea (O. F. Müll.) Not abundant in Sound.
aspera (O. F. Müll.) Not abundant in Sound.
vitrea. In the neighbourhood (Rogers).

Molgula (Forb.).
occulata (Kupff). Dredged in Sound.

Perophora (Wiegm.).
listeri (Wiegm.). Abundant.
Cynthia (Sav.).
? On rocks in plenty.
quadangularis. In the neighbourhood (Rogers).

Clavelina (Sav.).
lepadiformis (O. F. Müll.). In the neighbourhood (Rogers).

Ascidia composita.

Polyceclus.
savignyi (Herdm.).

Botryllus (Gärtn.). Everywhere.
violeus (M. Edwards).
rubrum (M. Edwards).

Botrylloides (Edw.). Everywhere.

Leptoclinum (Edw.). On shores of Sound.

Distoma (Gärtn.). Very common.
Polycelium (Sav.). Very common.

PISCES.

Cyclostomata.

Petromyzon (Artedi).
marius (Linn.).
fluviatilis (Linn.). Mud of Sound and rivers.

Chondropterygii.

Ganoidei.

Accipenser (Artedi).
sturio (Linn.). Sturgeon. A few caught each year.

Elasmobranchii.

Carcharias (Müll. and H.).
glaucus (Cuv.). Blue shark. Taken in the Sound.

Mustelus (Cuv.).

Galeus (Cuv.).
vulgaris (Flem.). Tope. Common.

Lamna (Cuv.).
cornubica (Cuv.). Porbeagle. In drift nets occasionally.

Alopias (Rafn.).
vulpes (Bonap.). Thrasher. Off the coast, occasional.

Selache (Cuv.).
maxima (Cuv.). Basking shark. Off the coast occasionally.
Scyllium (Cuv.).
catulus (Cuv.). Nurse-hound. Common.
Acanthias (Risso).
Echinorhinus (Blainv.).
spinosus (Blainv.). Spinous shark. Taken off Plymouth.
Rhina (Klein).
Torpedo (Dumeril).
nobiliana (Bonap.). Torpedo. Rare, taken in Sound.
Raia (Art.).
batis (Linn.). Skate. Very common.
alba (Lacep.). Bordered ray. Occasional.
circularis (Couch.). Sandy ray. Common.
elatina (Linn.). Thorn-back ray. Very common.
maeotiana (Mont.). Spotted ray. Common.
macrorhynchus (Raf.). Flapper-skate. Has been obtained from Plymouth.
Trigon (Adan.).
pastinaca (Cuv.). Sting-ray. Taken in the Sound.
Myliobatis (Cuv.).
aquila (Cuv.). Eagle-ray. Rare.

Teleostei.

Acanthopterygii.

Labrax (Cuv.).
lupus (Cuv.). Bass.
Serranus (Cuv.).
cabrilla (Cuv.). Comber. In estuaries. Not common.
Polyprion (Cuv.).
Mullus (Linn.).
Cantharus (Cuv. and Val.).
lineatus (Thomp.). Bream, or old-wife. Common.
Box (Cuv. and Val.).
vulgaris (Cuv. and Val.). Bogue. One recorded from near Plymouth.
Pagellus (Cuv. and Val.).
erithrinus (Cuv. and Val.). King of the breams.
centrodontus (Cuv. and Val.). Common sea-bream. Especially common.
bogaraveo (Cuv.). Spanish bream. Not common.
Trigla (Artedi).
obscena (Linn.). Lanthorn gurnard.
lyra (Linn.). Piper.
lata (Gincl.). Streaked gurnard.
gurnardus (Linn.). Gray gurnard. In estuaries. Common
hirundo (Linn.). Tuft. Common.
Cottus (Artedi).
scoiarius (Linn.). Father lasher. Common.
bubalis (Buphr.). Lucky proach. Very common on rocky coast, common
also in estuaries.
Agonus (Bloch, Schneider).
cataphractus (Bl. sch.). Armed bullhead. Common in estuaries.
Peristethus (Kaup),
cataphractum (Kaup). Armed gurnard. One taken in trawl between Plymouth and Eddystone.
Lophius (Arhedi).
 piscatorius (Linn.). Angler. Frequent. Reach very large size.
Trachinus (Cuv).
draco (Linn.). Great weaver. All along coast and in offing.
vipera (Cuv. and Val.). Little weaver. All along coast; not common in estuaries.
Scomber (Arhedi).
 scomber (Linn.). Mackerel. Regular visitors.
Orcynus (Lutken).
 thynus (Lütken). Short-finned tuna. One specimen recorded.
Thynnus (Lütken).
pelamys (Cuv. and Val.). Bonito. One taken in Catte Water.
Centrolophus (Lacepède).
pompius (Cuv. and Val.). Black fish. Has been taken off Penlee Point.
Caranx (Lacep.).
 trachurus (Lacep.). Scad. Regular visitor.
Naucrates (Cuv).
ductor (Cuv and Val.). Pilot fish. Two specimens recorded.
Capros (Lacep.).
Zeus (Cuv).
 faber (Linn.). John Dory. Common.
Xiphius (Arhedi).
gladius (Linn.). Swordfish. One specimen caught in drift net.
Sciaena (Cuv.).
aquila (Riso). Sciaena or Maigre. Off the Coast.
Trichurus (Linn.).
lepturus (Linn.). Silvery hair tail. Caught in herring nets occasionally.
Gobius (Arhedi).
niger (Linn.). Rock goby. Common.
ruthenesparr (Euph.). Two-spotted goby. Abundant in Sound.
minutus (Gmel.). One-spotted goby. Common in estuaries.
Callionymus (Linn).
lyra (Linn.). Yellow skulpin. Female plentiful in estuaries, male only in mid-channel.
Cyclopterus (Linn.).
lumpus (Linn.). Lamp-fish. Fairly common.
Liparis (Arhedi).
vulgaris (Flem.). Sea snail. Common.
montagui (Cuv.). Network sucker. Probably in estuaries of Sound.
Lepadogaster (Gouan).
bimaculatus (Flem.). Doubly-spotted sucker. Not common.
Anarrhichas (Arhedi).
lupus (Linn.). Wolf fish. Rare.
Blennius (Arhedi).
ocellaris (Linn.). Butterfly blenny. One specimen recorded.
pholis (Linn.). Shanny. Common on rocky shores.
Centronotus (Bloch, Schm.).
Zoarces (Cuv.).
viviparus (Cuv.). Viviparous blenny. In the neighbourhood (Rogers).
Cepola (Linn.).
rubescens (Linn.). Red band fish. Taken in Sound.
Mugil (Artedi).
capito (Cuv.). Gray mullet. Abundant in estuaries.
chelo (Cuv.). Lesser grey mullet. Abundant in estuaries.

Atherina (Artedi).
presbyter (Jenyns). Atherine. In the neighbourhood (Rogers).

Gasterosteus (Artedi).
aculeatus (Linn.).
var. trachurus (Cuv. and Val.). Rough-tailed stickleback. Common.

Ctenolabrus (Cuv. and Val.).
rupestris (Cuv. and Val.). Jago's goldsinny.

Centrolabrus (Günth.).
exoletus (Günth.). Rock-cook. Abundant in Sound.

Acantholabrus (Cuv. and Val.).
palloni (Cuv. and Pal.). Scale-rayed wrasse. A specimen taken off Deadman.

Coris (Lacep.).
juvis (Günth.). Rainbow wrasse.

Labrus (Artedi).
maculatus (Bl.). Ballan wrasse. Abundant in Sound.
mixtus (Fr. o. Ek.). Cuckoo wrasse. Not common in Sound.
lineatus (Don.). Green wrasse.

Crenilabrus (Cuv.).
melops (Cuv.). Cork wing. Abundant in Sound.

Anacanthini.

Gadus (Cuv.).
morhua (Linn.). Cod. Fairly common.
anguelius (Linn.). Haddock. Frequent.
lucius (Linn.). Bib. Very common.
merlangus (Linn.). Whiting. Very common.
minutus (Linn.). Poor-cod. Very common.
pollachius (Linn.). Pollack. Very common.
virens (Linn.). Coal-fish. Very common.

Merluccius (Cuv.).
vulgaris (Cuv.). Hake. Common.

Molva (Nil.).
vulgaris (Flem.). Ling. Common.

Motella (Cuv.).
tricirrata (Nil.). Three-bearded rockling. Abundant in estuaries.
cimbria (Nil.). Four-bearded rockling. In the neighbourhood (Rogers).
mustela (Nil.). Five-bearded rockling. In the neighbourhood (Rogers).

Raniceps (Cuv.).
raninus (Coll.). Lesser fork-beard. In the Sound.

Ammodytes (Artedi).
lancetolatus (Lesauv.). Larger sand lance. Common.
tobiasius (Linn.). Lesser sand lance. Common.

Hippoglossus (Cuv.).
vulgaris (Flem.). Holibut.

Rhombus (Cuv.).
maximus (Cuv.). Turbot. Fairly common.
lavis (Ronde). Brill. Frequent.

Zeugopterus (Gottsche).
unimaculatus (Risso). Bloch's topknot.

Arnoglossus (Bleeker).
megastoma. (?) Merry sole. Common.
laterna (Günth.). Megrim. Common.
Preliminary Report Upon the

Pleuronectes (Arthei).
- platessa (Lin.). Plaice. Very common.
- delleus (Lin.). Blounder. Very common.
- limanda (Lin.). Dab. Very common.
- cynoglossus (Lin.). Craig-fluke.
- microcephalus (Don.). Smear-dab. Fairly common.

Solea (Cuv.).
- variegata (Flem.). Thick back. Common in deep water.
- lutea (Bonap.). Red sole. Taken off coast.

Physostomi.

Salmo (Arthei).
- cambricus (Don.). Salmon trout. Along the coast.
- fario (Lin.). Trout. Near to the mouth of the Plym.

Belone (Cuv.).
- vulgaris (Flem.). Garfish. Common off coast and in the Sound.

Scombresox (Lacep.).
- saurus (Flem.). Skipper. One specimen found under the Hoe.

Exocetus (Arthei).

Engraulis (Cuv.).
- encrasicholus (Cuv.). Anchovy. Taken off coast in drift nets occasionally.

Clupea (Arthei).
- harengus (Lin.). Herring. Regular visitor.
- pilchardus (Walb.). Pilchard. Regular visitor.
- sprattus (Lin.). Sprat. Very common.
- finta (Cuv.). Twaite shad. Occasional in the estuaries.

Anguilla (Belon).
- vulgaris (Turt.). Eel. In estuaries, common.

Conger (Cuv.).
- vulgaris (Cuv.). Conger. Common in deep water, on rocky ground.

Lophobranchii.

Syngnathus (Arthei).

Nerophis (Rafn.).
- lumbriciformis (Króy.). Worm-pipe fish. Common on shore.

Plectognathi.

Orthagoriseus (Bl. Schn.).
- truncatus (Flem.). Oblong sun-fish. Recorded off coast.

List of Papers Consulted.

No. 1. Alder and Hancock.—'British Nudibranchiate Mollusca' (1845).
No. 3. Bate and Westwood.—'British Sessile-eyed Crustacea' (1863-8).
No. 4. Bellamy.—'The Natural History of South Devon' (1839).
No. 5. Bowerbank.—'British Spongiadre' (1864-82).
No. 7. Couch.—'British Fisheries' (1877).
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
<th>Date(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Darwin</td>
<td>'Monograph of the Cirripedia'</td>
<td>1891-3</td>
</tr>
<tr>
<td>9.</td>
<td>Day</td>
<td>'British Fishes'</td>
<td>1880-1</td>
</tr>
<tr>
<td>10.</td>
<td>Forbes</td>
<td>'British Starfishes'</td>
<td>1841</td>
</tr>
<tr>
<td>11.</td>
<td>Gussa</td>
<td>'British Sea Anemones and Corals'</td>
<td>1860</td>
</tr>
<tr>
<td>12.</td>
<td>Hincks</td>
<td>'British Marine Polyzoa'</td>
<td>1880</td>
</tr>
<tr>
<td>13.</td>
<td>Hunt</td>
<td>'Notes on Tor Bay'</td>
<td>('Transactions of Devon Association,' 1878)</td>
</tr>
<tr>
<td>15.</td>
<td>Jeffreys</td>
<td>'British Conchology'</td>
<td>(1862)</td>
</tr>
<tr>
<td>16.</td>
<td>Mcintosh</td>
<td>'A Monograph of British Annelida'</td>
<td>1873-74</td>
</tr>
<tr>
<td>17.</td>
<td>Parfitt</td>
<td>'Catalogue of the Fauna of Devon Zoophytes'</td>
<td>1866*</td>
</tr>
<tr>
<td>18.</td>
<td>Parfitt</td>
<td>'Catalogue of the Annelids of Devon'</td>
<td>1867</td>
</tr>
<tr>
<td>19.</td>
<td>Parfitt</td>
<td>'Catalogue of the Sponges of Devon'</td>
<td>1868</td>
</tr>
<tr>
<td>20.</td>
<td>Parfitt</td>
<td>'Protozoa of Devonshire'</td>
<td>1869</td>
</tr>
<tr>
<td>21.</td>
<td>Parfitt</td>
<td>'Catalogue of the Brachiopoda of Devon'</td>
<td>1870</td>
</tr>
<tr>
<td>22.</td>
<td>Parfitt</td>
<td>'Fauna of Devon. Polyphymata'</td>
<td>1872</td>
</tr>
<tr>
<td>23.</td>
<td>Parfitt</td>
<td>'Fauna of Devon. Sessile-Eyed Crustacea'</td>
<td>1873</td>
</tr>
<tr>
<td>24.</td>
<td>Parfitt</td>
<td>'Fauna of Devon. Conchology'</td>
<td>1874</td>
</tr>
<tr>
<td>25.</td>
<td>Parfitt</td>
<td>'Fauna of Devon. Fishes'</td>
<td>1875</td>
</tr>
<tr>
<td>26.</td>
<td>Pennington</td>
<td>'British Zoophytes'</td>
<td>(1885)</td>
</tr>
<tr>
<td>27.</td>
<td>Rogers</td>
<td>'List of Marine Animals for Sale.'</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Yarrel</td>
<td>'British Fishes'</td>
<td>(1859)</td>
</tr>
<tr>
<td>29.</td>
<td></td>
<td>'The Zoologist,' Oct., 1872; Jan., 1876; Sept., 1878; Aug., 1884.</td>
<td></td>
</tr>
</tbody>
</table>

* The remainder of Parfitt's papers all appear in the 'Transactions of the Devon Association.' The dates alone are mentioned.
Preliminary Inquiries at Plymouth into the Marine Fauna and the Ova of Fishes.

By J. T. Cunningham, B.A.,
Fellow of University College, Oxford; Naturalist of the M.B.A.

