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Abstract: Ocean colour (OC) remote sensing is an important tool for monitoring phytoplankton in 
the global ocean. In optically complex waters such as the Baltic Sea, relatively efficient light absorp-
tion by substances other than phytoplankton increases product uncertainty. Sentinel-3 OLCI-A, Su-
omi-NPP VIIRS and MODIS-Aqua OC radiometric products were assessed using Baltic Sea in situ 
remote sensing reflectance (𝑅௥௦) from ferry tracks (Alg@line) and at two Aerosol Robotic Network 
for Ocean Colour (AERONET-OC) sites from April 2016 to September 2018. A range of atmospheric 
correction (AC) processors for OLCI-A were evaluated. POLYMER performed best with <23 relative 
% difference at 443, 490 and 560 nm compared to in situ 𝑅௥௦ and 28% at 665 nm, suggesting that 
using this AC for deriving Chl a will be the most accurate. Suomi-VIIRS and MODIS-Aqua under-
estimated 𝑅௥௦ by 35, 29, 22 and 39% and 34, 22, 17 and 33% at 442, 486, 560 and 671 nm, respectively. 
The consistency between different AC processors for OLCI-A and MODIS-Aqua and VIIRS prod-
ucts was relatively poor. Applying the POLYMER AC to OLCI-A, MODIS-Aqua and VIIRS may 
produce the most accurate 𝑅௥௦ and Chl a products and OC time series for the Baltic Sea. 

Keywords: Sentinel-3; OLCI; validation; remote sensing reflectance; atmospheric correction; Baltic 
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1. Introduction 
The Ocean and Land Colour Instrument onboard the Sentinel-3 (OLCI) satellite was 

launched in 2016 and is the latest mission to provide global maps of Chlorophyll a (Chl a) 
[1]. Chl a is estimated from reflectance at the sea surface, which is derived from the top-
of-atmosphere (TOA) radiance after AC to remove absorption and molecular scattering 
by atmospheric aerosols, water surface glint and whitecaps, as well as signals from neigh-
bouring land, cloud, snow or ice. Accurate AC is crucial in providing the highest quality 
ocean colour Chl a concentrations that can then be used operationally, to assess water 
quality and to quantify the role and dynamics of phytoplankton under the influence of 
climate change. The Copernicus Sentinel-3 mission in synergy with the NASA and NOAA 
ocean colour missions (MODIS-Aqua, VIIRS and PACE), are the principal platforms to 
monitor changes in phytoplankton blooms and biomass from space over the next two 
decades. Determining the accuracy of 𝑅௥௦ is paramount in providing precise Chl a con-
centrations from satellite ocean colour [2]. The accuracy of OLCI Chl a has been assessed 
for some open-ocean areas, where an underestimate in OLCI 𝑅௥௦ has been reported [3]. 
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In coastal areas, where the signal also comes from total suspended matter (TSM) and col-
oured dissolved organic matter (CDOM) as well as Chl a, a systematic underestimation of 
the second reprocessing (pb 2) of OLCI water-leaving radiance (𝐿௪) in both blue and red 
spectral regions has been reported [4–7]. This is linked to errors in the AC aerosol type 
and load [7]. There is a need to extend the validation of OLCI to optically complex, ex-
treme absorbing and scattering waters, where the retrieval of 𝐿௪ can be even more prob-
lematic [8]. The high absorption, low scattering waters of semi-enclosed seas, such as the 
Baltic, Black and Yellow Seas, Arctic Ocean and coastal regions adjacent to the largest 
rivers such as the Amazon, are some of the most challenging regions to obtain accurate 
and reliable ocean colour data. There is therefore an ongoing need to assess the accuracy 
of OLCI, MODIS-Aqua and VIIRS in these regions. 

The Baltic Sea receives large river input of ~14,000 m3/s per year [9,10] from the sur-
rounding land masses (Sweden, Finland, Russia, Estonia, Latvia, Lithuania, Poland, Ger-
many), which carries high nitrogen and phosphorus concentrations into the basin causing 
widespread eutrophication and pollution. This also makes CDOM absorption coefficients 
(aCDOM) high, which at 440 nm can exceed >1.0 m−1 [11,12]. This, coupled with relatively 
low sun elevation, results in very low 𝑅௥௦ at short visible wavelengths that contribute to 
only 0.4% of the TOA radiance, compared to 9.8% for the open ocean [13]. The blue-to-
blue-green 𝑅௥௦ ratios used to derive Chl a in oceans do not work in these waters. Diagnos-
tic phytoplankton absorption and fluorescence signals can only be observed in the red-to-
near-infra-red, which is less affected by aCDOM [14–16]. 

Historically, there have been some studies on the performance and accuracy of Sea-
WiFS, MODIS-Aqua and MERIS 𝐿௪ or 𝑅௥௦ in the Baltic Sea [17–22]. Further work devel-
oped regional specific Chl a algorithms for MERIS in the Baltic Sea using novel neural 
network type AC processors [19,23,24]. Few studies to date have evaluated OLCI in the 
Baltic Sea [7,25,26] or other regions where aCDOM dominates 𝑅௥௦. With the recent third re-
processing of Sentinel-3A (OLCI-A), it is timely to evaluate these products in these envi-
ronments. AERONET-OC has made a major contribution to ocean colour validation due 
to the free availability of high-quality data from autonomous systems established at a 
wide variety of sites [27–29]. The AERONET-OC platforms in the Baltic Sea have aided 
the global assessment in highly absorbing waters, of all major ocean colour missions 
[27,28]. The addition of a new suite of AERONET-OC radiometers since 2018 has extended 
the number of spectral bands from 9 to 12 to match those available from OLCI [29]. These 
measurements do not capture the performance of 𝑅௥௦ products over the entire Baltic re-
gion, under highly variable atmospheric and water conditions dominated by aCDOM. A 
growing network of autonomous hyperspectral radiometers deployed on research vessels 
and ships of opportunity can be used to fill the spatial and spectral data gaps. This paper 
addresses the challenges of quantifying the relative accuracy of 𝑅௥௦ from satellite sensors 
in CDOM-rich waters, identifying the most accurate AC processor for OLCI-A specifi-
cally, and the consistency of MODIS-Aqua and VIIRS compared to OLCI-A. For the base-
line comparison, autonomous radiometry sources are used to capture the variability in 
Chl a and aCDOM over the region to evaluate the performance of OLCI-A processors pb 2, 3 
(OL_L2M.003.00), C2R-CC (vSnap8) and POLYMER (v4.13). 

