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We seek to understand, in mathematical terms, the causes of stability in marine phytoplankton biomass. The stability of a simple,
mixed-layer-phytoplankton-nutrient model is analysed. Primary production is modelled as a non-linear function of nutrient concentra-
tion and light. The steady state of the model system is demonstrated to be stable with a linear relation between steady state biomass
and nutrients. The causes of stability are shown to be shading and nutrient limitation. When only light limitation and shading are
taken into account, the steady state is a sink node. However, when nutrient limitation is taken into account, without shading, the
steady state can be either a sink node or a spiral sink. The transition from a sink node to a spiral sink occurs when normalized mixed
layer production becomes larger than the equivalent influx rate of nutrients into the mixed layer, demonstrating that nutrient limita-
tion of production is a necessary, but not a sufficient condition for oscillatory solutions. In both cases, the characteristic return times
are derived explicitly. The effect of shading is found to cause the depression of the steady state towards lower biomass than would
otherwise be attainable. The influence of mixed-layer depth variation on stability is also analysed.
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Introduction
In biomass terms, marine phytoplankton form <1% of the total

plant biomass on Earth (Bar-On et al., 2018), yet on the annual

time scale phytoplankton primary production is commensurate

with that of terrestrial plants (Field, 1998; Prentice et al., 2001),

converging on 40–50 Gt C per annum (Buitenhuis et al., 2013;

Bouman et al., 2018; Kulk et al., 2020). The apparent inconsis-

tency is possible because of the rapid turnover time of phyto-

plankton, being on the order of days, in comparison with the

turnover time of land plants, which may be on the order of weeks

to years. Notwithstanding their high turnover times, stable ma-

rine phytoplankton assemblages are persistent and stable

(Falkowski and Raven, 2007). One manifestation of this stability

is the recurring seasonal cycle of phytoplankton abundance (phe-

nology) that is a characteristic of pelagic ecosystems in different

oceanic regimes (Platt and Sathyendranath, 2008; Platt et al.,

2009).

The advent of data on visible spectral radiometry (ocean col-

our) of the sea, collected by instruments in Earth’s orbit, has pro-

vided us with a global picture of phytoplankton abundance,

indexed by the surface chlorophyll field at high spatial resolution

(�1 km), and its evolution through time with a nominal resolu-

tion of 1 d (Platt et al., 1995). From such imagery we learn that,

for most of the time, despite the potentially rapid growth of phy-

toplankton, the surface chlorophyll field generally changes little

from 1 d to the next (Zhai et al. 2010). The explanation must be
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that stabilizing tendencies exist, which can normally maintain a

balance between phytoplankton growth and losses, probably me-

diated through the principal controls on photosynthesis, namely

light and nutrients (Platt et al., 2003a, b). Only rarely do we find

that the balance is altered on longer time scales (annual), but we

do frequently find significant net growth (or loss) leading to a

bloom (or its demise) on shorter time scales (weekly).

There are societal implications entangled with the question of

stability of marine ecosystems (Cinner and Barnes, 2019). In legal

documents relating to ecosystem-based management of marine

resources, the management goals include preservation of ecosys-

tem health, vigour, and resilience. Such properties are not easy to

translate into objective metrics that could be applied in opera-

tional mode. However, we must try to develop objective metrics,

if we are serious about ecosystem-based management. One most

tractable property seems to be resilience (Holling, 1996). We un-

derstand resilience to imply the operation of stabilizing processes

that dampen fluctuations in chlorophyll rather than letting them

grow. It is clearly related to the stabilizing tendencies that lie be-

hind the observed conservatism in the surface chlorophyll field of

the ocean.

Such considerations suggest that, to crystallize our ideas

about phytoplankton resilience, we should study the stability

properties of the equations that describe phytoplankton dynam-

ics. Here, we analyse the stability of a simple phytoplankton-

nutrient model to elucidate the mechanisms by which fluctua-

tions in chlorophyll can be damped, and the relative speed by

which a new steady state can be reached. We limit our consid-

erations to the nutrient-phytoplankton system, without consid-

ering explicit details of zooplankton dynamics at this stage.

Inclusion of zooplankton changes the dynamical picture by lift-

ing the model from two to three dimensions where more com-

plex trajectories can emerge. Although zooplankton grazing and

natural mortality may also play a stabilizing role in chlorophyll

fluctuations, we do not consider these processes explicitly, since

they have been studied extensively in the literature (Armstrong,

1994; Edwards et al., 1996, 2000; Gibson et al., 2005; Everett

et al., 2017).

Matherial and methods
Mixed-layer production
Let the z (m) axis be positive downwards with the origin at the

ocean surface (Figure 1) and let day length (time from sunrise till

sunset) be given as D (h). Let us consider a mixed layer extending

from the surface to Zm (mixed-layer base), taking Zm constant for

now. Following Platt et al. (2003a), we take chlorophyll concen-

tration B (mg Chl m�3) as the index for phytoplankton biomass

and nitrogen concentration N (mg N m�3) as a measure of nutri-

ent availability. Downwelling irradiance I (W m�2) at depth

serves as a measure of available light for photosynthesis (Platt

et al., 1990).

We consider a model where primary production per unit

biomass PB [mg C (mg Chl h)�1] is given as a function of light

and nutrients PB ¼ PBðI ;NÞ, where light is a function of depth

I ¼ Iðz; t 0Þ with nutrients uniform over the depth of the mixed

layer (i.e. they are not uniform in time), making

PB ¼ PBðIðz; t 0Þ;NÞ. We use the notation t 0 for time during

sun hours (sunrise till sunset). Production is then expressed as

a product of a light limiting function and a nutrient limiting

function:

PBðN ; z; t 0Þ ¼ PB
max

N

N þ Nk

1� exp ð�Iðz; t 0Þ=IkÞ
� �

;

where nutrient limitation of production is modelled with the Monod

function (Monod, 1949), also known as the Michaelis–Menten func-

tion (Michealis and Menten, 1913; Johnson and Goody, 2011), and

light limitation with the exponential light saturation function (Platt

et al., 1980), having PB
max as the maximum photosynthetic capacity

(Platt and Jassby, 1976), Nk as the half-saturation constant for nutri-

ent limitation (Eppley et al., 1969) and Ik as the photoadaptation pa-

rameter (Platt et al., 1980). Typical values of the mentioned

parameters, and their units, are given in Table 1.

In the mixed layer, light is a function of depth, whereas nutrient

concentration is not, given that mixing is assumed to distribute

nutrients evenly in the mixed layer. Biomass remains uniform in the

mixed layer for the same reason. We also assume that the time scale

of mixing is shorter than the time scale of photoadaptation, meaning

there is no variation in Ik over depth (Lewis et al., 1984). Now, daily

mixed-layer production is the integral of B PBðz; t 0Þ over the mixed

layer and day length (Platt et al., 1990; Kova�c et al., 2017a):

PZm;T ¼ B

ðD
0

ðZm

0

PBðz; t 0Þdzdt 0; (2)

where t 0 is a dummy variable for integration over day length. To

evaluate this integral, we need also to adopt a functional form for

Iðz; t 0Þ. First, we assume that during the course of 1 d the mixed

layer is exposed to sinusoidally varying surface irradiance, with

Figure 1. A mixed layer of depth Zm (grey) with biomass B (blue)
and nutrient concentration N (orange), exposed to sinusoidally
varying solar irradiance with noon irradiance Im0 . Green circles
indicate mixing. Below the mixed layer, nutrient concentration is N0

and biomass is assumed zero. Mixed-layer production PZm ;T

(notation following Platt et al. (1990)) is fuelled by light downwelling
from the surface and the nutrient flux from below the mixed layer.
The critical depth where vertically integrated production equals
losses is marked Zc (red line).
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noon irradiance Im
0 . Second, we assume surface irradiance is at-

tenuated with depth by sea water and phytoplankton following

Lambert–Beer’s law (Kirk, 2011), with the attenuation coefficients

Kw and kBB, respectively, where kB is the specific attenuation co-

efficient of phytoplankton. Therefore, for light at depth we have:

Iðz; tÞ ¼ Im
0 sin ð2pt 0=DÞ exp ð�ðKw þ kBBÞzÞ: (3)

With these assumptions, daily mixed-layer production PZm ;T is

given as:

PZm;T ¼
N

N þ Nk

BPB
maxD

Kw þ kBB
f ðIm
� Þ � f ðIm

� e�ðKwþkB BÞZmÞ
h i

; (4)

where Im
� ¼ Im

0 =Ik is the normalized noon irradiance and f ðIm
� Þ is

a known function:

f ðIm
� Þ ¼

X1
n¼1

2 Im
�ð Þ2n�1

p 2n� 1ð Þ 2n� 1ð Þ!
2n� 2ð Þ!!
2n� 1ð Þ!!