Although the Plymouth Laboratory was opened only on June 30th, investigations have been carried on by the Association for the last two years. These inquiries have necessarily been of a general and preliminary character, but they have resulted in the acquisition of definite precise information on several subjects, in which previously only conjecture or complete ignorance prevailed. This information includes discoveries of some value and completeness in themselves, but its chief importance lies in the fact that it shows in what directions and by what means the instruments of inquiry supplied by the Plymouth Laboratory, and its organisation, can be applied without delay to fruitful work. It was with just this object in view that the Council instituted these preliminary inquiries; without them, when the apparatus of the Laboratory was ready for action, the staff would have had to make tentative experiments before they knew what problems the neighbourhood of Plymouth gave the material for solving. With them the fisheries and the marine Fauna of Plymouth are mapped out, and problems to be worked out are definitely proposed, so that the tanks and the powers of the zoologists can be fully occupied without loss of time.

I will shortly describe the inquiries carried on since the beginning of August, 1887, into the local marine Fauna, and the natural history of food-fishes.

In the autumn of last year the Sound inside the Breakwater, and the neighbourhood of the coast on either side east and west, were explored generally by the dredge and small trawl. In this way it was ascertained that some
interesting forms were abundantly to be found at certain localities. Thus the Feather-star (*Antedon rosaceus*), the most interesting of British Echinodermata, lives in large numbers between the Mallard and the Cobbler Buoys, right at the door, so to speak, of the Laboratory, for the spot is but a few hundred yards from the building. A dredge put down there for two or three minutes came up half full of these beautiful and delicate creatures. Anyone wishing to pursue the study of this animal's development and physiology, subjects by no means yet exhausted, has to take very little trouble in order to procure specimens.

In other parts of the Sound only occasional specimens of the Feather-star are met with. Sponges of various species occur abundantly in the Sound, one curious species well-known to naturalists is somewhat common; it has usually a globular or nearly globular form; it reaches a large size, some specimens being as big as a child's head. It has a hard rind, which presents a regular reticulation on the surface. This rounded mass (*Raphyrus Griffithsii, Bowbuk*) would be taken by everyone at first sight for a sea-worn stone, and there is little doubt that it is a perfect example of what is technically called mimicry; the shape and appearance of a rounded stone having been acquired by the sponge just because it is then mistaken by predaceous animals for one of the stones among which it lies on the sea-bottom. In the interior of this sponge is always found an inorganic body, usually a piece of shell, which served as its foundation when it began to grow.

The curious pipe-fishes, which look like grotesque fishes carved out of a piece of walking stick, are also common in the Sound. These are among the very few fishes which take care of their eggs; the male receives these when they are shed into a pouch formed by the skin beneath his tail, and there they remain while the young fish are developing, and until they are hatched and escape. Thus the male in this order has the same peculiar method of guarding his progeny as the female kangaroo in Australia.

A great number of species of marine worms live on the shores of the Sound and its estuaries. In the latter, digging
for them is unpleasant, as the mud is so soft that a man sinks in over his ankles; but there is one place in Jennycliff Bay where there is a patch of hard sand, from which they can be dug without difficulty, and many other kinds are found under the stones on the east shore of Drake's Island.

Crustacea are abundant and varied; they include the common shrimp, the red shrimp, the prawn, and many less familiar species. The development of these is being studied systematically in detail, as well as that of the lobster, crab, and "crayfish," by Mr. W. F. R. Weldon.

In Sutton Pool eels are taken at certain times of the year, and efforts are being made to throw some light on the reproduction of these, a problem whose complete solution has evaded the researches of naturalists for the last two centuries.

Passing now beyond the Sound, the thickest marine population occurs in the neighbourhood of the Mewstone. Here have been dredged numbers of large Holothurians, animals with somewhat the appearance of black puddings, a foot in length, and belonging to the same class as starfishes and feather-stars, namely, the Echinodermata. Also beautiful sponges, feather-stars themselves, great coral-like masses of a colonial animal called *Lepralia foliacea*, in the cavities of which the feather-stars creep about, large ascidians or sea-squirts, and the pretty red fans or "sea-trees," as they are called by the fishermen, formed by the Gorgonia, one of the coral order.

On the sands off Whitsand Bay are trawled young flatfishes and a variety of shell-fish or molluscs, including small Cephalopods, allied to the cuttle-fish. On the shores of the bay the rocks which project above the sand are covered with masses of agglomerated sand grains formed by the tubes of a small worm (*Sabellaria*). These masses are in many cases yards in diameter, and a foot thick, and remind one almost of coral reefs, though the mode of formation is quite different.

The food-fishes have been studied by means of excursions on fishing boats, and by the help of the fishermen. The eggs of nearly all our food-fishes except the herring are buoyant and transparent when they are ripe. The immature
eggs in the ovary are opaque, white grains, but by the time
they are shed they become as transparent as glass. These
ova as soon as they are shed are fertilized by milt in the
water supplied by male fish in the neighbourhood, and then
they rise towards the surface of the sea; in calm weather
only do they actually reach the surface, because being but
slightly lighter than the water agitation causes them to be
uniformly distributed throughout the depth affected by the
wave-motion. A fine net made of muslin, or similar mate-
rial, drawn gently through the water at almost any season of
the year, collects numbers of these buoyant eggs, which can
be taken ashore and examined with the microscope. But as
these eggs are of many different kinds, and show constant
differences of structure, it is necessary to know what species
of fish each kind belongs to. One way of doing this is to
trace the development of the young fish after it is hatched,
until it reaches an age at which it can be recognised as a
whiting, sole, turbot, or other particular species. But this,
although easy enough to propose, is exceedingly difficult in
practice, and when followed usually leads to serious errors.
There is a more certain method, and that is to take the fish
when its ova are ripe, and by gentle pressure expel these
into a bottle of sea-water, then to add some milt from a
male of the same species, and keep the ova so obtained in
healthy conditions while they develop. This process of
obtaining ova is called artificial fertilization.

A number of species have been subjected by various
observers in different places to this process, and the structure
of the egg and young stages have been described in published
papers. Thus I myself published drawings and descriptions
of the ova of the cod, haddock, whiting, gurnard, smelt
(Osmerus eperlanus), plaice, common flounder, dab, and pole
flounder. But many species remained to be examined.

The first ova which I artificially fertilized after arriving at
Plymouth were those of Capros aper, a small fish with very
spiny fins, known sometimes as the bear-fish, but always
spoken of by Plymouth trawlers as the cuckoo. This fish
is taken in the trawl occasionally at all seasons of the year,
but in the latter part of summer, especially in August and
September, it is taken in the neighbourhood of the Eddystone in hundreds and thousands, so that it becomes a pest to the fishermen, as there is no market for it.

No attempt was made to follow out the development of these ova, because suitable arrangements were not available. At that time the building was in a very early stage of construction; the stairs had not yet been made, and the plasterers were everywhere at work, so that it was impossible for me to take possession of any room in which to carry on my work. I was occupying a small room in the fishermen's quarter, which I had hired a day or two after my arrival in Plymouth. This room was a short distance from the fish quay, usually known as the Barbican, and this position was its sole recommendation. It had a single window, from which the sky was invisible, as it looked into a narrow court only a few yards wide, on the other side of which were house walls pierced by other small windows.

In this room I kept alive ova of the cuckoo-fish, which I fertilized on board a trawler on August 15th, for three days, and made a few drawings of the successive stages of development. These ova belong to a type which is common to a large number of species of sea-fish. They are spherical, with a transparent, structureless yolk, in which is a single globule of oily matter. The egg-envelope is separated by only a small space from the egg itself.

At the beginning of November the Laboratory was sufficiently advanced that a room in the west wing could be so far finished that I could use it as a temporary work-room, and accordingly it was supplied with some trestle tables, and I occupied it from that time until a week before the formal opening of the building.

In November, December, and January some attention was paid to the herring. At that season there is a regular herring fishery at Plymouth, which consists of two branches, a fishery inside the Sound, which is carried on by open rowing boats working only two or three drift-nets each, and a fishery outside along the coast as far as Bolt Head, carried on by larger boats working complete "fleets" of nets. On clear, quiet, dark nights, when the herring are plentiful,
there are a very large number of small boats fishing in the Sound after sunset, and as each carries a somewhat brilliant light to prevent vessels under weigh running her down, the sight from the Hoe is very pretty, and reminds one of a Venetian fête. The herring taken are all full, i.e. in mature spawning condition, till towards the end of the season, when large numbers of spent fish are taken. In Cawsand Bay, on the west side of the Sound, moored nets are used to catch herring; these are of the same kind as drift nets, but are fixed by means of anchors at each end, instead of being allowed to drift with the tide.

As both full and spent herring are taken inside the Sound, it is natural to conclude that the spawn is actually deposited within that area. It is well known that herring spawn is adhesive, and attaches itself to stones and weed at the bottom of the water. Systematic dredging was therefore carried on all over the Sound in January with a view of finding some of the spawn, and so ascertaining at which spots it was deposited. But the search was entirely unsuccessful, circumstances did not allow of similar researches being carried on outside the Sound, and the question of the exact locality where the herring deposit their spawn in the neighbourhood of Plymouth remains to be answered in future seasons. Herring ova have so often been studied and described, that no special study of them was made, and no arrangements were available for hatching any. Young herring were frequently taken in the tow-nets in the months of February and March.

The ova of the common sole had, at the beginning of the present year, never been examined or described. It had been thought by some that male soles were very rarely caught, but on dissection of specimens procured from the fish-quay I found that this was not correct, and in subsequent work on the species I never had difficulty in procuring specimens of the male sex. After the beginning of February I went out frequently in trawlers on their ordinary trips for the express purpose of examining soles in a sexually ripe condition, and artificially fertilizing samples of the ova. On February 6th, I made my first examination of living soles about ten miles
west by south of the Eddystone. There were not many in
the trawl, and although I got a few ripe ova, I could not
press any milt from any of the fish. Accordingly, when I
got ashore again I found the ova were unfertilized. Nearly
all the trawlers after this time went to fish off the Wolf
Rock, about thirty to forty miles west of the Lizard, remain-
ing at sea a week on each trip. In order to pursue the
study of soles' ova, I went several times with one of them
in March, April, and May to this fishing ground, where soles
are very much more abundant than off Plymouth. But
although I frequently obtained ripe ova in considerable
numbers, I could never press out ripe milt from a male. I
therefore cut out the testes and cut them in pieces and
placed them in the water with the ova, hoping that fertili-
ization could be effected by this method. The expedient suc-
cceeded, but only to a slight degree, as only about a dozen
ova were fertilized on each occasion out of several hundreds.
These few were sufficient to show the normal character of
the fertilized ova. The ovum of the sole was thus found to
have several marked peculiarities, which enable it to be
recognised with certainty when taken in the tow-net. It
is of considerable size, and spherical in shape; instead of
having a single oil globule it has a large number of very
minute size, which are irregularly distributed in groups of
different sizes over the surface of the ovum. The vitellus is
homogeneous in the centre, but when the embryo is formed
has a superficial layer of separate vitelline masses.

The ova of the merry-sole, Pleuronectes microcephalus,
were obtained with great ease in large numbers and ferti-
ilized without difficulty. Numbers of these were hatched,
although they were kept in small bottles, in which the water
was changed only once a day. If it were worth while to
propagate so abundant and cheap a form, it would be a
simple matter to hatch millions of young merry-soles from
the eggs of the parent fish caught for the market.

The eggs of two species of gurnard, Trigla gurnardus and
Trigla cuculus were also fertilized, and the young fish hatched;
but these were not so hardy as those of the merry-sole.

The ova of the mackerel are at present under observation.
They can be obtained and fertilized with the greatest ease, as in June and July a large proportion of every catch are ripe fish of both sexes. After explaining to Mr. F. Johns, the skipper of a mackerel boat, the necessary operations, and promising him payment for his trouble, I found he could bring me mackerel ova properly fertilized and in good condition whenever he shot his nets. The mackerel is another species which could be artificially propagated to any desired extent. The eggs of the mackerel are closely similar to those of the cuckoo-fish; they have a single oil globule and an otherwise homogeneous yolk; they are buoyant and transparent.

Pilchard ova have not yet been obtained. In the case of mackerel and herring the fishing season and the spawning season coincide; in the case of the pilchard there is no fishery in the spawning season. The pilchard leaves the shore when spawning, and at that time, June and July, no shoals are met with. But spawning specimens are caught occasionally in small numbers in the mackerel nets, and it is from some so taken that I expect before long to get some fertilized ova. Now that the supply of salt water in the Laboratory is at last available, the examination and the hatching of the eggs of fish becomes comparatively easy, and it may reasonably be hoped that these preliminary results will be rapidly extended.
The St. Andrews Marine Laboratory (under the Fishery Board for Scotland).

By Prof. McIntosh, F.R.S.

Preliminary Remarks.

St. Andrews as a site for the study of marine animals has a reputation probably at least as ancient as the foundation of its University (the oldest Scottish, viz. 1411), for amongst the early records of the latter allusion is made to the marvels of the sea and its inhabitants as a means for improving the minds of its students. For a long time, however, no special lectures on natural history were given. The scientific advantages of the situation, indeed, were first prominently recognised by Edward Forbes and the brothers Goodsir. Thus the former, for instance, picked up, for the first time in Britain *Echiurus*, on the sands after a storm; and the two Goodsirs, as students, were familiar with its marine rarities, and afterwards read many zoological papers at its Literary and Philosophical Society. Prof. John Reid, the physiologist, studied the development of zoophytes and mollusks in its rock pools, and Prof. G. E. Day, his successor in the Chair of Anatomy and Physiology, and Miss Otté, lost no opportunity of interesting the students in marine zoology. Besides, the occupants of the Chair of Natural History from its foundation in 1753, and including Professors Vilant, Dick, Forrest, Cleghorn, Adamson, Ferrie, Macdonald, and Nicholson, as well as Dr. McVicar, the University lecturer, all more or less drew from the rich marine resources in their proximity.

It is long since efforts were made in the direction of founding a biological station at St. Andrews, and by one at least this has been steadily kept in view since student-days in 1853—57. On an opportunity presenting itself in the beginning of 1875 the subject was again advocated, and
it was only the accident of an election that prevented the foundation of the Marine Laboratory that year. At this time Dr. Dohrn, of the Naples Zoological Station, cordially endorsed the proposal, and alluded to the University as, by “its position near the sea, inviting more than any other to the now all important study of marine zoology.” Such a station, moreover, would be extremely useful “in educating young naturalists to take vigorously in hand the anatomy, histology, and embryology of marine animals, since there is scarcely a more appropriate place in Scotland for this study. I know it well enough,” he added, “having passed more than one holiday near the venerable University, and hope to do so once more this summer.”

In 1882 the practical zoological laboratory in the University was used as a marine laboratory, and efforts were made to obtain part, viz. £300, of the surplus (about £1800) from the Edinburgh Fisheries Exhibition for the erection of a special marine laboratory. The whole of the surplus, however, was required for the Granton Marine Laboratory.