2. Materials and Methods 
2.1. In Situ Radiometric Data 

The assessment of OLCI-A, VIIRS and MODIS-Aqua 𝑅௥௦ products was undertaken 
using data from AERONET-OC and Alg@line from April 2016 to September 2018 (Figure 
1). The two AERONET-OC sites are the Gustaf Dalén Lighthouse Tower (GDL) in the 
northern Baltic Proper established in 2005 and the Helsinki Lighthouse Tower (HLT) in 
the Gulf of Finland established in 2006, for which the sensors, platforms and data pro-
cessing are described in detail in Zibordi et al. [28,29]. Since 2018, the deployment of CE-
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318T 12-channel radiometer systems within the AERONET-OC network provides addi-
tional spectral bands centred at 400, 510, 620 and 779 nm for marine water sites and 681 
and 709 nm at inland water sites [29]. The CE-318T systems also increased the frequency 
of measurement sequences from 30 min to 5 min to provide a finer temporal scale resolu-
tion to detect environmental perturbations [29]. For the GDL and HLT data in this study, 
the CE-318 9-channel radiometer systems were used, which measures at the spectral 
bands corresponding to MODIS-Aqua and VIIRS. AERONET-OC Level 2.0 data at GDL 
and HLT were obtained from http://aeronet.gsfc.nasa.gov (accessed on 24 October 2021). 
The AERONET-OC waveband centres are 412, 439, 500, 554, 675 and 870 nm for the GDL 
and 413, 441, 491, 555, 668 and 870 nm for the HLT. To match with the spectral bands of 
OLCI-A, MODIS-Aqua and VIIRS, water-leaving radiance corrected for viewing angle de-
pendence and the effects of the non-isotropic distribution of the in-water radiance field 
(𝐿௪ே-f/Q) were band-shift corrected following Zibordi et al. [28], based on a regional bio-
optical algorithm to reduce inter-band uncertainties. The corresponding 𝑅௥௦ were com-
puted from the band-shifted 𝐿௪ே-f/Q data using the extra-atmospheric solar irradiance 
(𝐹଴) for each waveband as in Qin et al. [30] and including the NIR band at 709 nm, which 
was linearly interpolated from the 665 nm band. 

The Alg@line data set is described in [31] and the methods for processing shipborne 
data are described in detail in [30]. In brief, the system consists of three RAMSES spectro-
radiometers (TriOS, Rastede, Germany) mounted near the bow of the ferries M/S Finmaid 
and Transpaper. The azimuth angle of the instruments was kept as close to 135° and al-
ways > 90°, using a stepper motor platform with GPS time and location to compensate for 
the vessel heading [32]. The fingerprint method was used to determine the reflectance of 
sky radiance at the air–water interface (ρs) [32,33]. To eliminate spurious observations, the 
data underwent a rigorous screening procedure based on assumptions of the spectral 
shapes of reflectance in these highly absorbing and weakly scattering waters [30]. For 
these waters, we are also interested in the performance of OLCI in the NIR, which can be 
used in band ratios to estimate the Chl a concentration [16]. It is generally assumed in 
waters with low particle scattering that NIR reflectance is close to zero [34]. This assump-
tion generally holds in the Baltic Sea outside peak productivity periods or close to rivers 
and shallow areas, when there can be higher concentrations of phytoplankton, detrital 
material or sediment in surface waters. Additionally, residual surface water effects such 
as spray, sun glint and whitecaps will elevate 𝑅௥௦ in the visible and NIR. Individual spec-
tra were inspected to evaluate the shape of the NIR signal for signs of high particle scat-
tering. When no elevated particle scattering was observed, as evidenced by a spectrally 
flat NIR signal, any offset observed in the NIR was assumed to be caused by spectrally 
neutral effects and corrected for by subtracting the mean 𝑅௥௦(850 − 900) from the entire 
spectrum [30]. 
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Figure 1. Locations of in situ data from the research vessel (blue–green–yellow transects) and two 
AERONET-OC sites (red triangles): Gustaf Dalen Lighthouse Tower (GDL) and Helsinki Light-
house Tower (HLT). The colour scale indicates the number of days from the start of the period for 
which data are shown (0 = 17 January 2016). 

2.2. OLCI-A, VIIRS and MODIS-Aqua Processors 
OLCI-A full-resolution data L1B and L2 products were downloaded from the EU-

METSAT Data Centre and Copernicus Online Data Access (CODA) portals respectively. 
OLCI-A processing baseline (pb) 2.23–2.29 is described in [35] and the associated Algo-
rithm Theoretical Baseline Document (https://www.eumetsat.int/ocean-colour-resources 
(accessed on 24 October 2021)). The AC for pb OL_L2M.003.00 is described in collection 
report 3 (https://www.eumetsat.int/media/47794 (accessed on 24 October 2021)) and in-
cludes updates to system vicarious calibration gains, bright pixel correction, cloud mask-
ing [36], flags and whitecap correction [37,38]. 

The coupled ocean–atmosphere algorithm POLYMER v4.13 models the contribution 
to TOA reflectance as a polynomial and a forward bio-optical model is used for the water 
component [39]. The coastal aerosol model C2R-CC [40] uses coastal AERONET-OC meas-
urements [41], and a parameterised version of the successive order of scattering technique 
to compute the atmospheric radiative transfer [42], which is implemented as a neural net-
work (NN) regression. The latest NASA Ocean Colour Reprocessing (R2018.0) for 
MODIS-Aqua and Suomi-VIIRS were used. Each of the AC processors applied to OLCI-A 
data uses a different system vicarious calibration (SVC). The OLCI pb 2.23–2.29 uses a 
climatological SVC [43] whereas OL_L2M.003.00, MODIS-Aqua and VIIRS implement 
SVC based on match-ups with MOBY. POLYMER uses an in situ based SVC designed for 
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ocean–atmosphere coupled algorithms [44]. In order to exclude unreliable satellite meas-
urements for each product, a set of recommended quality flags for each AC processor 
(Table 1) were applied as a mask to each pass. 

Table 1. Flags used to process each ocean colour 𝑅௥௦ product. If any of the flags listed were raised, 
data for each product were not included. 

Processor Flags Implemented 

OLCI pb 2.23–2.29 

CLOUD, CLOUD_AMBIGUOUS,  CLOUD_MARGIN,  INVALID, COSMETIC, 
SATURATED, SUSPECT, HISOLZEN, HIGHGLINT, SNOW_ICE, AC_FAIL, WHITECAPS, 
NOT_ABSO_D, ANNOT_MIXR1, ANNOT_TAU06, RWNEG_O2, RWNEG_O3, 
RWNEG_O4, RWNEG_O5, RWNEG_O6, RWNEG_O7, RWNEG_O8 

OLCI pb OL_L2.003.00 

CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, INVALID, COSMETIC, 
SATURATED, SUSPECT, HISOLZEN, HIGHGLINT, SNOW_ICE, AC_FAIL, WHITECAPS, 
ADJAC, RWNEG_O2, RWNEG_O3, RWNEG_O4, RWNEG_O5, RWNEG_O6, RWNEG_O7, 
RWNEG_O8. 