�
X1
n¼1

Im
�ð Þ2n

2n 2nð Þ!
2n� 1ð Þ!!

2nð Þ!! ; (5)

as derived by Platt et al. (1990). Formulated as such, mixed-layer pro-

duction is limited by both light and nutrients. Note that light attenua-

tion due to biomass itself is taken into account explicitly, being

expressed as a separate (additive) component of the total diffuse atten-

uation coefficient in the denominator and also in the final term of (4).

Biomass and nutrient dynamics
Let us allow biomass and nutrient concentrations to change over

time, making B(t) and N(t) functions of t (h). Time t is a contin-

uous variable and is not associated with the time of day as in the

previous section. We model the temporal evolution of biomass

with the following equation:

dBðtÞ
dt
¼ hPiZm ;T

� LBBðtÞ; (6)

where hPiZm;T
¼ PZm;T=ð24vZmÞ is the daily average mixed-layer

production, per unit volume, scaled by the carbon-to-

chlorophyll ratio v (in other words, in chlorophyll units) and LB

is a generalized loss term including various (negative)

contributions to the realized rate of increase in the broadest

sense (arising from respiration, grazing, sinking, predation, and

mortality; Zhai et al., 2010). Likewise, hPBiZm;T
¼

PZm;T=ð24vZmBÞ is the daily average, chlorophyll-specific pro-

duction in the mixed layer. It is understood that production

changes as a function of B(t) and N(t). Biomass below the mixed

layer is taken to be zero, the result of unfavourable growth con-

ditions arising from diminished light and/or increased losses;

and is therefore not modelled explicitly. This is common prac-

tice in modelling mixed-layer biomass dynamics (Huisman and

Weissing, 1995; Platt et al., 2003a).

Temporal evolution of nutrient concentration is given by the

following equation:

dNðtÞ
dt

¼ ��hPiZm;T
þ nðN0 � NðtÞÞ; (7)

and is coupled to the biomass equation via the production term,

where � is the nutrient-to-chlorophyll ratio. Nutrient concentra-

tion below the mixed layer is fixed at N0, representing the deep-

water nutrient pool. Influx of nutrients into the mixed layer is

modelled by the nðN0 � NðtÞÞ term, which can be considered as

restorative, pushing the nutrient concentration towards a fixed

value N0 (Huisman and Weissing, 1995). Interpretation of n is

provided in Appendix 1. We refer to n as the nutrient supply pa-

rameter. Diminution of nutrients occurs as a consequence of phy-

toplankton uptake during growth.

For clarity, when fully expanded, the equation for biomass is:

dBðtÞ
dt
¼ 1

24vZm

N

N þ Nk

BPB
maxD

Kw þ kBB

� f ðIm
0 =IkÞ � f ðIm

0 e�ðKwþkBBÞZm=IkÞ
h i

� LBBðtÞ;
(8)

and the equation for nutrients is:

dNðtÞ
dt

¼ � �

24vZm

N

N þ Nk

BPB
maxD

Kw þ kBB

� f ðIm
0 =IkÞ � f ðIm

0 e�ðKwþkB BÞZm=IkÞ
h i

þ nðN0 � NðtÞÞ:
(9)

Table 1. Parameters and their values used in the application section.

Parameter Symbol Value

Surface noon irradiance Im0 350 W m�2

Attenuation coefficient due to water Kw 0.04 m�1

Specific attenuation by chlorophyll kB 0.015 m2 (mg Chl)�1

Photoadaptation parameter Ik 40 W m�2

Maximum photosynthetic capacity PB
max 10 mg C (mg Chl h)�1

Loss rate LB 0.15 h�1

Mixed-layer depth Zm 100 m
Nutrient supply parametera n 0.00025 h�1

Half-saturation constant for nutrient limitation Nk 5 mg N m�3

Deep nutrient concentration N0 50 mg N m�3

Carbon-to-chlorophyll ratio v 100 mg C (mg Chl)�1

Nitrogen-to-chlorophyll ratio � 8 mg N (mg Chl)�1

The parameter values are taken from Platt et al. (1990, 2003b) and Kova�c et al. (2016b, 2018b).
aSee Appendix 1 for interpretation of n.
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Strictly speaking, these equations describe instantaneous

changes in biomass and nutrient concentrations in the mixed

layer. For simplicity, in the rest of the paper, we will use the

shorter notation as in (6) and (7).

Results
Steady state
The model presented has only two time-dependent prognostic

variables, namely B(t) and N(t), allowing us to visualize model

behaviour easily in the phase plane (Figure 2), a plane spanned by

N and B, such that each point in this plane represents a model

state (Perko, 2001). In this work, we place the nutrient concentra-

tion on the abscissa and the chlorophyll concentration on the or-

dinate, for consistency with previous works on the

phytoplankton-nutrient system (Huisman and Weissing, 1995;

Huppert et al., 2002). The parameters D, Zm, and Im
0 are here be-

ing considered as fixed parameters, even though in reality they

vary through time.

A set of points starting from the initial state and evolving in

time according to (6) and (7) gives the model trajectory, also re-

ferred to as its orbit (Izhikevich, 2007). A set of points for which

one variable stops evolving in time is referred to as a nullcline

(Truscott and Brindley, 1994) and this model has two nullclines,

namely the biomass and the nutrient nullcline (Huisman and

Weissing, 1995), each solved separately by setting (6) and (7)

equal to 0. The point for which both variables stop changing in

time is referred to as the steady state (or fixed point; Robinson,

1995) and it is found at the crossing of the two nullclines. The

model also has a trivial nullcline B¼ 0 associated with the steady

state ð0;N0Þ. This is, however, not the subject of the presented

work and the focus is on states with B> 0.

On the phase plane, the nutrient nullcline is seen to intersect

the nutrient axis at N0 and becomes parallel to the biomass axis

with increasing biomass (orange curve in Figure 2), indicating

that nutrients are never fully depleted from the mixed layer as

biomass increases. This is due to nutrient limitation of produc-

tion in (1). The biomass nullcline is an increasing function of N

with more nutrients supporting more biomass (blue curve in

Figure 1). As biomass increases, light limitation of production

occurs and biomass levels off for high values of N (Huisman and

Weissing, 1995).

For the two nullclines to intersect, the deep-water nutrient

concentration N0 has to exceed a value Nc (Figure 2), which is the

critical nutrient concentration required to sustain the population:

1

24vZm

Nc

Nc þ Nk

PB
maxD

Kw

f ðIm
� Þ � f ðIm

� e�Kw ZmÞ� ¼ LB;
�

(10)

from which we get Nc explicitly as:

Nc ¼
Nk

PB
maxD½f ðIm

� Þ � f ðIm
� e�Kw ZmÞ�=ð24vZmLBKwÞ � 1

: (11)

This is recognized as the point at which the biomass nullcline

crosses the N axis (blue point in Figure 2) and is obtained in the

limit of B ! 0. The steady state corresponding to Nc > N0 is in

fact ð0;N0Þ, in other words, the deep-water nutrient concentra-

tion is insufficient to sustain any biomass in the mixed layer

through vertical transport of nutrients into the mixed layer. The

nullclines do not cross in this case. When Nc < N0, the nullclines

cross and a steady state S ¼ ðB�;N�Þ is obtainable (red point in

Figure 2), with both nutrient and biomass different from zero

(Huisman and Weissing, 1995). In this case, the deep-water nu-

trient concentration is sufficient to sustain mixed-layer produc-

tion and the corresponding biomass. This is a non-trivial

equilibrium, and it is the focus of our investigation.

To find a relation between the steady-state biomass and nutri-

ent concentration, we first multiply (6) by �, put dBðtÞ=dt ¼ 0,

add to (7), set dNðtÞ=dt ¼ 0 and rearrange to get:

B� ¼ n
�LB

N0 � N�Þ;ð (12)

as the expression for the steady-state biomass B� in relation to the

difference between the steady-state nutrient concentration in the

mixed layer N� and the deep-water nutrient concentration N0

(grey line in Figure 2). In the phase plane, we refer to this line as

the steady-state line upon which steady states with B> 0 must lie.