Efforts, nevertheless, were continued, and the experiments in St. Andrews Bay and elsewhere along the eastern shores in connection with H.M. Trawling Commission (1884-85) gave additional impetus to the movement. At last the Government, mainly at the instigation of the late Earl of Dalhousie, early in 1884, granted a sum to be devoted to this purpose through the Fishery Board for Scotland, and an immediate commencement was made by taking a lease of a wooden building between the harbour and the beach and fitting it with tanks, pipes, gas-engine, and pump, while the services of a trained fisherman were also obtained.* Even before the fittings were in order many observations in connection with the trawling work were carried out by aid of a temporary apparatus formerly used in salmon-hatching near the Tay. These operations are embodied in the Trawling Report.† Amongst the rarer forms procured for the Labora-

* A brief account of the structure of the Laboratory is given in the ‘Third Annual Report of the Fishery Board for Scotland,’ 1885.
† ‘Report of the Commissioners, Trawl, Net, and Beam-Trawl Fishing, 1885,’ Lord Dalhousie, chairman.
tory this year (1884) was a new fish to British waters, viz. *Lumpenus lampetiformis*, Walb.,* a form well known in Norwegian waters, several specimens of which, all less in size, have since been obtained by trawlers in the Moray Frith. The somewhat scarce *Cottus quadricornis* was also obtained and many rare invertebrates, e.g. *Corymorpha* amongst the Zoophytes; the anemones *Stomphia* and *Harmathia*; *Hippasterias* amongst Echinoderms; *Pleurophyllidia* and the egg-capsules of *Fusus norvegicus*. The advantages afforded by the Laboratory were also utilized this year (1884) by Professors Ray Lankester and Hubrecht (of Utrecht), and Mr., now Prof., A. G. Bourne. The first-mentioned worked upon a unique Gephyrean (*Golfingia McIntoshii*),* Prof. Hubrecht devoted himself to the Nemerteans, while Mr. Bourne examined the development of the Mollusca. Mr. (now Rev. R.) Gillespie, Demonstrator of Zoology at the University, also materially aided in carrying out the work in connection with the Royal Commission on Trawling. There can be no question that the latter observations were greatly facilitated by the conveniences of the Laboratory; for the boats bringing ova of the food-fishes procured at sea, and other living products of the expeditions, could approach within a few yards of the Laboratory—where further study of the living specimens could take place.

This year also the reproductive organs of the common mussel were examined from January to July, and an abstract published† early next year along with some observations on the British species of *Oyanea*.‡

In the following year (1885) the observations on the reproduction and development of fishes received a fresh impetus from the labours of Mr. Edward E. Prince,‖ who, under Prof. McIntosh, worked at the subject till September.¶

¶ ‘Annals of Nat. Hist.,’ June, 1885, 1 plate.
The food-fishes received the first attention, such as the cod, haddock, whiting, ling, eel, flounder, dab, gurnard, herring, and others; while the lump-sucker, viviparous blenny, catfish, short-spined Cottus, armed bull-head, bimaculated sucker, Montagu's sucker, dragonet, rockling, glutinous hag, sand-eel, Gastrosteus spinacia, &c., were also examined. The pelagic ova of the majority of the food-fishes were made the subject of special investigation. The multiple tumours of plaice and the flounder also received notice. Some experiments were further made on phosphorescence and the results embodied in the President's address to the Biological Section of the British Association.* Additional observations on the development of the mussel were carried out this year by Mr. John Wilson.†

Other published observations included remarks on a new British Staurocephalus, peculiar processes formed by Cerapus on Tubularia, on certain ova, probably of a Cephalopod, according to Mr. Hoyle, from the Forth, and on the milk of the porpoise (chemically examined by Prof. Purdie).

Prof. Cleland, of Glasgow, lastly, made some anatomical researches on the tail of Myxine.‡

The capture of a very fine tuna towards the end of the year by a Granton trawler, enabled some observations to be made on a fresh example of this rare fish, about nine feet in length,§ and the skeleton will probably form the subject of a subsequent communication.

The researches on the development and life-histories of the food-fishes were continued by Prof. McIntosh and Mr. Ed. E. Prince in 1886, in the beginning of which year a noteworthy capture of a huge mass of the large demersal eggs of the catfish (Anarrhichas lupus) was made in St. Andrews Bay. The embryos were far advanced in these eggs, but a tolerably complete history of this form was drawn up by aid of these specimens, and they were kept in

* 'Report, Brit. Assoc.,' 1885.
‡ 'Report Brit. Assoc.,' 1885.
§ 'Ann. Nat. Hist.,' April, 1886, and June, 1886.
the Laboratory till the commencement of the post-larval stage. The pelagic eggs of the ling were procured in considerable numbers at sea by aid of a liner, who fertilized the ova, and transmitted them to the Laboratory. Further remarks were also made on the tunny, on the affinities of the poor or power cod, and the bib, on the weevres, on the parental instincts of Cyclopterus, on the very young cod and other food-fishes, on the capture of food-fishes by the liners, on the injuries to baited hooks and to fishes on the lines, on shrimp-trawling and sprat-fishing, on the ova of a number of other fishes, on the effect of storms on the marine Fauna, and on certain invertebrates, including forms used as bait.* Remarks on an abnormal Hydromedusa (Thaumantias) devoid of mouth were also communicated to the British Association. Some experiments on the preservation of mussels for bait were likewise carried out at the Laboratory, proving that by the aid of a solution of such a substance as boro-glyceride they can be kept for a period of several weeks in winter (after they have been put on the lines) and for a shorter period in summer. Moreover, it was found that the use of such a preservative does not seem to impair the usefulness of the bait on the fishing grounds.

This year Mr. Wilson further extended his observations on the development of the mussel (Mytilus edulis), while Dr. Scharff, now of the Museum of the Royal College of Science, Dublin, carried out an interesting inquiry into the ovarian ova of Teleosteans. Mr. E. E. Prince further published papers on the early stages in the development of the food-fishes, on oleaginous spheres in the yolk of Teleostean ova, and on the development of the pectoral fins in Teleosteans.

The use of a huge midwater net made at the Laboratory greatly facilitated the study of the life-histories of the food-fishes and other forms.

In 1887 the researches on the development of Teleosteans were further extended, especially in regard to post-larval stages, the use of the large mid-water net on board the Fishery steamer “Garland” and also in the Yawl “Dal-

housie” being attended with noteworthy results. Besides aiding Prof. McIntosh with this work, Mr. E. E. Prince communicated further researches “On the Teleostean Pectoral Fin” to the British Association, “On the Development of the Ovary and Oviduct in Certain Osseous Fishes,” “On the Luminous Organs of the Pearl-sides,” and “On the Structure of Tomopteris.” Other papers from the Laboratory (by Prof. McIntosh) were, “On the Pelagic Fauna of our Shores in its Relation to the Nourishment of the Young Fishes,”* “On the Occurrence of Peculiar Gellatinous Bodies in Profusion,” “On Syncoryne decipiens,” “On the Commensalistic Habits of the Larval Forms of Peachia,” “On the Presence of Swarms of Appendicularias,” and “On the Occurrence of Clione borealis in St. Andrews Bay.”† Further remarks were given on post-larval fishes, young gunnel, Liparis and Labrus.‡ A considerable paper, with three plates, was written by Mr. E. E. Prince on his “Researches on the Development and Morphology of the Limbs of Teleosts.” This will be published soon in America.§

Prof. Burdon Sanderson and Mr. Gotch, of Oxford, for some time in summer carried out a series of interesting physiological researches on the electrical organs of the skate (chiefly the thornback and grey skate), and as the fishes had to be not only living but perfectly fresh, the advantages of the Laboratory in this respect were conspicuous. Mr. H. E. Durham, B.A., of Cambridge, again, conducted various minute investigations into the life-history and functions of the perivisceral corpuscles of the starfishes (Asterias, &c). Prof. D. J. Cunningham, of Trinity College, Dublin, commenced an inquiry into the vertebral column of young Teleosteans, while Prof. Purser, of the same University, studied the physiology of various invertebrates. Lastly, Dr. Gunn, of Moorfields Ophthalmic Hospital, London, began in February an inquiry at the Laboratory into the

† Ibid., August, 1887.
‡ Ibid., Oct., 1887.
§ Elizabeth Thompson Fund.
minute structure of the Teleostean eye, from the early embryo onwards. He is still busy with this research.

Besides the marine researches carried out since the opening of the Marine Laboratory, it is necessary to point out that many previous zoological inquiries had been made at St. Andrews. These are indicated in the 'Marine Invertebrates and Fishes of St. Andrews,' in the 'British Annelids,' Part I (Ray Society), and other publications; and that numerous specimens have been freely sent to scientific workers at home and abroad, as well as to the British Museum and other collections.

While the main purpose of the establishment is the increase in our knowledge of the food-fishes, edible invertebrates, and all that relates to them, it is self-evident that a knowledge of the intricate environment of these cannot be satisfactorily made without a series of collateral researches into various departments of marine zoology, and, therefore, the work has been carried out on a broad basis. The practicability of increasing the supply of marine fishes of value, e.g., the sole, in places where it is only rarely met with, has never been lost sight of; and though the Fishery Board have not yet granted the necessary aid of a steamer, it is to be hoped that this obstacle will soon be overcome. The closure of the bay, as insisted on in the 'Trawling Report,' would give most favorable opportunities for such experiments.

A large series of original coloured drawings, of great beauty (by the late Mrs. Günther), and a mass of MS. in connection with the monograph on the 'British Annelids,' for the Ray Society, are in hand. The collection of specimens (in spirit and microscopic) in connection with this work is also very extensive.

It may, in conclusion, be mentioned that the life-histories of the important food-fishes, such as the cod, haddock, whiting, ling, green-cod, gurnard, bib, poor cod, various flat fishes (Pluronectidae), catfish, and others, have been more or less completely followed from the egg onward. This is more difficult than it at first sight appears, for it is only by prolonged use of such an apparatus as the large midwater net—inshore and in deep water—that reliable data
can be obtained. The early post-larval stages of several of the important round fishes so closely resemble each other that even now there is a margin for doubt. It is only when distinctive structural features or characteristic tints make their appearance that certainty is obtainable.

The proximity of the important mussel-beds at the mouth of the Eden has afforded opportunities for investigating the development and life-history of this species, and also for carrying out experiments in mussel cultivation. These will be embodied in a report on the subject for the managers (Town Council of St. Andrew's).

The great advantages of easy access to the University Museum and University Library have been from the first conspicuous, and a source of satisfaction and benefit to the workers. It would, indeed, be difficult to overestimate the privileges of the Marine Laboratory in these respects.

List of papers published since the opening of the St. Andrews Marine Laboratory up to and including 1887.

1. Report I to the Fishery Board for Scotland, 1884.
2. Report on Trawling at the request of Lord Dalhousie, Chairman of the Trawling Commission, 1884-85.
3. Report II to the Fishery Board for Scotland, 1885. (1 Plate.)
4. Report III to the Fishery Board for Scotland up to 31st December, 1885.
5. Report IV to the Fishery Board for Scotland (year 1886), 1887.

The foregoing by Prof. McIntosh.

10. The Phosphorescence of Marine Animals, the Presidential Address to the Biological Section of the British Association, Sept. 1885.—Ibid.

12. Note on the Chemical Composition of the Milk of the Porpoise.—

25. Note on a Peculiar Medusa (Thamnantias) from St. Andrews Bay.

—PROF. McINTOSH, Ibid., p. 710.

35. On some Rare and Remarkable Forms at St. Andrews Marine Laboratory.—PROF. McINTOSH, Meeting Brit. Assoc., 1887.

Not yet Published.

44. On the Development of the Food-Fishes and Others, with 31 Plates, 4to.—PROF. McINTOSH and E. E. PRINCE, St. Andrews Marine Laboratory. Ready for communication to the R. S. E.

A Summary of the Work done by the Liverpool Marine Biology Committee during 1885-87.

By Professor W. A. Herdman, D.Sc., F.L.S.

The Liverpool Marine Biology Committee was formed in March, 1885, for the purpose of investigating thoroughly the Fauna and Flora of Liverpool Bay and the neighbouring parts of the Irish Sea. The aim of the Committee is not merely to draw up an accurate list of the species found in this locality, but also to observe and record the relative numbers, the size, the colours, and the condition generally of the specimens, the exact localities in which they are found, the other species of animals and plants associated with them, and their mutual relations as food, enemies, or competitors. In this way it is hoped that a mass of observations will be accumulated which may be of use in determining the geographical distribution of various forms, the nature of the conditions which influence species, and the relations existing between the different plants and animals. It was felt at the outset that this work was exactly that department of biological investigation which could be best carried out by an organised body of workers who would subdivide the area to be investigated, and the groups of animals and plants to be worked up between them, and would carry on systematic observations year after year, sending in periodic reports upon their work. The value, in fact the absolute necessity, of this organisation, division of labour, and systematic arrangement, for the successful accomplishment of the objects in view, has been felt all along by the members of the Committee and those naturalists who have worked with them; and the results attained so far have, I think, fully justified their belief in the benefit to be derived from scientific organisation.

The operations of the Committee have been carried on
now for three seasons, and the practical part of the work has consisted of dredging expeditions, lasting in some cases for several days at a time, tow-netting expeditions in small boats, and shore expeditions for the investigation of the littoral Fauna. A considerable extent of the large quadrangular area* of the Irish Sea extending around Liverpool Bay, and bounded by the Isle of Man and the coasts of Anglesey, North Wales, Cheshire, and Lancashire has now been explored, large collections have been made, and a first volume of reports† has been published consisting of twenty-nine articles written by twenty-one biologists and illustrated by ten plates and two maps of the district. These reports record the occurrence of 913 species,‡ of which at least 235 had not been found previously in this neighbourhood. Sixteen of these species have not been previously discovered in British seas, and at least seven species and three varieties are new to science, so that a considerable measure of success has already attended the efforts of the Committee. It is evident, however, that such work must be a matter of time, and that every additional year's records will add to the value of any conclusions that may be drawn in regard to the Fauna under consideration.

The records already made have attracted attention to several general questions which are now being investigated.

One of these is the detection of changes in the local Fauna which have taken place, or may take place in the future. Some of the rarer Nudibranchs, such as *Embletonia pallida* and *Antiopa hyalina*, formerly found on the shores of Hilbre Island at the mouth of the Dee, have probably disappeared entirely from that locality. On the other hand, the rare Hydroid *Garveia nutans* seems to have migrated lately into Liverpool Bay, and to be spreading there with rapidity. It was first noticed in this neighbourhood on May 9th, 1885, while dredging in Hilbre Swash, and since then has been found at Hilbre Island, Colwyn Bay, off Puffin Island, and

* Generally called for short in the Reports, the L. M. B. C. district.
† 'First Report upon the Fauna of Liverpool Bay,' &c., Longmans, London, 1886.
‡ Since increased to over a thousand species.
in various other parts of the district. The Hydroid Fauna had been so carefully investigated for many years previous to 1885 by excellent observers that this conspicuous species could scarcely have escaped observation if it had been present in the neighbourhood. It is interesting to find that Professor Haddon has recorded Garveia nutans as having made its appearance in Dublin Bay for the first time also in 1885.