OLCI POLYMER v4.13 

Processor flags: INVALID, NEGATIVE_BB, OUT_OF_BOUNDS, EXCEPTION, 
THICK_AEROSOLS, HIGH_AIR_MASS, IDEPIX  
Pixel classification flags: IDEPIX_INVALID, IDEPIX_CLOUD, 
IDEPIX_CLOUD_AMBIGUOUS, IDEPIX_CLOUD_SURE, IDEPIX_CLOUD_BUFFER, 
IDEPIX_CLOUD_SHADOW, IDEPIX_SNOW_ICE, IDEPIX_BRIGHT, IDEPIX_WHITE 

OLCI C2R-CC vSnap8 
Processor flags: CLOUD_RISK, RHOW_OOS, RTOSA_OOS, RTOSA_OOR, RHOW_OOR 
Quality flags: BRIGHT, STRAYLIGHT_RISK, INVALID, COSMETIC, SUN_GLINT_RISK, 
DUBIOUS, LAND 

MODIS-Aqua/Suomi-
VIIRS 

ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, STRAYLIGHT, CLDICE, COCCOLITH, 
HISOLZEN, LOWLW, CHLFAIL, NAVWARN, MAXAERITER, ATMWARN, NAVFAIL 

2.3. Match-Up Procedure and Statistics 
The method used for match-up analysis follows [45], and was adapted for high-fre-

quency data following [46]. Satellite over-passes were within ±1 h of the in situ Alg@line 
and AERONET-OC measurements. The in situ data (1 min bins) were matched to individ-
ual satellite pixels. From the 3 × 3 pixels, the centre pixel was used for the validation pro-
cedure. All in situ data within a specific pixel were averaged, so that each matchup has an 
independent set of in situ data and there was no overlapping in situ data between match-
ups. The validation statistics were computed on the centre pixel, to ensure that each 
matchup uses an independent satellite pixel. Additionally, the standard deviation around 
the matchup (from the 3 × 3 box) was computed as an index of the homogeneity of the 
matchup. The number of granules for each sensor was 38 for OLCI-A, 40 for VIIRS and 7 
for MODIS-Aqua. The minimum distance between match-ups in the satellite image is re-
flected in the resolution of each sensor which for OLCI-A is 300 m, MODIS-Aqua is 1 km 
and VIIRS is 750 m. The satellite data were extracted from a 3 × 3-pixel box centred on the 
in situ observations and were excluded if the median coefficient of variation (CV) was 
>0.15 (from 412 to 555 nm) or when <50% of pixels were valid [45]. The CV criterion also 
removed data within 5 min of the satellite overpass, which contained the ship in one of 
the pixels. The following statistical metrics were used to evaluate algorithm performance 
following [47,48]: type-II regression slope (S), intercept (I), Pearson correlation coefficient 
(r), root-mean-square difference (RMSD—Ψ), the bias (δ), bias-corrected root-mean-
square error (Δ) and the relative percentage difference (RPD). 

3. Results 
The hyperspectral 𝑅௥௦ from the shipborne measurements covered a wide range of 

signal amplitudes, varying from <0.002 sr−1 at 560 nm during April, to >0.01 sr−1 in June 
and August (Figure 2). The change in 𝑅௥௦ spectral shape reflected the seasonal variability 
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in these highly absorbing, weakly scattering waters. In April and May, the low signal and 
flattening of the 𝑅௥௦ spectra is a consequence of the Chl a and aCDOM concentrations during 
spring. The more prominent 𝑅௥௦ peak at 560 nm during June to August corresponds to 
the period of summer phytoplankton blooms when the largest number of 𝑅௥௦  spectra 
were available. The radiometric assessment of satellite products is therefore weighted to-
wards late spring and summer, with the shipborne observations observing a wider variety 
of phytoplankton blooms and degrees of vertical mixing (thermal stratification is common 
in summer). The matchup procedure led to N = 208 in situ 𝑅௥௦ coincident with OLCI-A 
pb2, OL_L2M.003.00, C2R-CC and POLYMER (N = 199 for Alg@line, N = 9 for AERONET-
OC), 475 with Suomi-VIIRS (N = 429 for Alg@line, N = 46 for AERONET-OC) and 177 (N 
= 122 for Alg@line, N = 45 for AERONET-OC) with MODIS-Aqua (Table 2, Figures 3 and 
4). The AERONET-OC data consistently had lower 𝑅௥௦(λ) values than the Alg@line data 
(Figure 3), reflecting differences in biogeochemical water constituents between the coastal 
AERONET-OC sites and the wider range of environmental conditions encountered along 
the deeper water Alg@line ferry transects (Figure 1). OLCI-A pb 2.23–2.29, OL_L2M.003.00 
and Suomi-VIIRS tended to underestimate 𝑅௥௦ at all visible bands. The spectral shape of 𝑅௥௦ for these processors were similar in the green and red to in situ 𝑅௥௦, with some spec-
tral differences in the blue with either an uncharacteristic peak at 412 nm or negative val-
ues (Figure 3). 

 
Figure 2. In situ remote sensing reflectance spectra (𝑅௥௦(𝜆)) collected on Alg@line campaigns in the 
Baltic Sea in 2016 during (A) April, (B) May, (C) June, (D) July, (E) August and (F) September. 
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Figure 3. Remote sensing reflectance spectra, Rrs(λ), for (a) in situ AERONET-OC; (b) in situ 
Alg@line; (c) OLCI-A processing baseline 2.23–2.29; (d) OLCI-A processing baseline 
OL_L2M.003.00; (e) OLCI-A POLYMER v4.13; (f) OLCI-A C2R-CC vSnap8; (g) Suomi-VIIRS R2018; 
(h) MODIS-Aqua R2018. Satellite Rrs(λ) were within ± 1 h of in situ Rrs(λ). The orange solid line is 
the mean and the dashed lines are ±1 standard deviation for each data set. 