Recognizing that at steady state, we have hPBiZm;T
¼ LB we can

rewrite the previous expression as:

B� ¼ n
�hPBiZm;T

N0 � N�Þ:ð (13)

Equations (12) and (13) show how the steady states B� > 0 are

related to the nutrient supply rate nðN0 � N�Þ and to the average,

Figure 2. Phase plot of system nullclines: blue curve is the biomass
nullcline and the orange curve is the nutrient nullcline. Nutrient
nullcline intersects the N axis at N0 and the biomass nullcline at Nc.
For Nc < N0 the two nullclines intersect at the steady state S (red
dot). The grey line (termed the steady-state line) marks the
conditions that steady state satisfies, termed the steady-state line
and gives the steady-state biomass B� in relation to the difference
between the steady-state nutrient concentration in the mixed layer
N� and the deep-water nutrient concentration N0 (12).
Theoretically, Bm (14) is the maximum attainable biomass in case all
the nutrients get exhausted, but is never reached due to other
constraints of the model.
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chlorophyll-specific production in the mixed layer hPBiZm;T
,

which itself is also dependent in a non-linear way on both B� and

N�. A higher nutrient supply parameter n makes the steady-state

line steeper, therefore, favouring a state with higher biomass rela-

tive to nutrient concentration. On the other hand, a lower nutri-

ent supply parameter n makes the steady-state line less steep,

therefore, favouring a low biomass state relative to nutrient con-

centration. The exact steady state is naturally set by all the param-

eters, as all together they determine where the two nullclines will

intersect each other and the steady-state line. Also, expression

(13) is consistent with observations in the field of an inverse rela-

tion between the production per unit biomass and total biomass

(Harris, 1984). It provides a theoretical basis for explaining such

observations.

The steady-state line passes through the N0 point on the N

axis, which is the maximum possible nutrient concentration in

the mixed layer, and is of course set by the deep-water nutrient

concentration. According to (12), we see that if there is to be a

state with B� > 0 then N� has to be less than N0, implying that in

case of Nc < N0 (i.e. a non-trivial equilibrium) nutrient concen-

tration never reaches N0. Also, the steady-state line intersects the

biomass axis, thereby setting a limit on the maximum attainable

biomass in case all nutrients in the mixed layer were to be utilized

(grey point in Figure 2). When N approaches zero, as would be

expected towards the end of a bloom, biomass approaches the

maximum possible steady-state value Bm given as:

Bm ¼
n
�LB

N0: (14)

To increase this maximum biomass, either the supply rate nN0

has to be increased, or the product of � and LB reduced.

However, because the nutrient nullcline does not intersect the

biomass axis, the steady state with this biomass is never reached.

Stability of the steady state
To analyse the stability of the steady state, we linearize the model

at steady state and use the Jacobian matrix J (Ryabchenko et al.,

1997; Kuznetsov, 2004):

J ¼ @BhPiZm;T
� LB @N hPiZm;T

��@BhPiZm;T
��@N hPiZm;T

� n

" #
: (15)

The Jacobian is fundamental to system stability (Hayking,

2005); for the steady state to be stable it is required that its trace

TrJ be negative and its determinant detJ positive (Izhikevich,

2007) (Appendix 2):

TrJ < 0; detJ > 0; (16)

with TrJ equal to:

TrJ ¼ @BhPiZm;T
� LB � �@N hPiZm;T

� n; (17)

and detJ equal to:

detJ ¼ ð@BhPiZm;T
� LBÞð��@N hPiZm;T

� nÞ
þ �@BhPiZm;T

@N hPiZm;T
: (18)

To explore the sign of the trace, we first use the definition of

average mixed-layer production defined using the production

profile from Kova�c et al. (2016a), scaled by v:

hPiZm;T
¼ 1

24vZm

ðZm

0

BðzÞPB
T ðzÞdz ¼ BhPBiZm;T

; (19)

where we have used the homogeneity in biomass B(z) ¼ B to put

the biomass B outside the integral and employed the notation

hPBiZm;T
¼ PZm;T=ð24vZmBÞ for the daily average, specific turn-

over rate of biomass in the mixed layer. Taking the derivative of

the previous expression with respect to biomass gives:

@BhPiZm;T
¼ hPBiZm;T

þ B@BhPBiZm;T
: (20)

Putting this derivative in the expression for the trace and ac-

knowledging that at steady-state production equals losses

hPBiZm;T
¼ LB leaves us with a new expression for the trace:

TrJ ¼ B�@BhPBiZm;T
� �@N hPiZm;T

� n: (21)

For the first term in this expression to be smaller than zero it is

required that:

@BhPBiZm;T
< 0; (22)

which is indeed the case following (3). The intuitive interpreta-

tion is that an increase in biomass reduces light intensity at depth

and consequently lowers biomass normalized production. This is

the meaning of phytoplankton shading, which in the model is

expressed by the kBB term in the attenuation coefficient. Without

this term, the previous expression reduces to @BhPBiZm;T
¼ 0.

The second term in the trace is �@N hPiZm;T
, where � is a positive

constant and the derivative with respect to N, written out explic-

itly, is:

@N hPiZm;T
¼ Nk

NðN þ NkÞ
hPiZm;T

; (23)

which is positive for N> 0. The third term in the trace is n, posi-

tive by definition. Considering that the first term in the trace

(21) is negative and the other two terms are positive, with a mi-

nus sign, the trace is negative. Therefore, having any of these

three processes in the model makes the trace less than zero,

meeting the first stability condition (16). The different dynami-

cal processes and their influence on system stability are thus dis-

tinguished clearly. The first term arises from shading by

phytoplankton, the second from nutrient limitation of produc-

tion, and the third is related to the vertical nutrient flux into the

mixed layer.

Let us now explore the sign of the determinant. Fully expand-

ing expression (18), while acknowledging (20), gives:

detJ ¼ �nB�@BhPBiZm;T
þ �hPBiZm;T

@N hPiZm;T
; (24)

which is positive. The determinant being positive, in combination

with a negative trace, renders the system stable. These conditions

are elaborated in more detail in Appendix 2.
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Resilience of the steady state
The steady state is stable, but there are distinct types of stability

with respect to the way the steady state is approached dynamically

after being perturbed (Izhikevich, 2007). It is here that resilience

can be precisely defined and linked to the eigenvalues of the

Jacobian. We adhere to the definition of resilience as the speed of

recovery of the system after perturbation following pioneers in

ecological resilience (Pimm, 1984; Tilman and Downing, 1994;

Holling, 1996). A concept closely related to resilience is the char-

acteristic return time, which is the time required for the initial

perturbation to be reduced to its e folding magnitude (Brauer,

1979; Pimm, 1984), and it is the reciprocal of resilience.

In our analysis, we assume that the system finds itself at steady

state and the perturbation comes in the form of a disturbance

that is not strong enough to alter the description of system dy-

namics as provided by the Jacobian. In plain terms, we consider

the linearized system to provide an adequate description of con-

ditions around the steady state. The way the steady state is

reached is determined by an additional condition that sets apart

two distinct types of stability that the steady state can exhibit

(Izhikevich, 2007). If the following condition is met:

ðTr JÞ2 � 4detJ < 0; (25)

the steady state will be a spiral sink, whereas if:

ðTr JÞ2 � 4detJ > 0; (26)

it will be a sink node (see Appendix 2). In the former case, the

system exhibits oscillations as it approaches the steady state,

whereas in the latter case it does not. When oscillating, the system

overshoots the steady state prior to reaching it, whereas when it

does not oscillate it does not overshoot, but goes directly to the

steady state.

The role of shading
To find the cause of possible oscillatory behaviour, we explore

whether condition (25) will be met when only one process is

accounted for, either shading or nutrient limitation. For no nutri-

ent limitation, condition (25) reduces to:

ðB�@BhPBiZm;T
þ nÞ2 < 0: (27)

Because all the terms in the parentheses are real the above con-

dition is clearly not met. The steady state in this case is a sink

node, implying that a model with only shading included, but no

nutrient limitation of production, cannot exhibit oscillations

around the steady state.

It is interesting to note that in this case the two eigenvalues of

the Jacobian are:

k1 ¼ B�@BhPBiZm;T
& k2 ¼ �n; (28)

both being real and negative, which clearly indicate that the

steady state in this regime is stable.

We take these eigenvalues to be quantitative measures of resil-

ience, as they determine the speed of recovery of the system after

it is perturbed. They can now be used to ascertain the characteris-

tic return times to the steady state, labelled Ti, where the index i

labels the eigenvalues. With the understanding that the

characteristic return time is the time required for the initial per-

turbation to be reduced to its e folding magnitude, by the dynam-

ical response associated with each eigenvalue, we relate Ti to the

eigenvalues through Ti ¼ 1=jki j. The characteristic return times

associated with the previous eigenvalues are therefore:

T1 ¼
1

B�j@BhPBiZm;T
j & T2 ¼

1

n
: (29)

The first characteristic return time clearly represents the opti-

cal control on the system and the second the role of nutrient flux.