The distribution of the various species of the littoral Fauna, according to the distance above low-water mark, is of importance on account of the influence which the position on the shore must have upon the habits and mode of life of the animals. The Polyzoon Flustrella hispida has been found at Hilbre Island, living and healthy, about one yard below high-water mark, in such a position that it could only have an opportunity of being covered by the sea and of taking in food during two short periods in each twenty-four hours, and must be exposed to the air during about five-sixths of its existence.

During the second season (1886) it became obvious to the Committee that in order to advance further in their work, so as to be able to make more minute explorations, and to carry on detailed investigations into the habits and life-histories of the animals, it would be necessary to establish a small observing station or marine laboratory at some suitable spot in the district. After some preliminary inquiries they decided upon Puffin Island, off the north entrance to the Menai Straits, and were fortunately able to obtain from Sir Richard Bulkeley the use of the old Dock Board Signalling Station, which stands upon the seaward or north-east point of the island. This building has now been converted into a simple but efficient Biological Station* capable of accommodating about half-a-dozen workers at a time. The shores of Puffin Island are rocky and support an abundant Fauna, and good dredging ground is present in the immediate vicinity. The Puffin Island Station was established early in the summer of 1887, and has been open continuously since

* For a description, with figures, see 'Nature,' July 21st, 1887.
then*. It has already shown itself to be of great value to the Committee by enabling them to live for a few days or weeks at a time in the centre of the richest Fauna of the district, and by giving them facilities for undertaking work which could not otherwise have been done. Moreover, the keeper of the station is constantly employed in collecting animals, and in dredging when possible; and he has been able to provide the Committee with a continuous series of surface tow-nettings extending throughout the autumn and winter, and taken in some cases during the night. These are being worked up by Mr. I. C. Thompson, F.L.S., and have already yielded several points of interest; for example, the parasitic Copepod *Trebius caudatus* has only been taken in the tow-net during the night, and appears to be then free-swimming. Another interesting parasitic Copepod, *Lichomolgus sabellae*, new species, was first found last summer near Puffin Island attached to the branchial plumes of the Annelid *Sabella penicillus*.

Some parts of the L. M. B. C. district are particularly good localities for Nudibranchiate Mollusca. Forty-two species were recorded in the report published in 1886, and since then members of the Committee have found several additional species, including *Fiona nobilis*. The rocks at Hilbre Island and Puffin Island are especially good collecting ground, but the assemblage of Nudibranchs on the shore is very different at different times of the year. There is no doubt, from the observations of the Committee, that the Nudibranchs migrate in large numbers at certain times into the littoral zone, and then after a time disappear again into the deep water. They seem to come on shore primarily for spawning purposes, but may be influenced by other circumstances also.

In the other groups the chief results obtained are as follows:

In the Protozoa, the Foraminifera alone have been fully worked up. One hundred and sixty-two species have been found, including three new to science, viz. *Placopsilina*

* For a summary of the work done at the station during the first year, see "Proc. Liverpool Biol. Soc.," vol. ii, p. 38, 1888.
Kingsleyi (Siddall), Reophax moniliforme (Siddall), and Miliolina spiculifera (Siddall). Forty species of Sponges are recorded, including two new forms, Aphroceras ramosa (Carter), and Sycandra aspera (Gibson). A very large number of Hydromedusæ have been found and examined. The most important form is Garveia nutans (Wright), referred to above. Amongst the Actinozoa is a new variety of Cylista undata (Müller), and Sarcodictyon ctenata (Forbes), which has been found living and kept under observation for some time. The Echinoderma and the Vermes, although numerous, have as yet yielded nothing remarkable. Over a hundred species of Polyzoa have now been recorded by the Committee, including at least one new species, Ascypodaria nodosa (Lomas), allied to Pedicellina. The Copepoda, as a result of the regular tow-nettings taken round Puffin Island by the keeper of the Biological Station, and sent to Mr. Thompson for examination, have been very numerous, and have included a large number of rare and interesting forms of which some are new to British seas, and the following have been described as new species:

Cyclops pujfini (Thompson), Lichomolgus sabellae (Thomps.), Cymbasoma herdmnani (Thomps.), and several others still unpublished. Amongst the higher Crustacea Mr. A. O. Walker, F.L.S., has recorded some rare northern forms of Amphipoda, four species of Schizopoda, two of Cumacea, and a large number of Decapoda. The Pycnogonida collected contain several rare forms, and one, still undescribed, which is probably new to science. The Nudibranchiata have been already referred to above; the lists of other Mollusca present nothing of special importance. The report upon the Tunicata deals with forty-seven species of which at least two (Morchellioides alderi, Herdm., and Polycarpa monensis, Herdm.) are new to science, while seven have not been previously recorded from British seas. Nineteen of the species are simple Ascidians, twenty-seven are compound, and the remaining one is the pelagic Oikopleura flabellum.

Several preliminary lists of the Algae of the district have been drawn up, and the whole group is now in the hands of Mr. R. J. Harvey Gibson, Lecturer on Botany in University
College, Liverpool, who is at present systematically examining the seaweeds growing on the shores of Puffin Island. The Fishes have not yet been systematically worked up, and the Committee have not undertaken any economic investigations, their object being in the first place to make a complete examination of the L. M. B. C. district for purely scientific purposes.

In conclusion, I would emphasise my opinion that such biological work as the investigation of the Fauna and Flora and the physical conditions of a district can be carried out best by a small body of naturalists, such as the Liverpool Marine Biology Committee, subdividing the work, devoting themselves to their special groups, but working together as much as possible so as to keep thoroughly in touch with their fellow-workers, and to understand the scientific bearing of their results and observations. Such bodies of naturalists should be easily organised in all populous maritime districts where there are teachers of Biology and Scientific Natural History Societies. There is abundance of work for them to do on almost every part of our coast line. Liverpool Bay has not a specially rich Fauna. In fact it is distinctly poorer than some other districts, such as the estuary of the Clyde, and yet the Committee here feel that they have little more than commenced their work. A laboratory, however small, placed close to the scene of operations, is a most important addition in marine investigations; and it is not too much to hope that each of our Universities, Colleges, and more important scientific societies situated within reach of the sea will in course of time establish its own Marine Station as a necessary adjunct to its Biological Department.
The Scottish Marine Station and its Work.

By William E. Hoyle, M.A.

The "Scottish Marine Station for Scientific Research" has now been at work for a little over four years, so that the present seems a fair opportunity to inquire what has been accomplished by its means. The object of the present article is to supply this information, and to show to what extent the results obtained have justified the expectations of its promoters.

It may be well at the outset to lay before the reader in a few words the circumstances which led to the establishment of this institution, as well as the means which have been at its disposal. The nucleus of its pecuniary resources was a sum of £1400, the surplus from the Edinburgh Fisheries Exhibition of 1882, which was handed over to the Scottish Meteorological Society for the purpose of carrying on investigations which they had already commenced into the herring and other fisheries, "with power to establish a zoological station and also to endeavour to get Government to assist them in the work." The application to Government for assistance was unsuccessful. Dr. John Murray, of the "Challenger" expedition, however, offered to found a zoological station, and to maintain it for at least three years, provided the Council of the Society would give him an annual grant from the fund of £250 for these years. This offer was accepted, and on April 14th, 1884, the Institution was inaugurated, and systematic work commenced. At the outset Dr. Murray received assistance from friends and others interested in the work, and has also received grants from the British Association, and the Government Grant Committee.

The station had its head-quarters in the old quarry at Granton, about two miles and a half distant from Leith,
which had been flooded in 1855 owing to its outer wall giving way. It has an area of seven acres, and there is a narrow opening leading to the sea, through which a vessel drawing six feet of water can be navigated at about high water. The late Duke of Buccleuch granted Dr. John Murray a fifteen years lease of the quarry at the almost nominal rent of 15s. per annum.

Fig 1.—Plan of Granton Quarry, the original site of the Scottish Marine Station. From a survey by Mr. H. J. Gifford. The figures represent the depth in feet.

Two large vessels, the "Ark" and the "Medusa," with several rowing boats, made up the outfit, and still constitute a most important part of the Station's appliances. The former is a floating laboratory, and was moored in the
Fig. 2.—View of the Quarry with the "Ark" afloat, looking west. From a photograph by Mr. H. J. Gifford.
Fig. 3.—Plan of the "Ark," showing the internal arrangements. 1, Coal bunker; 2, lockers; 3, stoves; 4, keeper's berth; 5, wooden tables; 5', 7, 8, tables for aquaria; 6, lockers under flooring; 9, fore-cabin.
centre of the quarry. She consists of an iron hull, sixty-four feet long by thirteen feet broad, formerly used as a lighter; about the centre of her length a raised cabin was built, leaving a free space at either end, and thus imparting to the whole a striking resemblance to the craft of the toy-shops after which she is named. The cabin is divided into two compartments, one of which is furnished with arrangements for physical work, and with appliances for keeping specimens alive in vessels through which a constant stream is passed, a wind-pump on the roof raising the water for this purpose. The other room contained tables for microscopic work, shelves for reagents, and the usual paraphernalia of a biological laboratory. The quarry itself was made to serve as a kind of natural aquarium by enclosing specimens of various kinds in submerged cages, which were attached either to the "Ark" itself or to suitable floats in various places.

The "Medusa," the steam yacht used for sounding and dredging, is fifty-one feet in length, twelve feet in beam, and a little over thirty tons burthen, yacht measurement. There is a single mast in the fore part of the vessel, and from it there projects forwards a derrick with blocks through which pass the sounding or dredging lines. Each of these has its own special drum, placed on an axle abaft the mast, and actuated by a small steam engine. In the after part of the vessel is a cabin, capable of holding several persons, in which it is possible to examine the captured material with the microscope.

The sounding line is of hemp, this being regarded as safer where instruments are attached, while the depths are so small that but little saving in time would be effected by the use of wire. The dredging rope is of phosphor bronze, nearly half an inch in diameter, and 200 fathoms of it are coiled round the drum.

Since the station was inaugurated several changes in its arrangements have taken place. A spacious laboratory with aquaria in the basement has been erected on shore at Granton within a large enclosure, and the "Ark" has been removed to Millport in the Firth of Clyde, where it serves as a kind
Fig. 4.—The "Medusa." Scale, one inch to the foot.
of head-quarters for work on the west coast. The "Medusa" has for some time back been employed almost exclusively on the west coast; her build is rather light for the heavy swells often experienced in the Firth of Forth, and her place on the east coast has been supplied by the hiring of tugs, and by expeditions in steam-trawlers and herring-boats as occasion requires.

The institution has from the commencement been under the direction of Dr. John Murray, and at the present moment the staff consists of the following members:—The scientific work of the laboratory at Granton is mainly under the direction of Mr. J. Arthur Thomson, M.A., the general charge of the premises being undertaken by the custodian Mr. W. Bell, who resides on them. On the west coast Mr. David Robertson, F.L.S., whose researches in Scottish zoology are so well known, has been good enough to exercise supervision over the "Ark" since its removal to Millport; the "Medusa" has been under the care of Mr. Alexander Turbyne, to whose practical skill and energy much of the success of the work in this district is due. He is assisted by an engineer, Mr. W. Harrison, and a seaman.

Having thus obtained an idea of the resources which were at the command of this enterprise, let us pass in review as completely as is practicable within the limits of a single article, the results which have been accomplished by its means. These will be discussed under two heads, physical and biological, and we shall commence with the former.

Physical Investigations.

When the actual work of the station commenced, its first and most obvious duty was to explore its own domains, and thus Dr. Hugh Robert Mill, who presided over this department, was led to an investigation of the periodic variations of temperature and other phenomena in the Granton quarry, in which the "Ark" was afloat. As before stated, this has an area of about seven acres, and the tidal entrance on the west side is so situated that no water can enter till about half tide; it then runs in very rapidly for some three
quarters of an hour, when the speed diminishes, and near high water it is the same as that of the rising tide along the shore. The ebb is gradual at first, but when the entrance has been narrowed by the exposure of its banks, it is accelerated for about an hour and a half. Then it runs out very slowly, its exit continuing until the flow recommences. For some five hours, however, the level of the water inside is practically unchanged. The depth of water in the quarry is from five to eight fathoms at low water. Temperatures were taken of the air and of the water, both at the surface and the bottom, at as short intervals as circumstances allowed, in some cases every half hour for thirty-six hours consecutively. The results of these observations are thus summarised by Dr. Mill:

"(1) During daylight the air was always at a higher temperature than the water, but after sunset the water was warmer than the air; and taking an average for the whole period, the mean temperature of the air was the higher.

"(2) The surface temperature followed that of the air, and was little affected by tidal changes.

"(3) The bottom temperature followed that of the air, but the crest of the heat wave was retarded by several hours, and the curve was profoundly modified by the tides.

"(4) The temperature was higher at the surface than at the bottom during the day; but, as a rule, it was higher at the bottom than at the surface by night.

"(5) When the tide flowed in the early morning it exercised a cooling effect on the bottom thermometers, but when it flowed at other times it produced a warming effect."

This preliminary piece of work naturally led to an inquiry into the physical conditions of the Firth of Forth, with reference, in the first place, to the temperature and salinity of the water at various times and states of the tide. For the former purpose Negretti and Zambra’s deep-sea thermometer, which registers by inverting, has been used. It is shown in Fig. 5. The neck of the bulb has a contraction at A, beyond which is a reservoir, B, whilst a small receptacle, C, is provided at the other end of the tube. When the instrument is placed bulb downwards the mercury contracts
and expands in the ordinary way, but as it merely enters the reservoir, B, no reading is possible; when, however, it is inverted the mercury breaks off at A, flows down the tube,

FIG. 5.

FIG. 6.

FIG. 5.—Negretti and Zambra’s improved Standard Deep-sea Thermometer; and removed from within its protecting tube. A, Constriction above the bulb; B, reservoir; C, dilatation at the end of the stem. (From the “Challenger” Narrative.)

FIG. 6.—The Scottish Deep-sea Thermometer Frame. (From the ‘Encyclopædia Britannica.’)
filling c and a portion of the tube above. The scale reads upwards from c. Thus, whenever the existing temperature is required it is merely needful to invert the instrument and the reading can be taken at any time afterwards. The left-hand figure shows the thermometer enclosed in a stout glass tube to protect it from the pressure of the water at great depths.

The thermometer is mounted in the "Scottish" deep-sea frame shown in Fig. 6. It is swung upon pivots, and the end, c, is loaded so that it will fall down when allowed to do so by the withdrawal of a pin, which fits into a slot at that end. The outer frame carrying this revolving piece is attached to the sounding line by a double hook below and a screw clamp above. The pin, which fits into the slot, is worked by a lever, the other end of which embraces the rope, so that when it is depressed by a "messenger" (a weight which slides down the line) the pin is lifted out of the slot, and the thermometer at once turns over. When this has taken place it is held in position by a spring catch fitting into a notch. Lest the thermometer should happen to be so accurately balanced as not to turn over, an india-rubber ring is fixed to the upper part of the frame so as to give it the required initial impetus.