For OLCI-A pb 2.23–2.29 at 412 and 443 nm, there was a consistent underestimate at 
low values <0.001 sr−1 corresponding to both in situ AERONET-OC and Alg@line 𝑅௥௦ and 
an overestimate at values >0.0015 sr−1 corresponding to the in situ Alg@line data only (Fig-
ure 4). At 560 nm with an increase in the 𝑅௥௦ signal, pb 2.23–2.29 performed better, and 
had zero δ, but high Ψ and Δ, indicative of the high scatter that can be seen in Figure 4. 
At 665 and 709 nm, Ψ and Δ were lower but δ increased, caused by the tendency to un-
derestimate 𝑅௥௦ at at these bands (Figure 4), which is reflected in the negative I and δ 
(Table 2). Generally the scatter around the 1:1 for OL_L2M.003.00 was similar to pb 2.23–
2.29, but the offset from the 1:1 was greater (Figure 4), especially at 412 and 443 nm, which 
resulted in the largest S, I, Ψ and Δ and smallest r of all the AC processors. At 412 nm and 
443 nm, the RPD for OL_L2M.003.00 was ~92 and 60%, respectively, which is the highest 
of all of the ACs evaluated. Similarly, for OL_L2M.003.00 at 𝑅௥௦(674) and 𝑅௥௦(709), the S 
was the lowest of all the AC processors (Table 2). 
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Figure 4. Scatter plots of satellite Rrs versus in situ Rrs for OLCI-A processing baseline 2.23–2.29 (red 
points and dashed line), OLCI-A processing baseline OL_L2M.003.00 (yellow points and dashed 
line), at 412, 442, 490, 560, 665 and 709 nm. Crosses are in situ AERONET-OC HLT Rrs, stars are in 
situ AERONET-OC GDL Rrs, squares are in situ Alg@line Rrs. 

Table 2. Statistical results from the comparison between in situ and OLCI-A, pb 2.23–2.29 and 
OL_L2M.003.00 𝑅௥௦(𝜆). The metrics were computed using type-II regression for the slope (S), inter-
cept (I), Pearson correlation coefficient (r), root-mean-square difference (RMSD—Ψ), the bias (δ), 
bias-corrected root-mean-square error (Δ) and the relative percentage difference (RPD). Metrics for 
the processors with the best performance at each band are given in bold. N is the number of match-
ups, with TOT being the total, GDL is the AERONET-OC site the Gustav Dalen Lighthouse, HLT is 
the AERONET-OC site the Helsinki lighthouse and Ferry are the Alg@line data. 

Statistical 
Quantities 

OLCI-A pb 2.23–2.29 N = 208 TOT N = 5 GDL N = 4 HLT N = 199 Ferry 
412 nm 443 nm 490 nm 560 nm 665 nm 709 nm 

S 4.182 1.841 0.83 0.663 0.75 0.788 
I −0.007 −0.003 0.0001 0.001 0 −0.0001 
r 0.29 0.4 0.58 0.61 0.59 0.55 
Ψ 0.0015 0.0011 0.0007 0.0007 0.0003 0.0003 
δ −0.001 −0.0009 −0.0004 0 −0.0002 −0.0002 
Δ 0.0009 0.0007 0.0006 0.0007 0.0002 0.0002 

RPD 90.64 55.13 24.14 17.33 33.48 32.23 
 OLCI-A OL_L2M.003 N = 208 TOT N = 5 GDL N = 4 HLT N = 199 Ferry 

Statistical 
Quantities 412 nm 443 nm 490 nm 560 nm 665 nm 709 nm 

S 12.984 4.402 0.883 0.524 0.42 0.374 
I −0.02 −0.008 −0.0004 0.001 0.0002 0.00002 
r 0.13 0.21 0.44 0.55 0.47 0.45 
Ψ 0.0015 0.0012 0.001 0.0007 0.0005 0.0004 
δ −0.0009 −0.0008 -0.0007 −0.0003 −0.0004 −0.0004 
Δ 0.0012 0.0009 0.0007 0.0007 0.0002 0.0002 

RPD 91.66 59.63 35.36 19.51 46.52 56.82 

The closest match to in situ 𝑅௥௦ from both AERONET-OC and Alg@line was OLCI-A 
POLYMER, (Figure 3), which at 412, 442, 560, 665 and 709 nm was within 30% (Table 3). 
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POLYMER also had the highest r, which is indicative of linear consistency between the in 
situ and satellite data (Figure 5). At 𝑅௥௦(412), OLCI-A POLYMER consistently outper-
formed the other ACs having the lowest Ψ, δ and Δ, which indicate low scatter around 
the 1:1, few outliers and no systematic bias, respectively (Table 3). OLCI-A POLYMER 
also had the lowest δ at 𝑅௥௦(490) and 𝑅௥௦(665), which is reflected in the tight fit and prox-
imity of the points to the 1:1 (Figure 5). For all bands, there was an underestimate at high 𝑅௥௦ values, which resulted in a low S, however (Table 3, Figure 5). POLYMER also exhib-
ited an uncharacteristic peak in the red towards 700 nm (Figure 3). C2R-CC tended to 
overestimate 𝑅௥௦ at all bands (Figure 5), and exhibited artefacts in the blue often with an-
other peak at 490 nm, which does not correspond to either of the in situ datasets, plus it 
had a high offset from zero across the spectrum (Figure 3). This gave rise to the high S, I 
and Ψ and low r at blue and blue-green bands resulting in RPD of between 66 and 80% 
(Table 3). The performance of C2R-CC improved at 560, 665 and 709 nm, and the S and r 
were closer to 1 and I, Ψ, δ and Δ were all lower and the RPD was between −1 and 37% 
(Table 3). At 560, 665 and 709 nm, even though the Ψ and Δ were higher or similar for 
C2R-CC compared to POLYMER, the S were closer to the 1:1 and I were lower (Table 3). 

 
Figure 5. Scatter plots of satellite Rrs versus in situ Rrs for OLCI-A POLYMER v4.13 (black points and 
dashed line), OLCI-A C2R-CC vSnap8 (purple points and dashed line) at 412, 442, 490, 560, 665 and 
709 nm. Crosses are in situ AERONET-OC HLT Rrs, stars are in situ AERONET-OC GDL Rrs, squares 
are in situ Alg@line Rrs. 
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Table 3. Statistical results from the comparison of in situ and OLCI-A CR2-CC vSnap8 and POLY-
MER v4.13 𝑅௥௦(𝜆). The metrics were computed using type-II regression for the slope (S), intercept 
(I), Pearson correlation coefficient (r), root-mean-square difference (RMSD—Ψ), the bias (δ), bias-
corrected root-mean-square error (Δ) and the relative percentage difference (RPD). Metrics for the 
processors with the best performance at each band are given in bold. N is the number of match-ups, 
with TOT being the total, GDLT is the AERONET-OC site the Gustav Dalen Lighthouse, HLT is the 
AERONET-OC site the Helsinki lighthouse and Ferry are the Alg@line data. 