Non-oscillating behaviour on the approach to the steady state

was observed by Platt et al. (2003a) and Edwards et al. (2004)

when analysing a coupled biomass nutrient model in which pro-

duction was not limited by nutrients, except when nutrients were

totally depleted. However, it is important to note that their mod-

els were discrete in time, whereas the one used here is continuous

in time. In the context of the analysis presented here, the reason

they did not observe oscillations was simply not having nutrient

limitation in the production term in their models. In the next

paragraph, we explore how nutrient limitation affects system

resilience.

The role of nutrient limitation
We now explore model behaviour when shading is not included

in the model, but nutrient limitation of production is. The condi-

tion for the steady state to be a spiral sink (25) now reduces to:

ð�@N hPiZm;T
Þ2 þ ð2n� 4hPBiZm;T

Þ�@N hPiZm;T
þ n2 < 0:

(30)

As a function of �@N hPiZm;T
, it has a global minimum located

at �@N hPiZm;T
¼ 2hPBiZm;T

� n. Calculating this function at the

aforementioned point, and after some algebra, the previous con-

dition is reduced to:

�hPBi2Zm;T
þ nhPBiZm;T

< 0; (31)

having a global maximum and two roots, of which one is zero

and the other is hPBiZm;T
¼ n. Given that production is by defini-

tion positive, we are interested only in the positive root n. The

previous function is negative for values of hPBiZm;T
larger than n,

implying that a necessary condition for a steady state to be a spi-

ral sink is:

hPBiZm;T
> n; (32)

meaning that the average, specific turnover rate of biomass in the

mixed layer needs to be greater than the equivalent nutrient sup-

ply parameter for oscillations to occur, i.e. for the steady state to

be a spiral sink. As discussed previously, at steady state

hPBiZm;T
¼ LB , so that the previous expression also translates to:

LB > n; (33)

meaning that biomass losses have to be larger in magnitude than the

nutrient supply parameter for the steady state to be a spiral sink.

The previous expression has implications for nutrient utiliza-

tion at steady state. Taking the steady-state condition (12) and

rearranging it, we get the following ratio:
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�B�

N0 � N�
¼ n

LB
: (34)

For steady states that are spiral sinks, LB is larger than

n and it follows that the nutrient equivalent of biomass �B�

is less than N0 � N�. For steady states that are sink nodes,

the nutrient equivalent of biomass �B� is larger than

N0 � N�.
At steady state nðN0 � N�Þ is positive, meaning that nutrients

flow into the mixed layer at a rate set by n. The sink node states

also have n > hPBiZm;T
, meaning nutrients are being resupplied

faster than they are being utilized in primary production, and this

is associated with a non-oscillatory behaviour of the steady state.

The opposite holds for n < hPBiZm;T
and these states exhibit os-

cillatory behaviour, nutrients flowing into the mixed layer, at a

rate that is insufficient to meet the nutrient demand of primary

production.

For these states, which are spiral sinks, the eigenvalues of the

Jacobian are a complex conjugate pair (Izhikevich, 2007) with the

real part equal to:

Reðk1;2Þ ¼
1

2
��@N hPiZm;T

� nÞ;
�

(35)

which is negative, implying that the system is stable. We now

have one characteristic return time:

T ¼ 2

�@N hPiZm;T
þ n

; (36)

which is the same for both eigenvalues. In comparison with the

characteristic return times associated with the case of no nutrient

limitation (29), we observe that the two processes are joined here

in the denominator, whereas in (29) each process, shading or nu-

trient flux, was associated with its own time scale. This means

that in case of nutrient limitation and a spiral sink steady state,

both nutrient flux and nutrient limitation simultaneously deter-

mine the characteristic return time, whereas in case of shading

and mixing, two time scales are present, each determined by its

own process.

It is interesting to see what happens if and when hPBiZm;T
¼ n.

In that case, (30) reduces to:

ð�@N hPiZm;T
� nÞ2 < 0; (37)

meaning oscillations are excluded. Now the eigenvalues of the

steady state are real and distinct from each other:

k1 ¼ �n & k2 ¼ ��@N hPiZm;T
: (38)

with the corresponding characteristic return times:

T1 ¼
1

n
& T2 ¼

1

�@N hPiZm;T

: (39)

We see that both eigenvalues are real and negative, meaning

that the steady state remains stable. The change of the eigenvalues

indicates a change in the type of the steady state, which transi-

tions from a spiral sink to a sink node as hPBiZm;T
crosses the crit-

ical value equal to n.

In general, when both processes, shading and nutrient limita-

tion, are modelled together, the characteristic return times can

also be found and they are given in Appendix 3.

Bio-optical control of the nullclines
In the previous section, we identified shading as equivalent to a

damping mechanism and nutrient limitation of production as

equivalent to a damped oscillating mechanism. These two mecha-

nisms work together to reverse a perturbation, such that the sys-

tem will tend to return once more to steady state. Where exactly

in the phase space this steady state will be depends on the crossing

of the two nullclines. We know that the biomass nullcline crosses

the nutrient axis at Nc and the nutrient nullcline at the steady

state S. However, an interesting observation is that in case of no

shading, i.e. when kB ¼ 0, it also crosses the nutrient nullcline at

Nc (Figure 3).

To demonstrate this, we explore the tangent to the biomass

nullcline at steady state S. From (15), and using (20), we have for

the slope of the tangent on the biomass nullcline:

dB

dN
S ¼ �

@N hPiZm;T

B�@BhPBiZm;T

:

����� (40)

We see that the shading term is in the denominator, therefore

the smaller it is, the steeper is the tangent to the biomass nullcline

at steady state. For no shading the slope of the tangent is infinite,

and for shading included in the model the tangent to the biomass

nullcline leans to the right (Figure 3).

Having kB ¼ 0 (no shading) in the model allows us to find an

explicit expression for the steady state. Starting with (12) and rec-

ognizing that a vertical biomass nullcline crosses the steady-state

line at the following point:

B� ¼ nðN0 � NcÞ
�hPBiZm;T

; (41)

and acknowledging that all steady states lie on the steady-state

line, implies that this expression is the steady-state solution for

biomass in case of no shading. It is obvious that Nc is the steady-

state nutrient concentration in this case. For a model with shad-

ing, the steady state will lie in the phase plane to the right and be-

low this steady state (Figure 3).

From our analysis, we see that shading is the reason that the

nutrient concentration at steady state exceeds the critical nutrient

concentration Nc. Therefore, bio-optical control is responsible for

the result that nutrients are not depleted down to the critical nu-

trient concentration. This occurs because, due to shading, bio-

mass growth is restricted sooner than in the case when only

nutrient limitation is in play. With shading, the maximum bio-

mass is reached before nutrients attain the steady-state concentra-

tion and highest biomass is not associated with the lowest

nutrient concentration. Without shading, more nutrients are

exhausted before nutrient limitation steps in, blocking a further

increase in biomass.

Mixed-layer depth and stability
In the model equations, mixed-layer depth Zm appears as a pa-

rameter. When it is fixed in time, the model behaves as already
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described. However, when Zm is a function of time, the model is

driven not only by initial conditions and the dynamical equa-

tions, but also by varying mixed-layer depth. Generally, time de-

pendence of mixed-layer depth can be arbitrary, but for the

purpose of stability analysis, we look at intervals of shallowing or

deepening separately.

In case of mixed-layer shallowing, the basic model equations

(6) and (7) still hold and no additional modifications to the

model are required to take into account the effect of shallowing.

Therefore, the previous analysis is valid. The only effect that has

to be taken into account is the change in average mixed-layer

production that occurs as a result of shallowing, and this is im-

plicit in the equations themselves.

However, when mixed layer deepens, nutrients from below the

mixed layer are entrained and mixed-layer nutrient concentration

increases. The opposite happens with phytoplankton, which

becomes diluted, and chlorophyll concentration drops as a conse-

quence of deepening. To model mixed-layer deepening, basic

equations (6) and (7) have to be augmented to account for the ef-

fect of biomass dilution and nutrient enrichment. The augmented

set of equations is given explicitly as (Zhai et al., 2010):

dBðtÞ
dt
¼ hPiZmðtÞ;T � LBBðtÞ � 1

ZmðtÞ
dZmðtÞ

dt
BðtÞ; (42)

and:

dNðtÞ
dt

¼ ��hPiZmðtÞ;T þ nðN0 � NðtÞÞ

þ 1

ZmðtÞ
dZmðtÞ

dt
N0 � NðtÞÞ:ð (43)

We recognize ð1=ZmÞðdZm=dtÞ as the deepening term. During

deepening, biomass losses are effectively increased and nutrient

supply from the deep-water nutrient pool is increased. It is clear

that such a process will move the system away from steady state.