The messenger is the invention of Captain Rung, of the Danish Meteorological Institute, and is made in two pieces in such a way that it can be put on the line at any point. When several thermometers are placed on the line at the same time each (except the lowest) has a messenger suspended to it, as indicated in the diagram, to cause the inversion of the succeeding thermometer.

Within the last few months Professor Chrystal has constructed an instrument in which the inversion is accomplished by electricity, thus doing away with any uncertainty which may attend the action of the messengers and rendering the process instantaneous. The sounding line contains two copper wires which are connected with the terminals of a horse-shoe electro-magnet in the upper part of the frame. As soon as the circuit is completed the pin is drawn out of the slot and the thermometer turns over. The apparatus
was tried a few weeks ago in the Firth of Clyde and found to work admirably.

The salinity is a measure of the extent to which the fresh water brought down by the rivers has undergone admixture with the sea-water. It is determined by means of a delicate hydrometer, in the manner adopted by Mr. J. Y. Buchanan on the "Challenger" expedition.* When it is desired merely to study the surface water the collection of samples is, of course, extremely simple, but when it is necessary to observe the salinity of the water at various depths recourse is had to a special water-bottle which has been devised by Dr. Mill for the work.

This instrument is shown open in section in the accompanying figure. The sounding line is threaded through the central axis, A A, a strong tube which supports the whole apparatus, its lower end resting on a knob or a short cross-bar. The sides of the vessel are constituted by the cylinder, I I, F F, the bottom by the base-plate, B; this carries a ring of very soft rubber, C, forming a water-tight joint with the lower edge of the cylinder, F F. Above, complete closure is ensured by the flange, I I, pressing down upon the india-rubber saucer, H H. The weight of the cylinder, of course, drives it well home upon these pads, and so soon as this is the case it is held down by the spring catches, 0 0. Whilst the bottle is being lowered the cylinder is held up in the position shown by the hooks, L L, which spring outwards. A short tube, M, fits over these, and when this is driven downwards by a messenger detached from the lowest thermometer it compresses these springs and withdraws them from the flanged gallery, K, so that the cylinder is free to fall upon the base-plate and enclose the water-sample. The water is drawn off by the cock, D, air being admitted by E.

In the Firth of Forth twelve stations were fixed upon at approximately equal intervals between Alloa and the Isle of May, and serial temperatures were taken at these positions at frequent intervals. The general result of these observations is that in the landward part of the Firth the range of temperature is greater and the period of the annual maximum

Fig. 7.—Dr. H. R. Mills' Water-bottle. A A, central tube; B, base-plate; C, india-rubber ring, to form a water-tight joint with the lower edge, F F, when the bottle is shut; D, stop-cock for emptying the bottle; E, stop-cock for admitting air; F F, edge of cylinder; G, thin plates of metal (three in number) forming guides to the cylinder; H, india-rubber saucer in which I rests when the bottle is closed; I I, knife-edged flange; J J, tube to protect lock; K, flanged gallery on top of cylinder; L L, springs sustaining cylinder; M, tube for withdrawing L L from K; N, india-rubber buffer; O, spring catches for locking cylinder when closed.
earlier than farther seaward, and, conversely, that as the sea is approached the range becomes less and the date of the maximum is retarded. At Alloa the annual range would appear to be about 35° F., at Queensferry about 20°, while at the Isle of May it probably does not greatly exceed 10°. The extreme temperatures observed in this last locality were 55° in August and 43° in December. These results and certain others are very ingeniously exhibited by Dr. Mill in a diagram constructed by means of polar co-ordinates.*

As regards the admixture of sea-water, it is found that the density increases at first very rapidly, and then more gradually as the sea is approached. The mean density at Alloa for the period during which observations were carried on was 1·00042, whilst at the Isle of May it was 1·02511. When the tide rises in the upper part of the estuary the salt water comes up underneath the fresh, damming it back and gradually mixing with it. The influence of the smaller rivers is not perceptible in the centre of the Firth; each freshens a tract along the shore apparently not more than a mile wide.

An interesting phenomenon observed was a slight fall in the density of the water just at the mouth of the Firth, which was subsequently shown to be due to the fresher water of the Tay carried southward by the flood tide.

From the Firth of Forth it was only natural to pass to the Firth of Clyde, and the examination of this region presented a variety of questions of great interest owing to the uneven condition of its bed, whilst the investigation is facilitated by its accessibility at all times of the year. A broad submarine plateau stretches across the mouth of the Firth between the Mull of Cantyre and the Ayrshire Coast, and this, in conjunction with the fact that the opening is to the southward into the Irish Sea, diminishes the effect of the ocean water of the Atlantic. A deeper channel runs up on either side of the Island of Arran, that on the east extending directly up into Loch Fyne, where in the neighbourhood of Tarbert it attains a maximum depth of over one hundred fathoms. Between Cumbrae and Bute there is a branch of this depression, whilst a third commences north of the

* 'Proc. Roy. Soc. Edin.,' xiii, pl. vi, fig. 2.
Fig. 8.—Chart of the Firth of Forth, in which the Observing Stations are indicated by Roman numerals.
Cumbraes, and extends past Dunoon up into Loch Long. Several of the lochs enclose deep basins in their upper portions, as, for instance, Loch Fyne, Loch Striven, Loch Goil, and Upper Loch Long. Such being the configuration of this area, we may next inquire how the temperature of the water varies in these different portions.

This has been summed up by Dr. Mill as follows:—(1) The Irish Channel has “a uniform temperature from surface to bottom, changing regularly with the season, but higher all the year round than the mean of the enclosed regions; (2) The deep open basins in free tidal communication with the ocean resemble the channel at all depths beneath thirty fathoms; (3) The deep enclosed basins, almost cut off from the tide and shut in by steep mountain walls, show the greatest range of annual temperature, and the most complicated vertical distribution. The surface water is quite fresh after heavy rains and freezes in winter. The annual range may be 35° or 40° F., while at the bottom (seventy fathoms) 5° is the greatest range observed, and the maximum temperature there occurs in early spring, when the surface water is at its minimum; the minimum at the bottom occurs in the beginning of autumn, when the surface attains a maximum.”

Last year a new departure in the way of marine temperature observations was inaugurated by Dr. John Murray, namely, the study of the effect of the wind upon the distribution of submarine temperature. For such an inquiry the land-locked fjords of the west coast of Scotland are particularly well adapted; the depth of the lochs in conjunction with the frequent presence of a bar across their mouths renders the change of their contents but slow, while the moderate size of many of them makes it practicable to ascertain the condition of the whole loch as regards temperature at pretty frequent intervals. To give many figures bearing upon an inquiry of this kind would be out of place in a sketch like the present; a brief notice of one or two interesting cases must suffice. On September 7th, 1887, an examination was made of Loch Lochy, the most southerly of the three which lie in the course of the Caledonian Canal, a small body of fresh water nearly ten miles long and about
seventy-five fathoms in its maximum depth. The wind was
north-easterly in direction, thus blowing directly down the loch,
and its force was 1 or 2 of Beaufort’s scale. Under these cir-
cumstances a mass of water, extending five-sixths of the
distance up the loch, and averaging fifteen fathoms in
depth, had a temperature of over 55° F.; below this a
stratum of water, varying in thickness from nine fathoms at
the south end of the loch to twenty fathoms at the north
end, had a temperature of from 50° to 55°, whilst the whole
of the water below this was at less than 50°. By September
9th the direction of the wind had changed to west-south-
west, and its force had increased to from 5 to 6; it was
thus blowing along the loch almost in the contrary direc-
tion. It was now found that the water of over 55° occupied
the northern two thirds of the loch, extending to a depth of
fifteen fathoms at that end of it; below it was a layer of
nearly the same average thickness as before of water between
50° and 55°, but it now came to the surface at the southern
extremity of the basin, whilst the mass of comparatively
cold bottom water remained unchanged.

On the same trip a very similar phenomenon was observed
in Loch Ness, a much larger body of water on the same
canal. Just before the gale from the south-west set in,
water above 53° formed a moderately even layer all over the
surface, varying in thickness from fifteen fathoms at the
south end of the loch to thirty fathoms at the north. A
few hours later it was ascertained that the whole mass of
water above this temperature had been blown up the loch
so far that the surface water of the southern fifth of it had
a temperature of below 53°. In connection with the above,
reference may be made to a series of observations carried
out on the 25th and 26th April during a south-westerly gale.
In this case it appeared that the strong wind had so dis-
placed the normally horizontal position of the strata of
water, that the surfaces separating them were almost vertical.
Observations having on the whole similar results have been
carried out in Loch Striven, Loch Fyne, and other localities.

The advice and assistance of the Scottish Marine Station
have been freely placed at the disposal of any bodies which
were engaged in similar work, and the services of Dr. Mill have more than once been secured by the Fishery Board for Scotland, in whose annual reports his work for them will be found recorded.

Biological Investigations.

The biological work of the Scottish Marine Station may naturally be considered under two headings—Morphological and Faunistic. The papers in the former category are nearly all the work of Mr. J. T. Cunningham, who was for a period of more than three years the Superintendent of the Granton Laboratory. During the year 1885, much of his attention was devoted to the study of the development of the herring, for which purpose he not only worked in the Firth of Forth itself, but spent several weeks at the village of North Sunderland on the Northumberland coast. The eggs were collected during nocturnal trips in the herring boats, and kept whilst developing on glass plates in wooden boxes sunk near the shore, so that they could be examined when required. The time of development and the temperature of the water were carefully observed, and it was found that the eggs hatched in eight days when the temperature of the water varied from 11.5° C. to 14.5° C. One obscure structure in the herring embryos received Mr. Cunningham’s special attention. This is a small rounded cavity, which is known from its discoverer as Kupffer’s vesicle, and which appears at an early stage of development between the posterior end of the embryo and the yolk; it is clearly visible on the third day and remains so for eight or nine hours, but cannot be seen on the fourth day. This cavity appears from careful investigation by means of sections to be the last rudiment of the cavity of invagination, by which the primitive intestine is formed in all except the lowest animals. The theoretical bearing of this and other developmental researches has been discussed by Mr. Cunningham in several papers, which are too technical for abstraction here.

The “glutinous hag” or “sucker” (Myxine glutinosa),
a semi-parasitic fish allied to the lamprey, is not uncommon
on the east coast, and is a great pest to the fishermen by
devouring the cod on the lines or taking the bait from the
hooks. It is, however, an object of great interest to zoolo-
gists, from its exhibiting several very primitive characters in
its organisation, which render a knowledge of its develop-
ment a great desideratum. It has long been known
that the mature egg is contained in a hard, horny husk, at
either end of which is a bunch of stiff processes like bristles,
but with two or three hooks at the end of each; hitherto
only two such eggs have been found,* and Mr. Cunningham,
in spite of numerous efforts and much expenditure of time
and money, was unable to obtain more, even by keeping adult
animals for months in an aquarium, so he took advantage of
the opportunity offered by his having numerous specimens
at his disposal to make a careful investigation of the deve-
lopment of the reproductive products, which has led to some
interesting results. The horny envelope of the egg appears
to correspond to the so-called "zona radiata" of the egg of
other fish, that is to say, it is a primary egg-membrane and
not an extraneous growth. Male specimens are exceedingly
rare, but in the great majority of those in which the eggs
are immature the hinder part of the generative gland is a
well formed testis; and Mr. Cunningham is inclined to think
that these immature animals are functionally males and that
most eggs are fertilised by them.

A department of knowledge in which science is at present
very backward, is that which relates to the eggs and young
stages of food-fishes; this inquiry was successfully prosecuted
by Mr. Cunningham, and the results of his work, containing
not only descriptions and figures of the eggs of about a
dozenspecies, but also an account of previous researches in
this direction, have been published by the Royal Society of
Edinburgh. At the time of his departure from Granton,
Mr. Cunningham was engaged in a systematic and anatomical
study of the Annelida of the Firth of Forth, a work which

*Dr. Fridtjof Nansen has just informed me that he has discovered a third
egg among the stores of the Bergen Museum, which was dredged thirty years
ago by Dr. Danielssen near Molde.
has already yielded fruit in the publication of several papers on this interesting group of animals.

The small crustacean *Nyctiphanes norvegica* is pretty commonly found in the Firth of Clyde in deep water; when alive it is a most graceful creature, swimming rapidly round the aquarium, with the dorsal or ventral surface indifferently uppermost. Its chief interest, however, consists in the possession of luminous organs, which it shares with most, if not all, the Euphausiidae. The fact that certain Schizopod Crustacea have the power of emitting light appears to have been first noticed by Vaughan Thompson,* and the organs in question were described by Claus† under the name "accessory eyes." The phenomenon was a matter of frequent observation during the "Challenger" expedition,‡ and the phosphorescent apparatus was described as such by Sars.§ in his report on the Schizopoda, both in *Euphausia* and in a new species of *Nyctiphanes* (*N. australis*). He did not, however, enter upon a histological examination of these organs, and with a view of supplying this lacuna in our knowledge Mr. Rupert Vallentin, with the co-operation of Mr. Cunningham, subjected them to a thorough investigation. A large number of specimens were obtained in ninety-five fathoms off Brodick Bay, and conveyed to the "Ark" at Millport for examination. Each animal possesses ten of these organs: one in each eye-peduncle, one in the basal joint of each second and one in the basal joint of each seventh thoracic appendage, while the remaining four are unpaired and situated, one in the lower surface of each of the first four abdominal segments. Each "photosphere" (a name proposed by Messrs. Vallentin and Cunningham for these structures) is a spherical body lying immediately beneath the epidermis, and almost entirely independent of the surrounding tissues. Its posterior half is formed by a stratified, fibrous, non-cellular, hemispherical cup, within which is a layer consisting of large cubical cells internally,
and smaller cells externally. The hollow of the hemisphere
is filled with a fibrous mass, the constituent fibres of which
are perpendicular to the cellular layer outside, but cross each
other at right angles at the centre. This is succeeded in
front by a homogeneous, highly refractive lens, surrounded
by a ring similar in structure to the stratified layer, and
without this again is a stratum of cells smaller than those
mentioned above. The posterior half of the organ is over-
laid by a coating of flat, polygonal, red pigment-cells, which
seem to be merely a specialised form of the chromatophores,
which are scattered in various parts of the body. A con-
nection with the nervous system, although it almost certainly
exists, has not yet been demonstrated. These luminous
bodies may be acted on either by mechanical or chemical
stimuli, and it was ascertained that the light proceeds
from the innermost part of the stratified cup above described,
which appears to possess the property of fluorescence in a
remarkable degree.