 OLCI-A C2R-CC N = 208 TOT N = 5 GDL N = 4 HLT N = 199 Ferry 
Statistical 
Quantities 412 nm 443 nm 490 nm 560 nm 665 nm 709 nm 

S 1.923 2.353 2.103 1.295 0.918 0.741 
I −0.0007 −0.002 −0.002 −0.00002 0.0002 0.0002 
r 0.24 0.31 0.39 0.53 0.60 0.6 
Ψ 0.0012 0.0015 0.0018 0.0013 0.0003 0.0002 
δ 0.001 0.001 0.002 0.001 0.0001 0 
Δ 0.0007 0.0008 0.0009 0.0008 0.0002 0.0002 

RPD 80.33 75.31 66.52 37 29.96 −0.71 
 OLCI-A POLYMER  N = 208 TOT N = 5 GDL N = 4 HLT N = 199 Ferry 

Statistical 
Quantities 

412 nm 443 nm 490 nm 560 nm 665 nm 709 nm 

S 0.356 0.262 0.338 0.464 0.46 0.601 
I 0.0008 0.001 0.001 0.002 0.0004 −0.00003 
r 0.59 0.54 0.6 0.56 0.55 0.38 
Ψ 0.0006 0.0005 0.0007 0.0007 0.0003 0.0004 
δ −0.0004 −0.0002 −0.0004 −0.0001 −0.0001 −0.0003 
Δ 0.0004 0.0005 0.0006 0.0007 0.0002 0.0002 

RPD 30.06 22.53 21.17 17.57 25.87 26.95 

Suomi-VIIRS returned the highest number of match-ups with 𝑅௥௦(λ) values covering 
a higher range than the other ACs (Figure 6), but exhibited a consistent underestimate as 
indicated by the comparatively high Ψ, δ and Δ (Table 4), especially at higher 𝑅௥௦ values. 
The RPD for VIIRS varied from 22% at 560 nm to 38% at 671 nm and 67% at 412 nm (Table 
4). For MODIS-Aqua the spectra reproduced the shape of the in situ AERONET-OC data 
well, but not for the Alg@line data (Figure 6). MODIS-Aqua both overestimated and un-
derestimated 𝑅௥௦ (412) and 𝑅௥௦ (443), as conveyed by the high S, I and RPD (Table 4). 
MODIS-Aqua performed better at 488, 560 and 667 nm with comparatively low I, Ψ, δ and 
Δ and S close to 1, especially at 560 and 667 nm (Table 4). 
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Figure 6. Scatter plots of satellite Rrs versus in situ Rrs for Suomi-NPP VIIRS (green points and dashed 
line), MODIS-Aqua (blue points and dashed line) at 412, 442, 490, 560, 665 and 709 nm. Crosses are 
in situ AERONET-OC HLT Rrs, stars are in situ AERONET-OC GDL Rrs, squares are in situ Alg@line 
Rrs. 

Table 4. Statistical results from the comparison of in situ and Suomi-VIIRS and MODIS-Aqua 𝑅௥௦(𝜆). The metrics were computed using type-II regression for the slope (S), intercept (I), Pearson 
correlation coefficient (r), root-mean-square difference (RMSD—Ψ), the bias (δ), bias-corrected root-
mean-square error (Δ) and the relative percentage difference (RPD). Metrics for the processors with 
the best performance at each band, are given in bold. N is the number of match-ups, with TOT being 
the total, GDLT is the AERONET-OC site the Gustav Dalen Lighthouse, HLT is the AERONET-OC 
site the Helsinki lighthouse and Ferry are the Alg@line data. 

 VIIRS N = 475 TOT N = 14 GDL N = 32 HLT N = 429 Ferry 
Statistical 
Quantities 412 nm 443 nm 486 nm 560 nm 671 nm 

S 0.871 0.692 0.6 0.623 0.564 
I −0.0005 0.00008 0.0004 0.0006 0.00006 
r 0.58 0.72 0.87 0.92 0.88 
Ψ 0.0011 0.0009 0.001 0.0012 0.0005 
δ −0.0008 −0.0006 −0.0008 −0.0009 −0.0004 
Δ 0.0008 0.0006 0.0006 0.0008 0.0003 

RPD 66.81 34.94 28.86 22.19 38.36 
 MODIS-A N = 177 TOT N = 16 GDL N = 39 HLT N = 122 Ferry 

Statistical 
Quantities 

412 nm 443 nm 488 nm 560 nm 667 nm 

S 6.968 1.871 0.493 0.918 1.076 
I −0.006 −0.001 0.0007 −0.0002 −0.0003 
r 0.13 0.28 0.4 0.77 0.91 
Ψ 0.0007 0.0005 0.0005 0.0005 0.0002 
δ 0 −0.0001 −0.0002 −0.0004 −0.0002 
Δ 0.0007 0.0005 0.0004 0.0003 0.0001 

RPD 83.76 34.14 22.55 16.87 32.63 
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Composite ocean colour satellite images from OLCI-A using the four ACs, MODIS-
Aqua and VIIRS for the Baltic Sea at 560 nm were processed for the period from 11 to 17 
June 2016 (Figure 7). OLCI-A C2R-CC returned the highest 𝑅௥௦(560) followed by POLY-
MER and OL_L2M.003.00, especially in the southern Baltic Sea. C2R-CC also provided the 
greatest pixel coverage over the whole area during this period, whereas pb 2-23-2029 and 
OL_LM.0003.00 had the lowest coverage (Figure 7), presumably due to differences in the 
cloud mask flags. The MODIS-Aqua image had the lowest 𝑅௥௦(560). For each processor, 
data were extracted for 𝑅௥௦(443), 𝑅௥௦(560) and 𝑅௥௦(665) at every 20 km from north–south 
and east–west transects (shown as red lines on pb 2.23-2.29 image in Figure 7), to compare 
the different ACs over large spatial areas of the Baltic Sea. The pattern was the same for 
each waveband and transect: OLCI-A POLYMER and OL_L2M.003.00 were closest to the 
in situ 𝑅௥௦ ferry data, whereas OL_L2M.003.00, MODIS-Aqua and VIIRS were closest to 
in situ AERONET-OC 𝑅௥௦. C2R-CC consistently returned the highest values, especially 
for 𝑅௥௦(443) in the southern part of the transect and for 𝑅௥௦(665) in the northern part of 
the transect. OLCI-A pb 2 and OL_L2M.003.00 had the lowest 𝑅௥௦ along both transects 
and especially at 𝑅௥௦(443) for OLCI-A pb 2. MODIS-Aqua and VIIRS were similar and 
generally lower than OLCI-A POLYMER. The exception to this was for POLYMER 𝑅௥௦(665) that had a cluster of points at the northern-most part of the north-south transect 
which were lower than the in situ 𝑅௥௦(665). 