However, we are here interested in how it affects the stability of

the system, not the detailed response of the system to deepening.

To study the stability, in this case, we begin by linearizing the

above system of equations to obtain the following Jacobian:

J ¼
@BhPiZm;T

� LB � 1

Zm

dZm

dt
@N hPiZm;T

��@BhPiZm;T
��@N hPiZm;T

� n� 1

Zm

dZm

dt

2
664

3
775:

(44)

In comparison with the original Jacobian (15), we notice the

addition of the deepening term ð1=ZmÞðdZm=dtÞ on the diagonal.

As far as the stability of the system is concerned, the addition of

the deepening term ð1=ZmÞðdZm=dtÞ does not change the sign of

the determinant, nor that of the trace of the augmented Jacobian

(44). Therefore, during deepening the system remains stable.

In this case, let us assume n¼ 0. We see from the nutrient

equation (43) that in place of n we have ð1=ZmÞðdZm=dtÞ, imply-

ing that the role of ð1=ZmÞðdZm=dtÞ is the same as that of n with

respect to nutrient concentration: both act to increase nutrient

concentration in the mixed layer. In a scenario where n were in-

deed small, or non-existent, mixed-layer deepening would serve

as the only means of nutrient enrichment.

When the mixed-layer depth changes abruptly, we can look at

that change not as a continuous process, but model it as a step

change. We look first at the case of shallowing and explore what

happens when mixed-layer depth changes at time t0 in the form

of a step function:

Zm ¼
Zd t � t0

Zs t > t0
;

�
(45)

with Zs < Zd, where Zs is the shallow mixed-layer depth and Zd is the

deep mixed-layer depth (Figure 4). As already stated, the governing

equations (6) and (7) hold for shallowing. However, to an abrupt

change in Zm the system cannot respond instantaneously, and a dy-

namic response ensues. Briefly, upon abrupt shallowing, the average

mixed-layer production increases (Appendix 4) but the losses do not

change, which subsequently causes an imbalance in the biomass and

nutrient equations. The system has effectively acquired a new shallow

steady state Ss and the previous deep steady state Sd acts as the initial

condition for the approach to the new steady state (Figure 4). By the

analysis given in the Stability of the steady state section, both states are

stable and the system approaches the new steady state. This corre-

sponds to the classical depiction of the spring bloom given by

Sverdrup (1953). Complementary to Sverdrup (1953) we now see

that, depending on the magnitudes of the model parameters, the ap-

proach to the steady state will be either oscillatory or non-oscillatory,

as laid out in the Resilience of the steady state section.

When the mixed layer deepens abruptly (Figure 5), we have

the following:

Zm ¼
Zs t � t0

Zd t > t0
;

�
(46)

Figure 3. Phase plane sketch of the effect phytoplankton shading has
on the slope of the biomass nullcline. For kB¼ 0 (no shading modelled)
the biomass nullcilne is vertical (red line) and for kB > 0 (shading
modelled) the biomass nullcline leans to the right (blue curve).
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In this case, biomass is diluted due to deepening and nutrient

concentration increases due to entrainment of the deep-water

nutrients. Because of deepening the system moves from the steady

state Ss to the intermediate state Si (Figure 5). Total biomass in

the mixed layer is conserved during abrupt deepening and bio-

mass at the intermediate state Bi can easily be calculated as:

Bi ¼
Zs

Zd

Bs; (47)

whereas nutrient concentration increases due to entrainment and

for Ni we have:

Ni ¼ N0 þ ðNs � N0Þ
Zs

Zd

: (48)

From this intermediate state Si, the system then approaches the

newly acquired deep steady state Sd.

The distinction between the case of continuous deepening and

the case of abrupt deepening is in the augmentation of equations.

If we treat deepening as continuous then (6) and (7) become (42)

and (43) during deepening. If we treat deepening as abrupt then

(6) and (7) still hold and do not need to be augmented. The way

abrupt deepening is taken into account is by the change of state

after deepening. So at the moment of deepening t0, the state of

the system goes to Si (47, 48). Because the equations remain the

same, the system remains stable.

Timing of maximum biomass
Given that Bd < Bs after shallowing, biomass is certain to reach

its maximum. For a sink node this maximum equals the shallow

steady-state biomass Bs and is approached asymptotically.

Therefore, it is already known. For a spiral sink, steady-state max-

imum biomass does not equal the shallow steady-state biomass

Bs, as the trajectory can surpass it during the approach to the

steady state. Here, we calculate this maximum biomass Bmax and

also the timing of its occurrence tmax.

We assume the system finds itself at the deep steady state Sd

and then abruptly shallows to the shallow steady state Ss. Upon

linearizing the system around Ss we have an approximation to the

trajectory around Ss. Using (57) from the Appendix 2, the time

evolution of biomass is approximated as:

BðtÞ � Bs þ c1 exp ðk1tÞv11 þ c2 exp ðk2tÞv21: (49)

Since the derivative of B(t) with respect to time equals zero

when B(t) reaches the maximum, we find the timing of the maxi-

mum by solving:

dBðtÞ
dt
¼ 0: (50)

Taking the time derivative of (49), equating it with zero, while

using (61) in place of the eigenvalues in the exponential func-

tions, and after some algebra, we find:

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrJð Þ2 � 4detJ

q
t

� 	
¼ � k1c1v11

k2c2v21

; (51)

where k1 and k2 are the eigenvalues of the Jacobian at Ss, c1 and c2

constants based on initial conditions, v11 and v21 elements of the

eigenvectors of the Jacobian at Ss (Appendix 2). From this, we ex-

press the timing of the maximum tmax as:

tmax ¼
ln �k2c2v21=k1c1v11ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrJð Þ2 � 4detJ

q : (52)

Knowing tmax we have an approximate expression for Bmax:

Bmax � Bs þþc1 exp ðk1tmaxÞv11 þ c2 exp ðk2tmaxÞv21: (53)

In the phase plane, this corresponds to the trajectory crossing

the biomass nullcline. Starting from Sd the trajectory spirals to-

wards Ss. The first crossing of the trajectory and the biomass

Figure 4. Sketch of the model response to abrupt mixed-layer shallowing. (a) Mixed-layer depth as a function of time. The system starts with mixed-
layer depth Zd and at time t0 abruptly shallows to the depth Zs. (b) The change of steady states as seen in the phase space. As the mixed layer
shallows, the system goes from the state Sd (red point) to the state Ss (orange point). Both states lie on the steady-state line (12). The maximum
biomass Bmax reached on the approach to Ss is located at the crossing of the biomass nullcline (blue curve) and the trajectory (green curve).
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nullcline corresponds to Bmax, because due to damping, other

crossings occur at lower biomasses.

Application
By equating (6) and (7) with zero, we can solve for B� and N� nu-

merically. A plot of the steady-state biomass and nutrients,

obtained in such a way, is given in Figure 6c as a function of

mixed-layer depth Zm. When Zm increases, steady-state biomass

declines, whereas steady-state nutrient concentration increases.

This is expected as deeper mixed layers have lower average pro-

duction (Appendix 4) for the same set of parameter values (given

in Table 1). According to (12), the steady-state line does not de-

pend on mixed-layer depth. Therefore, with parameters from

Table 1, changing the mixed-layer depth will simply move the

steady state up and down the steady-state line (Figure 2).

Consequently, according to (12), lower steady-state biomass is as-

sociated with higher steady-state nutrient concentration and vice

versa. This is evident in Figure 6c where B� and N� are plotted as

functions of Zm. It is noteworthy that both B� and N� vary

smoothly with depth, which is not always the case with the char-

acteristic return time, as we now demonstrate.

For each depth, we linearized the system using the obtained

steady-state biomass and nutrients for the corresponding depth.

Following the procedure outlined in Appendix 3, we calculated

the characteristic return time and plotted it as a function of

mixed-layer depth Zm (Figure 6a). Starting from Zm ¼ 0, the

characteristic return time has two values (dashed curves), which

then merge into one value as mixed-layer depth increases (red

curve). This merging corresponds to the change in steady-state

type, which transitions from a sink node to a spiral sink as

ðTrJÞ2 � 4detJ becomes negative. In the depth range for which it

is a sink node, the steady state has two characteristic return times

corresponding to the two eigenvalues (Appendix 2). As mixed-

layer depth increases, the eigenvalues change type, becoming

complex conjugate. The absolute value of the imaginary part of

the eigenvalues is given in Figure 6b (blue curve). From the imag-

inary part of the eigenvalues, the period of the oscillations can

easily be calculated with (64), as demonstrated in Appendix 3.