A few months ago an adult whale (*Balænoptera rostrata*)
came ashore in the narrow entrance to the quarry, and was
speedily killed by the dwellers in the neighbourhood. It
was thereafter towed round to Granton Harbour, hoisted on
a railway truck, and thus conveyed within the walls of the
Marine Station, where it continued to attract crowds of
visitors for some time. An anatomical examination of it was
undertaken by Sir William Turner and several assistants.

The faunistic work was at first the special province of
Mr. J. R. Henderson, until his appointment to a Chair of
Biology in Madras deprived the station of an accurate and
energetic worker. Before his connection with the Granton
station Mr. Henderson had acquired a large private collec-
tion illustrating the local marine fauna, and by means of the
new facilities at his disposal he was able to make many
interesting additions to the fauna of the Firth of Forth.
He specially devoted himself, however, to the Crustacea; and
his ‘Synopsis of British Paguridae’ gives an orderly account
of a group which had for long been much neglected, whilst
his ‘Catalogue of the Decapod and Schizopod Crustacea of
the Firth of Clyde’ includes twenty-one species which have
been added to the British fauna since the publication of Bell's great work, and five (including a new genus) are recorded for the first time. It contains, also, a list of all the higher Crustacea from the West of Scotland compared with similar lists from Scandinavia and the Mediterranean.

The numerous trawlings and dredgings which have been conducted by Mr. John Murray on the west coast are of great interest. Large collections have been sent to the British Museum, and it is hoped that all the lists prepared by the naturalists of that institution may shortly be published, for they contain records of the occurrence of many interesting forms, some of which have not hitherto been known to inhabit British seas.

The examination of the fishes has been conducted by Dr. Günther, and an interesting report upon them was communicated to the Royal Society of Edinburgh on March 5th of the present year.

Excluding certain common species forty-seven different forms were collected, some of which are of special interest. The Arctic genus *Triglops* is represented by a new species (*T. Murrayi*), whilst *Cottus Lilljeborgii* and *Gadus Esmarkii* are new to the British Fauna. *Callionymus maculatus* was recorded by Dr. Günther in 1867 from the Hebrides, but is now shown to be fairly abundant in Kilbrennan Sound at a depth of twenty-six fathoms.

As might be expected such investigations, carried on for a considerable period, have yielded a mass of information of more or less miscellaneous character which it is impossible to summarise; a few items are selected, for mention here. Some instances of peculiar distribution have been recorded from the lochs of the west coast, which furnish additional proof of the fact demonstrated by the "Porcupine" and "Triton" expeditions,* that submarine barriers have a preponderating influence in the limitation of marine faunistic areas. For instance, *Conchæcia elegans*, a pelagic Ostracode of the deep Norwegian waters, is found nowhere on the Scottish coast except in Upper Loch Etive, at depths of from

* *Proc. Phil. Soc.* Glasgow, xvii.
thirty to seventy fathoms. The genus *Pasiphræa* occurs in the Mediterranean and off Norway, and has recently been detected in deep water in Loch Etive, Kilbrennan Sound, Lower Loch Fyne, and other localities, but never in Upper Loch Fyne, Loch Long, or Loch Goil. It may be mentioned in passing that *Nephrops* also is never got in Upper Loch Fyne. *Nyciphænæs norvegica* is abundant in Upper Loch Fyne, but has not been found either in Upper Loch Etive or Loch Aber; at the mouth of Loch Sunart a few specimens have been caught, and in Loch Hourn it is abundant. The allied *Boreophænæs* is common in Loch Duich. *Euchæta*, a large Copepod, is pretty generally distributed in the Clyde Basin, though it is not found abundantly in Kilbrennan Sound and towards the Mull of Cantyre; farther north it occurs in Loch Etive, but not in Loch Aber, Loch Sunart, or Loch Carron. *Euchæta* and *Nyciphænæs* are never found on the surface in the adult condition, but their larval forms seem from recent tow-nettings to be not uncommon on the surface in the spring. The present writer has within the last few weeks found what appear to be the eggs and the Nauplius and Cyrtopia stages off the coast of Arran, and Mr. George Brook has the Metanauplius and several Furcilia stages from the same district. Dr. Murray further states that these eggs and larvae have been abundant at the surface all over the Clyde sea area for the past two months.

Most of the forms enumerated above are deep-sea animals, not being found within the 100 fathom line, except in these land-locked fjords, to which perhaps they may have been confined by the gradual rising of the land after the glacial period.

Another observation deserving of mention here is the fact that in the early spring an extensive layer of Diatoms (*Ooscinodiscus, &c.*) appears upon the surface of the water and gradually sinks as summer advances. Concurrently with this swarms of larvae are developed, the examination of whose stomachs proves conclusively that they are nourished by these Algae whilst they themselves furnish the food of the Loch Fyne herring and other fish, which seem to approach the surface at this period. The
herring itself is said by the fishermen to be subject to a disease known as "poke-gut," which they believe to be due to the fish "eating some black substance which burns through them like quicklime." Dr. Murray has ascertained that this black material is due to the pigmented eyes of Schizopod larvae, which have been devoured in quantities by the fish and undergone such rapid decomposition that even in a few hours they will penetrate the abdominal wall.

It seems more than doubtful whether the herring migrate, as is commonly supposed, between these deep lochs and the open ocean. It appears more probable from several indications that they winter in the deep water, and come to the shallows for breeding purposes. This would account, amongst other things, for the fact that each district has a recognisable variety of herring peculiar to itself. During the winter months herrings have been captured in depths of forty fathoms with their stomachs distended with adult *Nyctiphanes*, and young herrings have been taken at similar depths throughout the whole year.

After such an account of work, as even this brief record supplies, it seems a work of supererogation to attempt any justification of such an institution as the Scottish Marine Station. Before it is possible to attempt an intelligent regulation of our fisheries, the first requisite is more knowledge, a detailed acquaintance not only with the fish themselves and their habits of life, but also with the physical conditions in which they dwell, of the life-history and distribution of the organisms which serve as their food. Such an acquaintance with the subject is merely in its infancy at present, and with our best efforts many years must elapse before it can be even approximately adequate to our needs. One Zoological Station, however well equipped, can only explore a limited area, and there is room in this field for many workers, whose results when collected and compared will lead to such generalisations as may render it possible to legislate upon these questions with sure hope of success.
List of Papers referred to in the Article.

— Configuration of the Clyde Sea Area, op. cit., iii, pp. 15—21, map, 1887.
—Note on the Salinity of the Tay Estuary and of St. Andrew's Bay, t. c., pp. 347—350, 1886.
—On Water-Bottles, with the Description of a new form of Slip Water-Bottle, t. c., pp. 539—546, pl. xx, 1886.

—A Synopsis of the British Paguridae, op. cit., ix, pp. 65—75, 1886.

The Meteorological Observations of the Station are published periodically in the Journal of Scottish Meteorological Society.
NOTES AND MEMORANDA.

Some Notes on Plymouth Fishes.

The Habits of the Cuckoo or Boar-fish.—For some time after I arrived in Plymouth at the beginning of August I heard a great deal about "cuckoos." The trawlers were constantly talking of them, saying that their catches consisted almost entirely of them, and it was not long before I saw specimens of the fish which, among the fishermen, went by this avian name. Even before I saw a specimen I found, on referring to Day's 'British Fishes,' that the name implied the *Capros aper* of Lacépède, the boar-fish of Couch. I found specimens, soon after, knocking about the Barbican in numbers, floating about Sutton Pool and Cattewater, or cast up on the shores of these basins. Why the name cuckoo is applied to these fish I have not discovered, but Couch's name is due to a certain peculiarity in its snout. The lower jaw, when the mouth is closed, slants upwards and forwards and projects beyond the upper. When the mouth is opened, and the lower jaw depressed, a system of levers formed by bones at the sides of the mouth is moved and causes the upper jaw to be protruded forwards. The upper jaw is not firmly fixed to the skull, but connected with it by ligaments and membranes which are very elastic. Thus the depression of the lower jaw brings about a remarkable protrusion of the upper, so that the whole mouth, when opened, forms a narrow cylindrical membranous tube an inch or more in length. As soon as the lower jaw is closed the upper jaw is drawn back to its original position by the elasticity of its ligaments. Thus the mouth region of the "cuckoo," when the mouth is open, resembles somewhat the snout of a boar; hence the name boar-fish, and the specific name *aper*. The mechanism of the jaws in the cuckoo is an exaggerated development of an arrangement which occurs in the herring and other fishes, and it will be of great interest
to make an accurate examination of this mechanism of the mouth and carefully compare its condition in *Capros aper* with that found in other species. The protrusion of the jaws is doubtless of some importance in procuring food, but at present we do not know what peculiarity in the feeding of the cuckoo makes such a curious arrangement necessary.

On August 15th, when I went out in the trawler "*Cambria*" on one of her fishing trips, an enormous number of cuckoos came up in the trawl. The fish is absolutely worthless in the market, and this for two reasons: 1st, it is small, never exceeding seven inches in length, and 2nd, it is very thin and very bony, the bones of the head and the spines of the fins being extremely well developed. It is easy to understand, therefore, the feelings the trawler has for this fish when he has to haul up several hundredweight of it in his trawl and then throw it overboard again. I had ascertained previously, from information given me by the fishermen, and from examination of specimens picked up in the harbour, that the cuckoos were sexually ripe, and in the process of spawning. I therefore examined those which came up in the trawl of the "*Cambria*" with interest, and found, as I expected, that it was easy to squeeze ripe ova and milt from the fish. I obtained thus a sample of the fertilized ova in a bottle of sea-water, which I was able to carry ashore successfully. The ova were transparent and buoyant like those of so many other fishes, and of small size. I kept the ova alive two days on shore, and examined them with the microscope, making drawings which are reserved until material for a comprehensive account of the ova of the Plymouth fishes has been collected. The ova measures .98 mm. in diameter, varying slightly from this standard. The yolk is perfectly transparent and homogeneous, and contains a single oil globule, which is near the surface of the yolk at the side opposite the embryo. I had a drawing of a pelagic ovum obtained by the tow-net in Whitsand Bay on August 11th, and found it was exactly similar in size and structure to the ovum of the "cuckoo." It was evident, in fact, that it belonged to that fish.

Specimens of the "cuckoo" had been found to contain
spawn by different observers in March and May, and in the Mediterranean in April. But no one had given an account of the character of the fertilized ova until Mr. Dunn stated that in July, 1880, many of these fish had spawned in his tank, and that the spawn floated in the water just below the surface. He did not keep the ova under observation, or give any description of their structure. There is only one other species of the family to which the "cuckoo" belongs (Carangidae), whose ova have been described, namely, *Temnodon saltator*, Linn., the bluefish of the Atlantic shore of the United States. The ova of the bluefish are pelagic and transparent like those of the cuckoo, but they possess certain peculiarities not present in the latter.

Although the cuckoo is worthless in the market it is indirectly of economical importance, to judge from the fact that I found a specimen slightly digested in the stomach of a large turbot brought up in the trawl of the "Cambria."

Fishermen at Plymouth say that the great abundance of cuckoos in their neighbourhood is a somewhat recent phenomenon, and that they were scarce or unknown twenty years ago. As a matter of fact the first recorded capture on the British coasts took place in Mount's Bay in October, 1825. In 1843 a great abundance of them is recorded to have occurred at Plymouth, and the fishermen then stated that they had recently increased in numbers so as to become a pest. It is thus probable that, as with other fish, they may in one locality become more and more numerous for some years and then again become scarce. They are taken only in very small numbers in the winter, and it is evident that they approach the shore for the purpose of spawning in the season from May till October, but they are most abundant at Plymouth in July and August when spawning actually takes place.

The Breeding of the Conger.—Often when fishermen are asked at what time of the year a certain fish spawns they give a definite answer which is correct or approximately so. They can see the ripe roe in most kinds of fish when a specimen is cut open, and they can see the distension of the abdomen caused by the enlarged roe, while frequently the eggs flow
from the ripe fish when it is handled. But whenever I have inquired as to the spawning of the conger the answer I have received from fishermen is that nobody knows, and that no one ever saw a roe in a conger at all. A naturalist who is acquainted with the obscurity which for two centuries, in spite of earnest investigations, concealed the structure and functions of the generative organs of the eel family, cannot wonder at the confessed ignorance of the fishermen on the subject. No one has yet, I believe, seen the fertilized egg of either the eel or the conger, although the ovaries and testes have been recognised and described. When I took some conger and examined the internal organs I found no difficulty in recognising the roe or ovary. In a large specimen, four to five feet long, the ovary is seen as a broad white mass in the shape of a ribbon, running on each side along the body cavity; on the side towards the intestine the ribbon is smooth, but on the other side it bears a number of thin flat plates, attached to it transversely, and lying close to one another face to face like the leaves of a book. Each of these leaves is made up almost entirely of eggs, which are supported by a tissue consisting apparently of fat-cells. When this ovary is shown to a fisherman he says it is simply the fat of the fish, and evidently does not believe it has anything to do with spawn. The organ is of milky-white colour, and resembles fat closely in appearance, but the microscope reveals the eggs in it beyond all possibility of mistake; and lately, in a specimen four feet ten inches long, the separate eggs could be seen in every part of the ovary with the naked eye like grains of millet seed. There must be over a million eggs in each ovary, indeed, the number of ova has been calculated by different observers to reach several millions. Otto Hermes in Berlin estimated 3,300,000 in a pair of ovaries weighing twenty-two and a half pounds, while Mr. Jackson, at the Southport Aquarium, estimated over 6,300,000 eggs in a pair of ovaries weighing only seven pounds. Mr. Jackson's specimen died in June, and if its ovaries were ripe and ready for spawning, as we may presume they were, then we may conclude that it is probably in June that congers naturally spawn. Neverthe-
less, the condition of the last ovary I examined (on November 3rd) leads me to believe that spawning takes place earlier in the year, at all events off Plymouth.

A single specimen of the male conger was discovered by Otto Hermes ('Zool. Anz.,' 1881). It died in the Berlin Aquarium in June, 1880; it was two feet six inches long, and the testes were similar in position to the ovaries, but differed from these in being divided into lobes, and entirely surrounded by a smooth membrane, the seminal fluid passing to the exterior by a special efferent duct. The organs were ripe and contained mature, actively moving spermatozoa. I have opened altogether fifteen congers. Seven of these were chosen on account of their small size, two feet four inches to two feet ten inches in length; but every one of the fifteen was a female, and as yet I have not seen the male.