 
Figure 7. Composite 𝑅௥௦(λ) images for each AC for the Baltic Sea for the period from 11 to 17 June 
2016 are shown on the left and right panels. On the left panel, from top to bottom the images are for; 
OLCI-A pb 2, POLYMER v4.13 and C2R-CC v2.0. On the right panel, from top to bottom, the images 
are for OLCI-A OL_L2M.003.00, VIIRS R2018 and MODIS-Aqua R2018. Centre panels are compari-
sons of 𝑅௥௦(λ) at 443, 560 and 665 nm for each AC along two transects shown as red lines in the top 
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left image. The data were extracted at every 20 km for each AC model. The centre-left data are 𝑅௥௦(λ) 
for the different ACs extracted from the north-south transect from the Gulf of Bothmia to the Baltic 
Proper (shown in the top left pb 2.23–2.29 image). The centre-right data are 𝑅௥௦(λ) for the different 
ACs for the east-west transect from the head of the Gulf of Finland through the HLT to the GDL. 
For these transects, The black points are in situ 𝑅௥௦(λ), yellow triangles are OLCI-A pb 2.23–2.29, 
red circles are OL_L2M.003.00, purple squares are OLC-A C2R-CC, grey triangles are OLCI-A POL-
YMER v4.13, green circles are VIIRS and blue squares are MODIS-Aqua. 

4. Discussion 
From the dawn of SeaWiFS through the maturing ocean colour age of MODIS-Aqua 

and MERIS, these satellite sensors have provided accurate Chl a retrieval in open-ocean, 
shelf-seas and many coastal environments for the past two decades [49,50]. Regions with 
high CDOM however, pose a particular challenge due to low signal amplitude with over-
lapping absorption signatures of CDOM and Chl a [51]. In the Baltic Sea, previous studies 
showed that SeaWiFS and MODIS-Aqua underestimated 𝐿ௐே in the blue and red and 
that the uncertainties and bias were high [52], potentially resulting in an overestimate in 
Chl a. This is due to the low 𝐿ௐே signal under the influence of high CDOM and an over-
estimate in the aerosol optical depth. AC models need to capture and reproduce this large 
variation in both atmospheric and oceanic conditions. 

The atmospheric masses over the region are influenced by both land and marine aer-
osols, which are highly variable. In the central part of the Baltic Sea, the average aerosol 
optical thickness is 1.3 [53]. The burning of agricultural straw in northern Europe and 
Russia during April is thought to increase the aerosol optical thickness [54]. The surface 
water inherent optical properties of the Baltic Sea are dominated by CDOM with the sec-
ondary, seasonal spring–summer influence of phytoplankton [54]. The variability in the 
surface water conditions is reflected in the spectral shape of the in situ 𝑅௥௦(λ), with the 
high CDOM causing a flattening of the spectra at 412 nm (Figure 2), low values at 443 nm, 
a high peak at 560 nm indicative of the spring bloom and a smaller peak at 709 nm due to 
a higher backscatter from small particles, such as cyanobacteria or TSM (Figure 2). Spring 
bloom Chl a in the Baltic Sea can be as high as 10 to 120 mg m−3 whereas during summer 
the range in Chl a is typically 1 to 3 mg m−3, but can increase to between 5 and 30 mg m−3 
in July and August when cyanobacteria bloom [24]. Some estuarine locations around the 
Baltic Sea can be influenced by TSM [54]. The variability in CDOM and TSM at river 
mouths is expected to decrease 𝑅௥௦(λ) at blue and blue-green bands as TSM and the ratio 
of backscatter to absorption increases, which would produce a higher slope in the 𝑅௥௦(λ) 
spectra from the blue to the green. An increase in TSM loads and therefore backscatter 
would also be observed in an increase in the offset in 𝑅௥௦(λ) in the NIR (Figure 2). For the 
match-ups in this study, the ferry tracks mostly traverse the deeper waters of the Baltic 
Sea and the AERONET-OC sites are located away from major rivers (Figure 1). The AER-
ONET-OC sites are located in the northern Baltic Proper and the Gulf of Finland where 𝑎஼஽ைெ(412) can be between 0.8 to 1.6 m−1 [55]. The AERNOT-OC 𝑅௥௦(λ) provided 4% of 
the total match-ups with OLCI-A, 10% with VIIRS and 31% with MODIS-Aqua (Tables 2–
4). The lower 𝑅௥௦(λ) in the blue and green at the AERONET-OC stations especially at the 
HLT (Figure 3a,b), mirrors the high absorption by CDOM and low scattering at these sites 
[12,56]. The riverine input of CDOM is particularly high in the eastern Gulf of Finland 
[11,12,57], and follows a dilution gradient towards the northern Baltic Proper, with the 
HLT located approximately halfway. The highest 𝑎஼஽ைெ (412) in the Baltic Sea can be 
found further east in the Gulf of Finland, towards St Petersburg in Neva Bay (not shown 
in Figure 1), where values are generally >2.5 m−1 and can reach 15 m−1 [11,12]. 

The objective of deploying autonomous measurement systems on the ferries was to 
provide more 𝑅௥௦(λ) data at other sites, to be able to capture the variability in both atmos-
pheric and water conditions from Bothnian Bay in the north to the Bornholm Basin in the 
south (Figure 1). The ferry data provided the largest number of match-ups with the ocean 
colour sensors that were assessed (Tables 2–4). Most of the match-ups were between 54 
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and 56° N in the Arkona and Bornholm basins (Figure 1), where 𝑎஼஽ைெ(412) is typically 
between 0.4 and 1.1 m−1. In the deeper water, observed during the day-lit part of the 
Alg@line stations, the 𝑅௥௦(λ) signal in the green was far higher (Figure 3b), while the num-
ber of observations collected here was relatively small. Towards the southern Baltic Sea 𝑎஼஽ைெ(412) is lower (<0.6 m−1) while TSM and the associated scattering increase, causing a 
pronounced increase in 𝑅௥௦(560) [54]. There are large areas in the central part of the Baltic 
Sea where 𝑎஼஽ைெ(412) remains fairly homogeneous [56]. In the north in the Gulf of Both-
nia, 𝑎஼஽ைெ(412) can be >1.8 m−1 [54,56], which correspond with the lowest 𝑅௥௦(λ) in the 
Alg@line data (Figure 3b). Towards the southern Baltic Sea 𝑎஼஽ைெ(412) is lower (<0.6 m−1) 
while Chl a and the associated scattering increases which causes a pronounced increase in 𝑅௥௦(560) [54] as seen in Figure 3b. 