However, here we have plotted the imaginary part directly to em-

phasize that it becomes distinct from zero at a certain depth.

Mixed layers deeper than this depth will behave in an oscillatory

manner, whereas shallower ones will not. Therefore we see that

mixed-layer depth determines not only whether or not mixed-

layer biomass can be sustained (Sverdrup, 1953), but also the

character of the dynamical response of the system.

In case of oscillations, we have demonstrated how the timing

of the maximum can be found and derived (52). For the example

given here we have presented tmax as a function of Zm in

Figure 6a (orange curve). In this case, the mixed layer shallows

from a depth of 200 m to the depth Zm, which corresponds to the

axis in the figure. Using tmax, we have further calculated Bmax by

using (53) and the result is plotted in Figure 6c (dotted green

line). At the depth where the steady state switches from a spiral

sink to a sink node the maximum biomass drops abruptly, pro-

viding a plausible rationale for the well-known phenomenon of

the sudden ending, or crash, of blooms by stopping oscillations

due to a change in the type of steady state, prior to a total deple-

tion of nutrients. As the state transitions from a spiral sink to a

sink node, the initiated oscillatory response, due to shallowing of

a deep mixed layer, also terminates. Therefore this transition is of

some significance, because it may determine the intensity and du-

ration of the bloom, which have consequences for the rest of the

ecosystem. We see that deeper mixed layers can have Bmax com-

mensurate in magnitude, and even higher, than the steady-state

biomass of the shallower layers. These shallower layers, due to

their corresponding steady state not being oscillatory, cannot

reach such high biomass, even though their steady-state biomass

is higher than the steady-state biomass of the deep mixed layers.

Thus, we demonstrated the significance of the dynamical view of

the phytoplankton-nutrient system.

Figure 5. Sketch of the model response to mixed-layer deepening. (a) Mixed-layer depth as a function of time. The system starts with mixed-
layer depth Zs and at time t0 abruptly shallows to the depth Zd. (b) The change of steady states as seen in the phase space. As the mixed layer
deepens the system goes from the state Ss (orange point) to the intermediate state Si (blue point). It then starts from Si to approach Sd (red
point).
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This discussion can also be cast as an argument based on the

nutrient supply rate nðN0 � NðtÞÞ. We can fix the mixed-layer

depth and vary n to explore how it affects the eigenvalues and

therefore the characteristic return time. An example is given in

Figure 7 where the mixed-layer depth is fixed at 100 m and n is

varied. The characteristic return time is here given as a function

of n, calculated by following the same procedure as above. The

characteristic return time is a smoothly varying function of n un-

til, at a particular value of n it branches and acquires two distinct

characteristic return times. At this point, the imaginary parts of

both eigenvalues go to zero.

According to Figure 7, and perhaps contrary to conventional

wisdom, mixed layers with a lower nutrient supply parameter be-

have in an oscillatory manner, whereas the ones with higher nu-

trient supply rates, and therefore higher nutrient availability,

behave in a non-oscillatory manner. This was found to occur as a

consequence of the nutrient limitation term in the production

model (as described in the Resilience of the steady state section).

Without the nutrient limitation term, oscillations cannot emerge,

irrespective of the nutrient supply rate. Only when nutrient limi-

tation and supply are both taken into account can oscillations

emerge. This leads to the unexpected result that shallower layers,

which have higher steady-state biomass, after shallowing, cannot

reach biomasses as high as deeper layers can, which have lower

steady-state biomass. A simple explanation is that shallower layers

can be saturated more easily, that is, the nutrient supply parame-

ter does not have to be as high to cause nutrient saturation of

production, as is the case with deeper layers. The same behaviour

is seen in Figure 7, but here n is varied for a constant mixed-layer

depth. As n increases, the likelihood of production saturation due

to nutrient concentration increases. More on interpretation of n
is given in Appendix 4.

Discussion
Summary
We have presented a stability analysis of a simple phytoplankton-

nutrient model in which primary production is limited by light

and nutrient concentration simultaneously. Throughout the pa-

per, historical notation was used and in Appendix 5 we provide a

generic version of the model. In previous works of such nature,

production limitation was treated in a slightly more simple way,

with either light or nutrients limiting production (Huppert et al.,

2004, 2005; Platt et al., 2009). As we have demonstrated, nutrient

limitation is the primary cause of oscillating behaviour in the

model, and light limitation of production is the primary cause of

damping. Therefore, in a model with only nutrient limitation,

oscillations are damped less quickly in comparison with models

having both nutrient and light limitation of primary production.

Also, we have shown that shading by phytoplankton itself has a

significant effect as it tilts the biomass nullcline to the right in the

phase plane (Figure 3) and causes the steady-state biomass to lie

below what it would otherwise be in case of no shading. This is

not possible in the models of the form studied in Huppert et al.

(2002), which do not include the effect of shading by phytoplank-

ton and therefore have a vertical biomass nullcline in the phase

plane. With respect to temporal evolution, it implies that the

peak in biomass occurs sooner than in case of no shading by phy-

toplankton. Consequently, the timing of the bloom peak is af-

fected. The steady-state biomass attainable in case of no shading

was also found, given by (41).

With shading included, we have found an expression relating

the steady-state biomass and the steady-state nutrient concentra-

tion (12). In phase space it is recognized as the steady-state line

(Figure 2). The particular point that is the steady state is

Figure 6. (a) Characteristic return time as a function of mixed-layer depth Zm (dashed grey and black curves and red curve) and timing of
the maximum tmax (orange curve) in case of shallowing from 200 m. (b) Absolute value of the imaginary part of the eigenvalues k1 and k2 for
two values of the nutrient supply parameter: n ¼ 0:05 h�1 (blue curve) and n ¼ 0:005 h�1 (grey curve) as a function of Zm. (c) Steady-state
biomass B� (green curve) and steady-state nutrient concentration N (purple curve) as a function of Zm, along with the maximum biomass
Bmax reached in case of shallowing from 200 m (dotted green line).
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determined by the crossing of the nullclines, and it depends on

the parameters of the system. A change in the parameters can be

viewed as causing a change in the steady state and the dynamical

response arises from the system’s being attracted to the new

steady state. The approach to the steady state is fuelled by

nutrients from below and energized by light emanating from the

surface. Without additional perturbations, the system very rapidly

goes to this new steady state. In fact, the speed of recovery is on

the order of the characteristic return time. However, if the pertur-

bations to the steady state have shorter duration than the charac-

teristic return time we can then expect that the steady state will

not be reached at all.

The analysis presented is consistent with general knowledge

about the functioning of marine ecosystems, namely mixed-layer

shallowing is a mechanism for triggering a dynamical response of

the phytoplankton-nutrient system, via an increase in light avail-

ability to the phytoplankton in the mixed layer (Appendix 3).

Our work added to this the understating of shading and nutrient

limitation of production as two different damping mechanisms.

For shading, it is clear that as biomass increases, light penetration

is reduced and therefore production drops. Any value of biomass

above the steady-state concentration will be depressed by shading.

This, combined with a linear increase of losses with respect to

biomass, finally causes the biomass to decline after reaching a

maximum value.

As far as nutrient limitation is concerned, as biomass increases

with increased production, nutrients are consumed and nutrient

concentration drops. With falling nutrient concentration, nutri-

ent limitation of production intervenes, preventing total exhaus-

tion of nutrients from the mixed layer. A consequence is that as

the concentration continues to fall, the gradient between deep-

water nutrient concentration and the mixed-layer nutrient con-

centration increases, which in turn increases the influx of deep-

water nutrients into the mixed layer. This helps increase produc-

tion and move the nutrient concentration towards the steady

state value. As the nutrients are resupplied, production again

increases and the cycle repeats.

When both processes (shading and nutrient limitation) are

modelled together, two distinct responses can emerge, both of

which satisfy Sverdrup’s critical depth criterion (Sverdrup, 1953).

The important distinction between the two responses to mixed-

layer shallowing is in the approach to the new steady-state bio-

mass. For a sink node, the biomass does not increase above the

new steady-state biomass, whereas for a spiral sink it does. We see

that, complementary to Sverdrup’s criterion, the type of steady

state also determines how high biomass can be attained.