The Spawn of the Pilchard.—Up to the present I have not met with any pilchards in a sexually mature condition. Nearly all the available information concerning the breeding of this species is directly or indirectly derived from accounts of his own observations published by Mr. Dunn, of Mevagissey. One of these accounts is contained in the official report of Frank Buckland and Spencer Walpole on the British Fisheries, 1879, App. iii. It is there stated that pilchards spawn fifteen or twenty miles from land, and at or near the surface; that on May 28th, 1871, Mr. Dunn took a pilchard in the act of spawning twenty miles from land, and pressed out its spawn into a bucket of sea-water, when the eggs all floated separately at the top of the water, but died after two hours because they were unfertilised; when dead they sank to the bottom. But in a letter which Mr. Dunn kindly sent me recently in answer to some questions I put to him, he says that he is certain that some pilchards spawn late in December and early in January, because he has known shotten pilchards return to the bays as early as the 11th of January. It is thus possible enough that the pilchard has two principal spawning seasons on this coast, one in winter, in December and January, one in June and July, in summer. It is also possible that some of the fish may spawn somewhat earlier, and others somewhat later than
the months mentioned. On November 9th, in the product of a tow-net taken by me south-east of the Eddystone, there were a number of buoyant fish eggs, which hatched two days after in my workroom on shore. The young fish hatched from these exhibited three characters, which are also found in the newly-hatched herring: (1) The yolk, instead of being homogeneous as in most buoyant ova, was composed of a number of distinct yolk-spherules; (2) The notochord was unicolumnar, that is, contained a single linear series of vacuoles as in the herring, not several series side by side as in young flat-fishes and others; (3) The anus was separated by a long interval from the yolk, and placed near the end of the tail, as it is in the newly-hatched herring, while in most fishes it is immediately behind the yolk. It is possible enough that these buoyant eggs are those of the pilchard, in which case the close similarity of the fish hatched from them to the young herring would be explained, although the proof of the fact that the ova of the pilchard are typically buoyant and pelagic, while those of the herring are typically adherent ova, would be very surprising. I earnestly hope that during the present winter I may obtain some pilchards in spawning condition, in which case, by taking and fertilizing some ova, I should be able to decide the interesting questions implied in the above discussion. There are some grounds for saying that it is possible the ova of the sprat are buoyant, although it would be naturally expected that all the species of Clupea deposited adhesive eggs like those of the herring.

Reproductive Organs of the common Sole.—On November 12th I dissected four soles (*Solea vulgaris, Quensel*) in order to examine the reproductive organs. The soles were bought by the Laboratory attendant from a fish buyer, and therefore could not well have been selected in any way, except that they were all moderately large. Two were males and two females.

In one female, which was fourteen inches long, including the tail, I opened first the long posterior extension of the body cavity on the right, dark, and upper side. When the skin was laid open, without further dissection, four parallel
lengths of intestine were seen extending right to the posterior termination of the cavity. Beneath these, but partially exposed at the ventral edge of the cavity, was the right ovary, which was four and a half inches long, three quarters of an inch broad. It was yellow in colour, and almost mature, the ova being visible to the unaided eye as separate granules. The ovary did not reach posteriorly to the end of the cavity by about an inch. Anteriorly it did not extend into the undivided anterior portion of the body cavity, the oviduct, which was about three quarters of an inch long, passing forwards and ventrally to the genital opening.

The cavity of the left side was then opened. In it there was no portion of the intestines; it contained the left ovary, which was five inches long and half an inch broad, longer and narrower than the right. At the anterior end of the cavity was seen the left kidney, a large portion of which lies in this posterior extension of the body cavity. In the undivided portion of the body cavity on the left side is seen nothing but the left surface of the liver. The two posterior extensions of the body cavity are, of course, completely divided by a thick median partition containing the inter-spinous bones belonging to the anal fin.

In a male which was fifteen and a half inches long, including the tail, on opening the posterior extension of the body cavity on the right side, the same four lengths of intestine was seen, and no genital organ was visible while these were undisturbed. The testis was found beneath these intestines, at the anterior end of the cavity. It was a flat plate with an entire outline lying on the partition which separates the right posterior cavity from the left. It did not extend in front of this partition into the undivided body cavity, its vas deferens passing forwards and ventrally to the genital opening. The testis was one inch long and half an inch broad. On the left side the posterior body cavity was short, only about half the length of the corresponding cavity on the right. It contained no organs except the left kidney which extends back into it. The left testis was smaller than the right, being three quarters of an inch in length; it lay with its longer axis transverse to the axis of the cavity,
i. e. in a position at right angles to that of the right testis; and it was in front of the anterior edge of the partition between the two posterior cavities, so that its duct passed ventrally to the genital opening.

I believe that the male can always be distinguished by the narrower shape of its posterior region. The presence of the roe in the female causes the ventral edge to have a more convex outline in the female, but the dorsal edge also is much less slanting and more convex in the female than in the male. The tail in the male is also, in the specimens I have examined, larger than in the female.

The sole spawns in winter and spring, as stated in the books, and it is evident, from the condition of the specimens I have described, that they were near the spawning period.

J. T. Cunningham.

February 29th, 1888.
NOTICES.

At a Council Meeting, held on July 25th, 1888, the regulations with regard to the admission of Naturalists desiring to make use of the Plymouth Laboratory were amended and enlarged as follows:

1. Any Governor or Founder of the Association is entitled to occupy in propriá personá a table at the Plymouth Laboratory without payment. A Founder or Governor shall have the privilege, upon signifying to the Director his intention to forego permanently the right of personally occupying a table in the Laboratory, of nominating an eligible person to make use of a table for one month in each year free of charge.

2. The charge for a table shall be £40 a year, £25 for a half year, and £5 for a month, to be paid in advance. No table shall be let for less than a month, and the monthly charge shall be as above for any number of months less than six.

3. Members of the Association have the first claim to become renters of tables.

4. Life Members of the Association are entitled to occupy in propriá personá a table at a reduction of one fourth from the above rates.

5. The Council of the Association may remit, in whole or in part, the payment of rent for a table in special cases. No charge will be made to a State-recognised authority for the use of a table.

6. Applications from Members and others desiring to occupy tables must be made in writing to the Director, and a notice of at least seven days will be expected before any table is ready for use.

7. The Association undertakes, so far as possible, to supply the material required for any investigation, and such facilities for obtaining it as may be at the command of the Association.

8. The Association supplies to the occupant of each table
ordinary glass jars, dissecting dishes, bottles, pans, &c., not
to be removed from the Laboratory, also the ordinary chemical
reagents, and ordinary methylated alcohol to the amount of
two gallons per month. Absolute alcohol will be supplied to
the extent of half a pound per month. Each Naturalist
must pay for what he requires in excess of these amounts.
The Association does not supply microscopes or other instru-
ments. The more expensive reagents, as well as glass slips
and covers and other portable apparatus, may be purchased
of the attendant. Each Naturalist will be provided on arrival
with a list of the free equipment supplied by the Association.

9. For the purpose of enabling the Director to draw up the
half-yearly statement of the work of the Laboratory required
by H.M. Government, and for the information of the Associa-
tion, all Naturalists working in the Laboratory, at the comple-
tion of their work, or if not completed after three months then
at intervals of three months, are expected to furnish the
Director with a summary statement of the investigations
carried on by them in a form suitable for publication in the
Journal of the Association.

10. No Naturalist can be permitted to make zoological col-
lections in the Laboratory. The Association undertakes to
provide collections of marine animals, and to supply them at
a fixed price to those who wish to buy them. This rule must
be understood to apply only to general zoological collections.
Every Naturalist is at liberty to collect and take away with
him any material that is necessary for the prosecution of his
special line of research on payment of the cost of bottles and
packing cases necessary for their removal.

11. The animals collected by the fisherman will be delivered
to the Superintendent of the Laboratory, and distributed by
him. The fisherman of the Association is prohibited from
delivering specimens directly to the Naturalists.

12. Naturalists who are desirous of making use of the boats
of the Association must apply to the Director for permission
to do so.

13. A portion of the tank apparatus in the main Laboratory
will be allotted to each Naturalist. Applications for small
aquaria, glass vessels, caoutchouc and glass tubing must be
made to the Laboratory Superintendent. Naturalists are not permitted to overcrowd the aquaria or contaminate the sea water in circulation.

14. There will be a collection of named specimens which may be used for reference and identification. Any Naturalist desiring to use the named specimens will be supplied with them on application to the Director. He will be required to return the specimens uninjured as soon as he has done with them.

15. Naturalists working in the Laboratory will have free access to the tankroom at any hour of the day, but they are not permitted to have access to the interior of the tanks without the permission of the Director. Facilities for conducting experiments on a large scale will be granted as far as space permits, but each Naturalist will be held responsible for the consequences of such experiments.

16. Any member of the Association is at liberty to view the Laboratory and tanks between the hours of 10 a.m. and 6 p.m. on presenting his card to the Director.

17. The Director has control of the Laboratory boats and apparatus of the Association. Persons are admitted as renters of tables solely on the condition that they accept this control, and agree to abide by the regulations drawn up by the Council of the Association.

Mr. Robert Bayly, of Torr Grove, Plymouth, has given a further donation of £500 to the Marine Biological Association, which sum is to be spent on an investigation on the means of improving the supply of bait for long-line fishermen. The Council having instructed the Resident Director to make a report on the best method of applying this sum to the purpose, he will be glad to receive any suggestions addressed to him at the Laboratory, Citadel Hill, Plymouth.
CATALOGUE OF THE LIBRARY.

JULY, 1888.

FISHERIES.

Presented by
Italian Government.
French Government

Director of
Norwegian Fishery Board.
German Fisheries Association.
The Russian Government.

United States Commission of Fish and Fisheries.
From the Canadian Commissioners of Fisheries.
From the Scotch Fishery Board.

H.M. Government.

Annali del Ministero di Agricoltura Industria e Commercio. La Pesca in Italia, 1871—1887.
Verslag van den Staat der Nederlandshe Zeevisscherijen. 1881—1885.
Selskabet for de Norske Fiskeriers Fremme. 1884—1887.
Norsk Fiskertilidende. 1882—1888.
Mittheilungen der Section für Küsten- und Hochsee Fischerei. 1885—1888.
United States Commission of Fish and Fisheries. Reports, 1873—1887.
Dominion of Canada. Department of Fisheries: Statements and Reports. 1875—1886.
Correspondence relative to the Fisheries Question. Canada, 1885—1887.
Report on Fish-breeding in the Dominion of Canada. 1887.
Annual Reports of the Fishery Board for Scotland. 1883—1887.
Parliamentary Report on the Conveyance of Fish by Railway. Copy of Correspondence. 1886.
Report of the Select Committee on Salmon Fisheries (Ireland). 1886. (With Index.)
CATALOGUE OF THE LIBRARY. 255

Parliamentary papers:
Sea and Coast Fisheries Fund (Ireland). 1886.
Fishings and Foreshores (Scotland). 1886.
Orders for Fishery Grants. 1886.

PERIODICALS.
Arbeiten aus dem Zoologischen Institut der Universität Wien. Tom. i—vii.
Archives de Biologie. Tom. i—vii.
Archives de Zoologie expérimentale et générale. 1er série, tom. i—x. 2me série, tom. i—v.
Biologisches Centralblatt. 1888.
Bulletin Scientifique de la France et de la Belgique. Ser. iii, 1—3.
Journal of the Royal Microscopical Society. 1888, pts. 1, 2, 3.
Mittheilungen aus der Zoologischen Station in Neapel. Bd. i—viii.
Zeitschrift für wissenschaftliche Zoologie. Tom. xxv—xlvi and register xxv—xxx.
Zoologischer Anzeiger. 1888.

BOOKS OF REFERENCE.
Zoological Record, 1864—1886.
British Museum Catalogues:
" Fossil Foraminifera. T. R. Jones. 1882.
" Sea Pens. J. E. Gray. 1870.
Guide to the Shell and Starfish Galleries. 1887.
Catalogue of Entozoa. 1858.
" Brachiopoda. 1853.

Presented by
H.M. Government.

Purchased.

Prof. A. Giard.

The University of Copenhagen.

Dr. Anton Dohrn.
Dr. Anderson.

J. & A. Churchill.

Purchased.

Trustees of the British Museum of Natural History.
British Museum Catalogues (continued):
List of British Animals, Pt. vii. Mollusca,
Acephala, and Brachiopoda. 1851.
Catalogue of Mollusca and Shells. 1855.
List of Volutidae. 1855.
" Olividae. 1855.
Catalogue of Pulmonata. 1855.
" Auriculidae, &c. 1857.
" Mazatlan Shells. 1857.
Guide to the Systematic Distribution of the
T. Bell. 1862.
" Amphipodous Crustacea. C.
Spence Bate. 1862.
" Fishes. 8 vols. A. Günther.
1859—1870.
" Lophobranchiate Fish. J. J.
Kaup. 1856.
Guide to the Galleries of Reptiles and Fishes.
1887.
1866.
Supplement to Catalogue of Seals and Whales.
Ibid. 1871.
List of Seals, Morses, &c. Ibid. 1874.
List of Cetacea. W. H. Flower. 1885.
Catalogue of Bones of Mammalia. 1885.
Zoological Collections of H. M. S. Alert.
Catalogues of the Australian Museum, Sydney,
N.S.W.:
Catalogue of the Australian Birds in the
Museum. 1876.
Guide to the Contents of the Museum. 1883.
Catalogue of the Library. 1883.
" Collection of Fossils. 1883.
" Australian Hydroid Zoon-
phytes. 1884.
List of old Documents and Relics. 1884.
Catalogue of the Echinodermata. 1885.
Descriptive Catalogue, with Notes on the
General Collection of Minerals. 1885.
Notes for Collectors. 1887.
Report of the Trustees. 1886.
Supplementary Catalogue of the Library.
1885.
1886.
Descriptive Catalogue of the Meduse of the
Australian Seas. R. von Lendenfeld. 1887.
Illustrated Catalogue of the Museum of Com-
parative Anatomy at Harvard College:
No. I. Ophiuridæ and Astrophytidæ. Th.
Lyman. 1865.
Illustrated Catalogue of the Museum of Comparative Anatomy at Harvard College (continued):

„ 8. Zoological Results of the Hassler Expedition:

Pt. 1. Echini, Crinoids, and Corals. A. Agassiz and de Pourtales. 1874.

Pt. 2. Ophiuridæ and Astrophytidae. Th. Lyman. 1875.

Radcliffe Library, Oxford:
Catalogue of Natural Science up to 1872.
Books added:—1873, 1874, 1876, 1878, 1879, 1880, 1881, 1882, 1883, 1884, 1885, 1886.

GENERAL AND SPECIAL WORKS.

AGASSIZ, Alex.
On the Young Stages of some Osseous Fishes. Pts. 1, 2, and 3.
Le développement des Pleuronectes.
The Development of Lepidosteus. Pt. 1.
The Tortugas and Florida Reefs. 1883.
Embryology of the Otenophora.

AGASSIZ, L.
Contributions to the Natural History of the Acalephæ of North America. Pts. 1 and 2. 1849.
Contributions to the Natural History of the United States:
2. Embryology of the Turtle. 1857.
5. Homologies of the Radiata. 1877.

BEALE, Lionel S.
How to Work with the Microscope. London, 1880.

BELL, F. Jeffrey.
Holothurians, or Sea-slugs. Ext. Zoologist, 1887.

BOURNE, G. O.

Malacoza a cephalata. H. G. Bronn. 1862.
Spongien. Vosmaer. 1887.

Channel Pilot. Pt. i. 1886.