The precursor ocean colour satellite sensor to OLCI was MERIS, which had similar 
bands and characteristics. At the two AERONET-OC sites in the Baltic Sea, Zibordi et al. 
[27] reported differences of +15 to +42% for MERIS over the spectral range 443 to 555 nm 
compared to SeaPRISM 𝐿ௐே (N = 41). Using an updated version of the MERIS AC MEGS 𝐿ௐே product, Zibordi et al. [52] subsequently reported (N = 12 to 39) that the accuracy at 
490, 560 and 665 nm was improved (ψ < 24%). Some studies reported that C2R-CC im-
proved the performance of MERIS 𝑅௥௦ [19,23,24]. For OLCI-A pb 2 in the Baltic Sea at the 
AERONET-OC sites (N = 42), Zibordi et al. [7] reported an underestimation in 𝐿ௐே at 
blue spectral bands due to an overestimate in the aerosol optical depth at 865 nm. In this 
study, we also observed underestimation by OLCI-A pb 2 in the blue at low 𝑅௥௦(λ) and 
an overestimate at the higher range of values (Figure 4). The updated OL_L2M.003.00 has 
been found to be more accurate than OLCI-A pb 2 in the oligotrophic waters of the Atlan-
tic Ocean [3]. In the Baltic Sea, the OL_L2M.003.00 product underestimated 𝑅௥௦(λ) in the 
blue especially at low values, and also overestimated 𝑅௥௦(λ) in the green, red and NIR at 
the higher range of values (Figure 4), which resulted in a low linear regression S and an 
increase in the RPD (Table 2). OL_L2M.003.00 was therefore less accurate than OLCI-A pb 
2 for the Baltic Sea. The OL_L2M.003.00 processing applies new system vicarious calibra-
tion gains based on the standard OC methodology [57], there has been an update to the 
bright pixel correction removing any residual water reflectance in the NIR, a spectrally 
resolved white cap correction has been applied which should improve the quality of the 
product at wind speeds between 6.3 and 12 ms−1 and an update to the cloud flags to re-
move potential pixels contaminated by clouds (https://www.eumetsat.int/media/47794 
(accessed on 24 October 2021)). The poor performance of OL_L2M.003.00 for the Baltic Sea 
region is possibly due to difficulties with the AC in reproducing correctly the signal from 
the atmosphere and the highly absorbing water when 𝑅௥௦(λ) (particularly in the blue) is 
so low, the aerosol model library not being optimal for these waters and that bright pixel 
scheme implemented does not converge properly, which caused the underestimate in the 
NIR (Figure 4). Assessing other AC processors for OLCI-A, we found that POLYMER is 
the most accurate with differences of 22, 17 and 28% at 443, 560 and 665 nm, respectively 
(N = 208). Similarly, off the south-east Canadian coast, where aCDOM(442) can reach 4 m−1, 
OLCI-A POLYMER has also been found to be the most accurate AC [4]. Alikas et al. [25] 
also found that POLYMER is the most accurate AC for the Baltic Sea and Estonian Lakes, 
but the difference was 57% at blue wavebands skewed by the data from the Lakeds. The 
superior performance of the version of POLYMER developed for OLCI in the Baltic Sea is 
probably due to (i) the polynomial atmospheric model reproduces well the scattering and 
absorption by the atmosphere under both sun glint and thin cloud conditions [39,58]; (ii) 
the quality of the atmospheric signal at high latitudes has been improved [44]; (iii) since 
the version of POLYMER developed for MERIS, there have also been updates to the water 
reflectance model for the derivation of both Chl a and the backscattering signal in both 
case 1 and 2 waters which also include bidirectional effects [44]. For the Baltic Sea, this 
may be somewhat surprising since the OLCI version of POLYMER has been calibrated 
more for Chl a and TSM dominated waters and is expected to perform less well in areas 
dominated by CDOM [4,44]. From the dispersion of the points at higher 𝑅௥௦(λ) values in 
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the blue and the resulting low S, clearly improvements in OLCI-A POLYMER are required 
for the Baltic Sea region. Overall the results for OLCI-A POLYMER are encouraging and 
imply that this AC could also be accurate in regions with similar IOPs and range in 𝑎஼஽ைெ(λ) such as the Amazon River plume (𝑎஼஽ைெ(355) 0.3–2.5 m−1) [59], the Black Sea 
(𝑎஼஽ைெ(325) 0.4–1.4 m−1) [60], Bohai, east China and Yellow Seas (𝑎஼஽ைெ(355) 0.2–1.2 m−1) 
[61]. 

C2R-CC exhibited the worst performance for the Baltic Sea at blue and green bands, 
which were >65% at 412, 443 and 490 nm and >35% at 560 nm. Accounting for uncertainties 
in the in situ 𝑅௥௦ in the Baltic Sea, Alikas et al. [25] also found that the OLCI-A C2R-CC 
processor exhibits a large difference (~107%) compared to in situ 𝑅௥௦ (N = 15). For OLCI-
A, two studies in the Baltic found that the previous version of C2R-CC performed well in 
retrieving the 𝑅௥௦ spectral shape (N = 29) [26,62]. In this study, the performance of C2R-
CC improved from the green to red to NIR, with an S closer to the 1:1, though the scatter 
was still relatively high (Figure 4). This may suggest that C2R-CC could produce accurate 
Chl a values for the region when using red: NIR 𝑅௥௦(λ) band ratio algorithms. The cali-
bration of the C2R-CC requires sufficient data to account for the effects of different aerosol 
types, cirrus clouds, sun and sky radiance, and the coupling between them and the air 
molecules [62]. Improvements to the C2R-CC have been made to both the atmospheric 
and in-water NNs, and for the water component, this includes a more extensive training 
range, which for aCDOM(442) is now from 0.001 to 22 m−1 (https://www.eumetsat.int/me-
dia/47794 (accessed on 24 October 2021)). There are two possible reasons why the C2R-CC 
does not perform well in blue bands for the Baltic Sea. The first is probably due to none 
convergent or optimal solutions caused by the in-water NN, as has been observed in other 
studies using different ocean colour sensors [30,63]. For MERIS, it was found that adding 
further training data could lead to ‘overtraining’ by offering multiple solutions to retrieve 𝑅௥௦ or IOPs, which may not necessarily result in accurate 𝑅௥௦ [63]. The second reason is 
that the calibration data used in the atmospheric NN still does not cover the variability in 
atmospheric conditions that occur over the Baltic Sea 