An interesting property of the trajectory for a spiral sink is

that, when the steady state is being approached, biomass can

reach values well above the steady-state value. For a spiral sink

steady state, the trajectory can exhibit several orbits around the

steady state before the oscillations are damped significantly. How

long these oscillations persist is determined by the characteristic

return time and it reflects the resilience of the system. It also has

consequences for the convergence of the critical depth to the

mixed-layer depth. Specifically, the steady state has a unique

property with steady-state mixed-layer production exactly bal-

anced by mixed-layer losses. This can be seen by setting dB=dt ¼
0 in (6) to obtain:

PB
Zm;T
¼ 24vZmLB: (54)

Given that the depth for which this criterion holds is referred

to as the critical depth, the two depths Zm and Zc are in fact equal

for the system in steady state. Since the system trajectory con-

verges onto the steady state, the critical depth also converges onto

the mixed-layer depth (Platt et al., 2003a).

After shallowing, steady-state oscillations are excluded for the

sink node and the critical depth remains deeper than the mixed-

layer depth until the new steady state is reached, at which point

they become equal. For the spiral sink steady state, there are oscil-

lations, and the critical depth can cross the mixed-layer depth

multiple times on the approach to the new steady state. Every

crossing is associated with reversing of the net growth rate sign,

which switches from positive to negative as the critical depth

becomes shallower than the mixed-layer depth and from negative

to positive as the critical depth becomes deeper than the mixed-

layer depth. This means that positive and negative growth inter-

vals occur during the transition to the new steady state. As time

progresses, these oscillations are damped, but their period does

not change; it is determined by the imaginary part of the eigen-

values of the Jacobian at the new steady state (Appendix 5).

In both cases, oscillatory and non-oscillatory, the system

responds so as to minimize the effect of the disturbance, the dis-

turbance here being a change in the mixed-layer depth. Since all

steady states are characterized by the critical depth’s being equal

to the mixed-layer depth, during the transition states the critical

depth is not equal to the mixed-layer depth. Whenever there is an

inequality between the two, biomass and nutrient concentration

change with time, in a way that minimizes the difference between

the two depths. Following mixed-layer shallowing, for a spiral

sink steady state, this difference can be both positive and negative,

whereas for a sink node it can only be positive. In this case, the

critical depth can only be deeper than the mixed-layer depth.

Given that critical depth is deeper during the approach to the

new steady state, the biomass increases until the critical depth

matches the mixed-layer depth. The net growth phase then termi-

nates. Note that the critical depth does not become shallower

than the mixed-layer depth and the biomass does not overshoot

the new steady-state biomass. Although the growth rate is positive

Figure 7. Characteristic return time as a function of n. The
characteristic return time is a smoothly varying function of n (blue
curve) until, at a particular value of n it branches and acquires two
distinct characteristic return times (orange and red curves). In this
example, mixed-layer depth Zm is fixed at 100 m.
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during the entire process, there is no increase in biomass beyond

the difference in the biomasses of the two steady states. However,

this is not the case with a spiral sink steady state; on the approach

to the new steady state the net growth rate changes sign, as al-

ready discussed.

Minimizing the depth difference between the mixed-layer

depth and the critical depth could be a principle valid not only

for perturbations caused by variations in the mixed-layer depth,

but also for other perturbations, such as a change in surface irra-

diance, or in the loss rate. A change in surface irradiance arises

naturally from cloud coverage and the evolution of the seasons. A

change in the loss rate comes naturally from fluctuations in zoo-

plankton abundance, naturally dependent on phytoplankton con-

centrations, which changes grazing intensity (Edwards and Yool,

2000; Edwards and Bees, 2001). Another way that zooplankton

abundance might change is by fishing (Wiborg, 1976), a radical

example of which would be exploitation of zooplankton, which

might then greatly reduce the phytoplankton loss term and so act

as a perturbation on the system. For example, zooplankton have

been exploited off the Norwegian coast at least since 1960

(Wiborg, 1976), and has recently increased such that the total al-

lowable catch for 2019 was set at 250 000 tonnes (target species,

the copepod Calanus finmarchicus). Some ten licences have been

issued without specific vessel quota, with a lifetime up to 2029

(fiskerforum.com/norway-sees-commercial-fishery-in-copepods/).

Previously, one company had been operating on a trial basis with

a modest quota of 5000 tonnes. The potential impact of a 50-fold

increase in quota remains to be seen. However, zooplankton dy-

namics are not modelled explicitly here; zooplankton exploitation

would be included implicitly as a reductive contribution to the

generalized loss term �LBB in the phytoplankton equation (6).

Adding an additional explicit equation for zooplankton and ex-

ploring system stability in that case is a potential course for future

research and could be used to study theoretically the effect of zoo-

plankton on the characteristic return times.

Another potential usage of the presented analysis deals with

the incorporation of the equations into more complex ecosystem

models, nowadays routinely done by modellers. In this context

the governing equations can be regarded as a finite volume balan-

ces for particular boxes. The production and losses of phyto-

plankton, along with nutrient uptake, are called the reaction

terms of these models. The one term remaining is the nðN0 �
NðtÞÞ term, which is basically the flux from neighbouring cells.

In a three dimensional ocean ecosystem model this term would

have to be extended to include fluxes from the top, left and right,

front and back, neighbouring boxes. The analysis carried out in

this work could provide stability conditions for each box and

would subsequently provide criteria for oscillatory behaviour in

the entire model. It would also provide an expected return time,

which could then easily be compared with the results of more

complex marine ecosystem models. This would provide us with a

tool for assessing the influence complexity has on the basic be-

haviour displayed by the model presented here.

In addition, the flux term from neighbouring boxes would also

emerge in the biomass equation. Translated to our case of a

mixed layer, the only other box is the one below the mixed layer.

We have taken the biomass below the mixed layer as zero, effec-

tively making the biomass influx zero. This is a reasonable first-

order assumption commonly used in oceanography. However, it

may not always be valid. Taking the biomass below the mixed

layer as non-zero would have implications for the loss rate, as the

flux due to a gradient in biomass would either increase/decrease

the biomass in the mixed layer depending on the sign of the gra-

dient, which would subsequently have consequences for the sta-

bility criterion of the system. Exploring this effect in more detail

is another potential course for future research.

Conclusions
We have seen that the dynamics of even a simple phytoplankton-

nutrient model, for which phytoplankton growth rate is nutrient-

dependent, are complex, especially in so far as the stability against

perturbation of model parameters is concerned. We have found

closed solutions for the return times of the phytoplankton bio-

mass (indexed as chlorophyll concentration) following perturba-

tion of parameters. The return times are proposed as metrics for

resilience of the pelagic ecosystem. The return to equilibrium

may be oscillatory or not, depending on conditions. Importantly,

the oscillatory approach to steady state can affect both the ampli-

tude and phase (timing) of the system response to perturbation.

In other words, it can affect the phenology of the phytoplankton,

which has been shown to play a major role in the survival of larval

fish (Platt et al., 2003b, 2007; Friedland et al., 2008). Key model

parameters, the mixed-layer depth and the resupply rate of

nutrients from the deep reservoir, can both be expected to change

under climate change, with implications for the future resilience

of the pelagic ecosystem. For example, in the Adriatic Sea regime

shifts have been detected in a 55-year time series of primary pro-

duction (Kova�c et al., 2018a) and it is plausible that resilience

also changes with regime shifts.

Another threat to resilience is through manipulation of the

loss parameter, for example through commercial exploitation of

the zooplankton community. In simple ecosystems with few tro-

phic connections, such as those in high latitudes, heavy exploita-

tion of zooplankton may be sufficient to destabilize the pelagic

system, and so should be approached with adherence to the pre-

cautionary principle. The model that was chosen for analysis had

two variables in the phase plane, with loss term parametrized as a

linear portion of biomass. The next step is to include zooplankton

as the (explicit) third state variable, which changes the dynamics

from two to three dimensions and may cause more complex dy-

namical behaviour (Strogatz, 1994).

The dynamics studied here, which evolve in response to tran-

sient modifications of model parameters, are embedded in a con-

text of seasonal change consequent on time-dependent variation

in forcing, notably to progressive changes in insolation and strati-

fication. How variability on the transient or episodic scale can be

reconciled with that on the seasonal scale also remains the subject

of further study. There is now evidence that transient events, such

as hurricanes, which primarily affect the mixed layer, can also en-

hance export of labile carbon to the deep ocean (Pedrosa-Pamies

et al., 2019). The link with even longer time scales and the evi-

dence of a response by the marine ecosystem to climate change

say through the demonstration of a trend, might be more elusive

than previously supposed. Perhaps, the reason is that the ecosys-

tem has built-in stabilizing or compensating tendencies that

might obscure or suppress such trends. The results presented in

this work show what these might be like, how strong and how

rapid. The interpretation of time series data on chlorophyll con-

centration, such as those provided by the Ocean-Colour Climate-

Change Initiative of the European Space Agency (Sathyendranath

et al., 2019), will become more complex as a result.
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Appendix 1
Interpretation of n
Consider a mixed layer extending from the surface to depth Zm.