Claus, C.
Lehrbuch der Zoologie. Marburg, 1883.
Die freilebenden Copepoden. Leipzig, 1863.

Cocks, J. Algarum Fasciculi. 1855—1859.
Pts. i—xvii (vi and xii missing).

Djimphna-Togetes zoologisk-botaniske Ud.-
bytte. Copenhagen, 1887.

Spolia Atlantica. Copenhagen, 1885—1886.

Dolige's Annual. 1887 and 1888.

Ehler's, E. Die Borstenwürmer. Leipzig, 1888.

Fauna und Flora des Golfes von Neapel.
2. Fierasfer. C. Emery.
 Brandt.

Forbes, E., and Hanley, S. A History of
British Mollusca and their Shells. London.
1853.

Garman, S. New Species of Selachians in the

Giard, Alf.
Deux espèces d'Entomophthora nouvelles, &c.
Notice sur les travaux scientifiques.
Sur l'entomogénie des Ascidies du genre
Lithonephria.
Sur deux Synaxidies nouvelles pour les côtes de France.
Sur les affinités du genre Polygordius avec les
Annelides de la famille des Opheliidae.
Sur un type synthétique d'Annelide.
Sur l'Avenardia Prici.
Sur les Wartelia, genre nouveau d'Annelides
considérés à tort comme des embryons de
Térébellides.
Sur un Rhabdocele nouveau, parasite et
nidulant.
Sur un nouveau genre de Lombriciens phos-
phorecents.
Sur l'orientation de Sacculina Carcini.

Presented by
G. C. Bourne.
Purchased.

W. Heath.

The University of
Copenhagen.

The Publisher.
Purchased.

Purchased.

The Author.

Purchased.

The Author.
GIARD, Alf. (continued).

Sur un Céphapode, Cancerilla tubulata, parasite de l’Amphipora squamata.

Sur la castration parasitaire chez les Eukyphotes des genres Palemon et Hippolyte.

Sur une fonction nouvelle des glandes génitales des Oursins.

Sur un curieux phénomène de préfécondation observé chez une Spionide.

Sur le Crenothria Phalana, cause de l’infection des eaux de Lille.

Sur certaines monstruosités de l’Asteracanthion rubens.

GIARD, A. Leçons d’histoire naturelle médicale.

HADDON, A. C.

Recent Contributions to the Marine Invertebrate Fauna of Ireland. Ext. Zoologist, 1886.

Harvard College.

Presented by

The Author.

Purchased.

Prof. A. Agassiz.
<table>
<thead>
<tr>
<th>Harvard College (continued).</th>
<th>Presented by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memoirs of the Museum of Comparative Zoology.</td>
<td>Prof. A. Agassiz.</td>
</tr>
<tr>
<td>H. A. Hagen.</td>
<td></td>
</tr>
<tr>
<td>G. T. Allman.</td>
<td></td>
</tr>
<tr>
<td>L. Agassiz.</td>
<td></td>
</tr>
<tr>
<td>L. Cabot.</td>
<td></td>
</tr>
<tr>
<td>A. Agassiz.</td>
<td></td>
</tr>
<tr>
<td>ii. Echinodermata. A. Agassiz.</td>
<td></td>
</tr>
<tr>
<td>" x. " 1. Reports on the Results of Dredging by the U.S. Survey Steamer Blake.</td>
<td></td>
</tr>
<tr>
<td>W. Faxon.</td>
<td></td>
</tr>
<tr>
<td>A. Agassiz and O. O. Whitman.</td>
<td></td>
</tr>
<tr>
<td>" xv. Reports on the Results of Dredging in the U.S. Steamer Blake.</td>
<td></td>
</tr>
<tr>
<td>HELLER, O. Die Zoophyten und Echinodermen des Adriatischen Meeres. Vienna. 1868.</td>
<td></td>
</tr>
<tr>
<td>HERDMAN, W. A.</td>
<td></td>
</tr>
<tr>
<td>On a New Organ of Respiration of Tunicata.</td>
<td></td>
</tr>
<tr>
<td>A Phylogenetic Arrangement of Animals.</td>
<td></td>
</tr>
<tr>
<td>Calcareous Spicula in Tunicata.</td>
<td></td>
</tr>
<tr>
<td>Note on the Armature of the Branchial Siphon in Simple Ascidians.</td>
<td></td>
</tr>
<tr>
<td>Notes on the Fauna of the Isle of Man.</td>
<td></td>
</tr>
<tr>
<td>L. M. B. C. Reports, i, 1886.</td>
<td></td>
</tr>
</tbody>
</table>
HERDMAN, W. A. (continued).

Echinodermata of the L. M. B. C. District. Ext. L. M. B. C. Reports, i, 1886.
Notes on Variation in Tunicata. L. M. B. C. Reports, i, 1886.
Manx Fauna, a leaflet.

HINCE, T.

HOYLE, W. E.

HUBBEECHT, A. A. W. Dondersia festiva : gen. et sp. nov. 1888.

HUXLEY, T. H.

JEFFREYS, Gwyn, and CARPENTER, W. B.

LESLIE, G., and HERDMAN, W. A. The Invertebrate Fauna of the Firth of Forth.
Lille.
Travaux de l'institut zoologique de Lille, et
de la Station Maritime de Wimereux.
Tom. iii, fasc. 1. Essai Monographique
sur les Cysticercus. R. Moniez. 1880.
Tom. iii, fasc. 2. Memoires sur les Cestodes.
R. Moniez. 1881. Contribution à l'histoire des Bopyriens. Giard
et Bonnier. 1887.
Linstow, O. von. Compendium der Helmin-
thologie. Hannover, 1878.
Marion, A. F.
Étude des étangs saumâtres de Berre. Faune
ichthyologique. 1887.
Faune Malacologique de l'étang de Berre.
1887.
Marsh, S. Microscopical Section-cutting.
London, 1882.
Mcintosh, W. C.
On the Hairs of Carcinus maenas. Ext.
Trans. Linn. Soc., 1862.
Note on the Examination of a Male Kelt.
Ext. Scottish Naturalist, 1865.
Observations on the Marine Zoology of
1865—1866.
On the Nudibranchiate Mollusca of St. An-
On the Gregariniform Parasite of Borlasia.
Mag. N. H., 1867.
On the Boring of certain Annelids. Ext.
Dredging among the Shetland Isles. Ext.
On the Affinities and Classification of the
1868—1869.
On the Early Stages of the Development
Nat. Hist., 1869.
On the Stylet Region of the Ommatoplean
1869.
Report on a Collection of Annelids dredged
off Northumberland and Durham. Ext.
Nat. Hist. Trans. Northumb. and Durham,
1871.
On some points in the Structure of Tubifex.
Mag. N. H., 1872.
On a New Example of Polygordius. Ext.
McIntosh, W. C. (continued).
Address to the Biological Section of the British Association, 1885.
Notes from the St. Andrew’s Marine Laboratory, i—viii, 1885—1887.
Reports of the Marine Laboratory, St. Andrew’s, vol. ii—iv, 1885—1886.
The Trematode Larva and Ascaris of Carcinus maenas.

Norwegian North Atlantic Expedition, 1876—1878.

3. Asteroidea, Pennatulida, Alcyonida, Spongiade.
5. Fishes, Crustacea.

Report of the Committee appointed for the purpose of considering the question of accurately defining the term "British " as applied to the Marine Fauna and Flora of our Islands.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Location, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report of the Committee on Experimental Psychology</td>
<td>Report on the Marine Fauna of the South-West of Ireland</td>
<td>processor output</td>
</tr>
<tr>
<td>Romanes, G. J.</td>
<td>Mental Evolution in Animals</td>
<td>London, 1883</td>
</tr>
<tr>
<td></td>
<td>Jelly-Fish, Star-Fish, and Sea Urchins</td>
<td>London, 1885</td>
</tr>
<tr>
<td></td>
<td>Animal Intelligence</td>
<td>London, 1886</td>
</tr>
<tr>
<td>Sars, G. O.</td>
<td>Koren and Danielsen. Fauna Littoralis Norwegia</td>
<td>Christiania, 1846</td>
</tr>
<tr>
<td>Schmidt, O.</td>
<td>Grundzüge einer Spongien Fauna des Atlantischen Gebietes</td>
<td>Leipsig, 1870</td>
</tr>
<tr>
<td></td>
<td>Die Spongien des Meerbusen von Mexico</td>
<td>2 vols., 1879–1880</td>
</tr>
<tr>
<td>Scott, W. B., and Osborn, H. F.</td>
<td>Preliminary Account of the Fossil Mammals from the White River Formation</td>
<td>Cambridge, Mass., 1887</td>
</tr>
<tr>
<td>Seeley, H. G.</td>
<td>The Fresh-water Fishes of Europe</td>
<td>London, 1886</td>
</tr>
<tr>
<td>Siebold, C. Th. von, and Stannius, H.</td>
<td>Hand-buch der Anatomie der Wirbelthiere</td>
<td>Berlin, 1854</td>
</tr>
<tr>
<td>Siebold, C. Th. von, and Burnett</td>
<td>Anatomy of the Invertebrata</td>
<td>Boston, 1874</td>
</tr>
<tr>
<td>Watts, H.</td>
<td>Inorganic Chemistry</td>
<td>London, 1883</td>
</tr>
<tr>
<td>Watts’ Organic Chemistry, by Tilden</td>
<td>processor output</td>
<td></td>
</tr>
<tr>
<td>Whitley, Nicholas</td>
<td>The Temperature of the Sea, and its Influence on Climate and Agriculture</td>
<td>1863</td>
</tr>
<tr>
<td>Wilson, A.</td>
<td>The Student’s Guide to Zoology</td>
<td>London, 1874</td>
</tr>
</tbody>
</table>
OBJECTS

OF THE

Marine Biological Association of the United Kingdom.

THE ASSOCIATION was founded at a Meeting called for the purpose in March, 1884, and held in the Rooms of the Royal Society of London.

Professor Huxley, the President of the Royal Society, took the chair, and amongst the speakers in support of the project were the Duke of Argyll, Sir Lyon Playfair, Sir John Lubbock, Sir Joseph Hooker, the late Dr. Carpenter, Dr. Günther, the late Lord Dalhousie, Professor Mosely, Dr. Romanes, and Professor Lankester.

The Association owes its existence and its present satisfactory condition to a combination of scientific naturalists, and of gentlemen who, from philanthropic or practical reasons, are specially interested in the great sea fisheries of the United Kingdom. It is universally admitted that our knowledge of the habits and conditions of life of sea fishes is very small and insufficient to enable either the practical fisherman or the Legislature to take measures calculated to ensure to the country the greatest return from the "harvest of the sea." Naturalists are, on the other hand, anxious to push further our knowledge of marine life and its conditions. Hence, the Association has erected at Plymouth a thoroughly efficient laboratory, where naturalists may study the history of marine animals and plants in general, and where, in particular, researches on food fishes and molluscs may be carried out with the best appliances.

The Laboratory and its fittings have cost some £12,000, and are now complete. The number of naturalists who can be employed by the Association on special investigations, and definitely retained for the purpose of carrying on researches throughout the year, must depend on the funds subscribed by private individuals and public bodies for this purpose. The first charges on the revenue of the Association are those for the working of the sea-water circulation in the tanks, the payment of servants and fishermen, and the salary of the Resident Director. The gentleman holding this post receives £200 a year and a residence. A naturalist has also been appointed at a salary of £250 a year, whose duties are almost entirely confined to the study of food fishes. THESE ARE THE ONLY SALARIED OFFICERS OF THE ASSOCIATION: the entire work of conducting its affairs has been done hitherto by voluntary service. It is confidently expected that valuable researches will be carried on at the Plymouth Laboratory by naturalists who will come there as volunteers, and will pay a small rent for the use of a working-table in the Laboratory and other appliances. It will be part of the business of the Superintendent and Naturalist to organise and direct these voluntary researches as far as possible, so as to obtain definite and practical results.

The Association has actually received, or has in promise, altogether about £15,000, of which £5000 has been granted by the Treasury. The annual revenue which can be at present counted on is about £350, of which £250 a year for five years is granted by the Treasury, whilst £180 is in the uncertain form of Annual Subscriptions.

The admirable Marine Biological Laboratory at Naples, founded and directed by Dr. Dohrn, has cost about £20,000, including steam launches, &c., whilst it has an annual budget of £4000.

It is obvious that the Marine Biological Association urgently needs additional funds in order to purchase such accessories as a steam launch and boats, and in order to increase the permanent staff engaged at Plymouth. The purpose of the Association is to aid at the same time both science and industry. It is national in character and constitution, and its affairs are conducted by a representative Council, by an Honorary Secretary and an Honorary Treasurer, without any charge upon its funds, so that the whole of the subscriptions and donations received are devoted absolutely to the support of the Laboratory and the prosecution of researches by aid of its appliances. The reader is referred to page 4 of the Cover for information as to membership of the Association.
CONTENTS of No. II.

<table>
<thead>
<tr>
<th>Article</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. List of Governors, Founders, and Members of the Marine Biological Association</td>
<td>105</td>
</tr>
<tr>
<td>3. Opening of the Marine Biological Laboratory</td>
<td>125</td>
</tr>
<tr>
<td>4. Report of the Resident Superintendent, 5th December, 1887</td>
<td>142</td>
</tr>
<tr>
<td>6. Preliminary Inquiries at Plymouth into the Marine Fauna and Ova of Fishes. By J. T. Cunningham, B.A.</td>
<td>194</td>
</tr>
<tr>
<td>7. The St. Andrews Marine Laboratory (under the Fishery Board for Scotland). By Prof. McIntosh, F.R.S.</td>
<td>202</td>
</tr>
<tr>
<td>10. Notes and Memoranda By J. T. Cunningham, B.A.</td>
<td>243</td>
</tr>
<tr>
<td>11. Notices</td>
<td>251</td>
</tr>
<tr>
<td>12. Catalogue of the Library</td>
<td>254</td>
</tr>
</tbody>
</table>

NOTICE.

The Council of the Marine Biological Association wish it to be understood that they do not accept responsibility for the accuracy of statements published in this Journal, excepting when those statements are contained in an official report of the Council.

Persons desirous of joining the M. B. A. can do so on application to the Director, The Laboratory, Citadel Hill, Plymouth. Members pay One Guinea annually, or a Composition Fee of Fifteen Guineas for Life Membership. Founders pay £100. Governors (Life-Members of Council) £500. Members of the Association have the following rights and privileges: they elect annually the Officers and Council; they receive the Journal of the Association free by post; they are admitted to view the Laboratory at Plymouth, and may introduce friends with them; they have the first claim to rent a place in the Laboratory for research, with use of tanks, boats, &c., and have access to the books in the Library at Plymouth.

For a statement of the objects and organization of the Association, see page 3 of the wrapper.

Members of the Association are requested to pay the Subscription for the year 1888-89 to the Honorary Treasurer, Frank Crisp, Esq., 6, Old Jewry, London, E.C.