Previous studies on MODIS-Aqua 𝐿ௐே at Baltic Sea AERONET-OC sites reported 
large uncertainties (~60%) and biases (~20%) at blue bands and an overestimate in τa at 
869 nm of ~95%, indicative of errors in the AC aerosol model [18]. Extension of the aerosol 
model for MODIS-Aqua to include α values to 1.7 has been recommended [18], especially 
to capture the range in mixed continental-industrial type aerosols in summer [64]. The AC 
developed for MODIS-Aqua and VIIRS [65,66] applies a NIR correction that accounts for 
particle backscattering based on a variable slope plus an estimate for absorption at red 
and NIR bands [67]. There is often a negative bias across all wavelengths, which for 
MODIS-Aqua is most pronounced in the blue [50]. In highly absorbing waters, MODIS-
Aqua can exhibit very high relative uncertainty at blue bands (up to 60%) where strong 
absorption makes the signal low, and in the red (up to 40%) where the signal is also low 
due to strong water absorption [50]. In the green, the uncertainty for MODIS-Aqua is ~20% 
[50]. For the Baltic Sea specifically, Goyens et al. [68] reported that the relative error for 
MODIS-Aqua at 412 nm was 55%, at 547 nm was 15% and at 667 nm was 25%. Similarly, 
our data indicated a small negative bias across all wavelengths except 412 nm and that the 
RPD was even higher in the blue (~84% at 412 nm) and within the range reported by 
Moore et al. [50] for green (~16% at 560 nm) and red bands (~33% at 667 nm). The cause of 
the negative bias is attributed to 𝐿௪ being non-zero in the NIR which results in an over-
estimation of the aerosol optical thickness and an underestimation in 𝐿௪  [69], which 
when extrapolated from the NIR across the bands, the error is greater in the blue [50]. 
Above coastal waters, light-absorbing aerosols can also contribute to the negative bias in 𝐿௪. In the Baltic Sea, the negative bias in MODIS-Aqua 𝑅௥௦ is due to a systematic under-
estimation in the Ångström coefficient and an overestimation of the optical thickness [68]. 
An overestimate in MODIS-Aqua aerosol optical thickness of 101% at the GDL and 91% 
at the HLT has been reported [69]. Due to these errors in the standard MODIS-Aqua AC, 
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a multilayer neural network (MLNN) AC method for MODIS-Aqua was subsequently de-
veloped and compared with the SeaDAS NIR and NIR/SWIR algorithms and a C2R-CC 
version for MODIS-Aqua [70]. For the Baltic Sea, the MLNN algorithm reduced the 𝐿ௐே APD by more than 60% for blue bands compared to the standard SeaDAS AC. In our 
study, using the latest reprocessing (R2018) for MODIS-Aqua (N = 177 match-ups) and 
VIIRS (N = 475), the RPD at 443 nm was 34% for both sensors and was 17% for MODIS-
Aqua and 22% for VIIRS at 560 nm, but at 667 nm the RPD increased to 33 and 38%, re-
spectively. 

As discussed above, the AERONET-OC and Alg@line data are located in different 
environments; both being predominantly influenced by CDOM, which is generally higher 
at the AERONET-OC sites, whereas the Alg@line tracks pick up a stronger signal from 
spring–summer phytoplankton blooms. Some trends in the validation plots for the differ-
ent ACs may also partly arise from differences in data sources between the in situ AERO-
NET-OC and Alg@line 𝑅௥௦ due to the nature of the sites, quality and processing of the 
data. The uncertainty of the TriOS-RAMSES system is greater in the blue (>6%) than in the 
green (3.5%) and red (4.5%), compared with CIMEL-SeaPRISM which has uncertainties of 
4.5, 4 and 10%, respectively [71]. The TriOS-RAMSES radiometers deployed on Alg@line 
have been inter-compared with CIMEL-SeaPRISM at the stable AERONET-OC platform 
of the Aqua Alta Oceanographic Tower. The differences between TriOS-RAMSES and 
CIMEL-SeaPRISM were 8% difference at 443 nm, 6% at 555 nm and 10% at 667 nm [72]. 
Future studies should evaluate differences between the sensors using a common proces-
sor and for the TriOS-RAMSES, the sun-tracker stepper motor used in this study. There is 
one caveat, that the methodology for calculating 𝐸ௗ and subsequent optimisation of 𝑅௥௦ 
are not directly comparable between AERONET-AC and the automated TriOS-RAMSES 
(plus the fingerprint method), although both have been used in combination in previous 
studies without showing major biases [30,34]. 

Ocean colour is an Essential Climate Variable [73,74], the study of which requires 
long time-series data to assess climate-induced changes in phytoplankton. To this end, 
there have been a number of initiatives to merge multi-mission datasets [75,76]. The start-
ing point for this is the best AC performance for a single sensor followed by the applica-
tion of the 𝑅௥௦ product to multi-mission data, computation of Chl a and analysis of repro-
ducibility of patterns in the Chl a time series for a single sensor in the multi-mission data 
[77]. For this, the AC model needs to be as accurate as possible and have the largest num-
ber of data points in both space and time. In this study, we found that the consistency 
between different OLCI-A, MODIS-Aqua and VIIRS AC products was poor. We per-
formed a comprehensive analysis of AC processors for OLCI-A, which showed that POL-
YMER is the most accurate over all bands and provides the largest number of complete 
and consistent data points for Baltic Sea images. The performances of Suomi-VIIRS in the 
blue, and OLCI-A C2RCC and MODIS-Aqua in the red and NIR were also good. For the 
Baltic Sea, there is growing consensus that POLYMER for OLCI-A [25] is the most accurate 
AC. Future studies should evaluate the performance of MODIS-Aqua and VIIRS with 
POLYMER and evaluate if it is the most accurate AC for generating ocean colour time 
series from multiple-satellite missions. The POLYMER AC may improve the consistency 
between OLCI-A, MODIS-Aqua and VIIRS. 

5. Conclusions 
The performance of four AC processors (pb 2, OL_L2M.003.00, C2R-CC and POLY-

MER) for OLCI-A and standard processors for MODIS-Aqua and VIIRS were assessed in 
the Baltic Sea using in situ 𝑅௥௦ from AERONET-OC and ferries. OLCI-A with POLYMER 
performed well at 412, 442 and 560 nm with ψ <30% and a δ of between −0.0001 and 
−0.0004, but all bands exhibited an underestimate as 𝑅௥௦  values increased. The other 
OLCI-A AC processors showed relatively poor performance in the blue (412 and 443 nm), 
red and NIR wavebands, but better performances at 560 nm where the signal was highest. 
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Of the OLCI-A processors, C2R-CC exhibited the worst performance in the blue, and gen-
erally, ψ was >30% for all wavebands but showed better performance at 665 and 709 nm. 
VIIRS underestimated 𝑅௥௦ across all bands, which was notably large at 412 nm, where the 
differences with in situ 𝑅௥௦ were >65%, and also especially at higher 𝑅௥௦ values in green 
and red bands. MODIS-Aqua was more accurate in the blue-green to red bands compared 
to the blue, especially 𝑅௥௦(412) which had a difference of ~85% compared to in situ 𝑅௥௦. 
Of the OLCI AC processors tested, the results suggest that OLCI POLYMER will generate 
the most accurate biogeochemical monitoring water quality parameters, though improve-
ments in this AC are still required for the Baltic Sea. 
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