Suppose that the nutrients are supplied to the mixed layer by a

vertically advective velocity V. The supply rate will depend on the

concentration difference N0 � NðtÞ between the mixed layer and

the deep reservoir. The transport of nutrients across the base of

the mixed layer is V ðN0 � NðtÞÞ per unit area per unit time, with

dimensions ½LT�1�½ML�3� ¼ ½ML�2T�1�. The supply has to be al-

located uniformly throughout the mixed layer, such that to quan-

tify the effect (augmentation) on the concentration there we

should divide the inflow by Zm, to yield V ðN0 � NðtÞÞ=Zm with

dimensions ½ML�3T�1�. It can be seen from (7) that these are the

correct dimensions, from which we can identify n as V=Zm, with

dimensions ½T�1�. It is the ratio of the advective velocity to the

depth of the mixed layer. The product nðN0 � NðtÞÞ is the rate of

change of nutrient concentration in the mixed layer as a result of

supply from below.

Now suppose that the vertical nutrient flux was diffusive rather

than advective. Then we would have a diffusion coefficient with

dimensions ½L2T�1� multiplying the concentration gradient

½ML�3L�1� giving ½ML�2T�1� as before for the flux across the base

of the mixed layer, or ½ML�3T�1� after allocation over the entire

mixed layer, as required by (7). In this case also, we identify n as a

velocity (diffusive now), scaled by the mixed-layer depth, with

dimensions ½T�1�. The rate of change of nutrient concentration in

the mixed layer for the same vertical velocity (advective or diffu-

sive), and the same nutrient concentration on the deep reservoir,

depends on the mixed-layer depth.

Appendix 2

Stability analysis
The linearisation of the system of equations (6) and (7) reads:

@

@t

dB

dN


 �
¼ J

dB

dN


 �
; (55)

where the Jacobian is given as:

J ¼ @BBðtÞ @N BðtÞ
@BNðtÞ @N NðtÞ


 �
; (56)

with dB ¼ BðtÞ � B� and dN ¼ NðtÞ � N� as the perturbations

of the steady state. The solution of this system is (May, 1973):

dBðtÞ
dNðtÞ


 �
¼ c1 exp ðk1tÞ v11

v12


 �
þ c2 exp ðk2tÞ v21

v22


 �
; (57)

where k1 and k2 are the eigenvalues of the Jacobian, with the cor-

responding eigenvectors ½ v11 v12 �T and ½ v21 v22 �T , respec-

tively, and the constants c1 and c2 are set by the initial conditions:

c1 ¼
v22dBð0Þ � v21dNð0Þ

v11v22 � v21v12

; (58)

c2 ¼
�v12dBð0Þ þ v11dNð0Þ

v11v22 � v21v12

: (59)

When both eigenvalues are negative (or have negative real parts),

dBðtÞ ! 0 and dNðtÞ ! 0, meaning BðtÞ ! B� and NðtÞ ! N�.

In this case, the steady state is stable. When either, or both, eigen-

values are positive, or have a positive real part, the system is un-

stable. In addition, when the imaginary part of the eigenvalues is

distinct from zero, B(t) and N(t) oscillate and the imaginary part

of the eigenvalues determines the frequency of these oscillations.

To get the eigenvalues of the Jacobian, we need to find the roots

of its characteristic polynomial:

x2 � TrJ x þ detJ ¼ 0; (60)

which are given as:

k1;2 ¼
1

2
TrJ6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrJð Þ2 � 4detJ

q
: (61)

As was demonstrated in Stability of the steady state section for the sys-

tem of (6) and (7), the determinant of the Jacobian is positive

(detJ > 0) and the trace is negative (TrJ < 0). This reflects on the

eigenvalues and stability in the following way. When we have

ðTrJÞ2 < 4detJ, the eigenvalues are complex conjugate and the sign

of the trace determines stability. Since it is negative the system is sta-

ble. The other case is of ðTrJÞ2 > 4detJ. Given that nowffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrJÞ2 � 4detJ

q
< jTrJj and TrJ < 0, both eigenvalues are nega-

tive and therefore the system is stable in this case also. In both these

cases, if the trace was positive the system would be rendered unstable.

Therefore, it has to be negative for the system to be stable. Also, if the

determinant was negative we would have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrJÞ2 � 4detJ

q
> jTrJj,

giving k1 > 0 and k2 < 0. This steady state is classified as a saddle

point and is unstable since one eigenvalue is positive. Therefore, the

determinant needs to be positive for the system to be stable.

Appendix 3

General characteristic return times
The characteristic return time is given simply by the real part of the

eigenvalues of the Jacobian. When the imaginary part of the eigen-

values is non-zero, meaning the steady state is a spiral sink and oscil-

lations emerge, the real part of both eigenvalues is equal to:

Reðk1;2Þ ¼
1

2
B�@BhPBiZm;T

� �@N hPiZm;T
� n

� 

; (62)

and the characteristic return time is therefore:

T ¼ 2=jB�@BhPBiZm;T
� �@N hPiZm;T

� nj: (63)

There is only one characteristic return time because the real parts

of both eigenvalues are the same. The eigenvalues come as a com-

plex conjugate pair and their imaginary part determines the oscil-

lation frequency. The period of the oscillations is given as:

T ¼ 4p

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrJð Þ2 � 4detJ

q
j
; (64)

where the trace TrJ is given by (21) and the determinant detJ by

(24). The same does not apply for the case of a sink node steady
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state. In this case, both eigenvalues are real and ðTrJÞ2 � 4detJ >

0 is satisfied. Now we find two characteristic return times:

T1 ¼ 2=ðTrJþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrJÞ2 � 4detJ

q
Þ; (65)

and

T2 ¼ 2=ðTrJ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrJÞ2 � 4detJ

q
Þ; (66)

where the trace TrJ is given by (21) and the determinant detJ by

(24). Shading and nutrient limitation now acting together results

in a somewhat complicated expression for the characteristic re-

turn times when fully expanded.

Appendix 4

Average mixed-layer production
It is simple to show that hPiZm;T

¼ hPT ðzÞi, where PT ðzÞ is the

daily production profile (Kova�c et al., 2016a, 2017b) and hPT ðzÞi
marks the vertical average of the daily production profile in the

mixed layer. Acknowledging this, we have the following expres-

sion for the derivative of average mixed-layer production with re-

spect to Zm:

@Zm
hPiZm;T

¼ 1

24v
@Zm

1

Zm

ðZm

0

PT ðzÞdz

0
B@

1
CA: (67)

Upon taking the derivative we obtain:

@Zm
hPiZm;T

¼ 1

24vZm

@Zm

ðZm

0

PT ðzÞdz � 1

Zm

ðZm

0

PT ðzÞdz

0
B@

1
CA;

(68)

which, acknowledging:

@Zm

ðZm

0

PT ðzÞdz ¼ PT ðZmÞ; (69)

and:

ðZm

0

PT ðzÞdz ¼ hPT ðzÞiZm; (70)

reduces to:

@Zm
hPiZm;T

¼ 1

24vZm

PT ðZmÞ � hPT ðzÞiÞ:ð (71)

Because the production profile is a decreasing function of depth

for a uniform biomass profile (Kova�c et al., 2016a), the produc-

tion at the base of the mixed layer PT ðZmÞ will be less than the av-

erage production in the mixed layer hPT ðzÞi, therefore

PT ðZmÞ � hPT ðzÞi < 0, meaning that mixed-layer deepening will

be followed by a decrease in average mixed-layer production, and

mixed-layer shallowing by an increase in average mixed-layer

production.

Appendix 5

Generic model
The model presented is written in a historical notation, which al-

ready has a long and continuous application and which is param-

eter specific. However, to achieve generality we provide also a

more generic version of the model with simplified notation:

dB

dt
¼ P

N

N þ Nk

B � LB; (72)

dN

dt
¼ ��P

N

N þ Nk

B þ nðN0 � NÞ; (73)

where P ¼ PðIm
0 ;Zm;B;Kw ; kBÞ. Multiple functional forms can be

taken for P. The one used in this paper stems from the work of Platt

et al. (1990) and is given in (4) and in many subsequent papers.
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