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SUMMARY

Rapid Na+/Ca2+-based action potentials govern
essential cellular functions in eukaryotes, from the
motile responses of unicellular protists, such as
Paramecium [1, 2], to complex animal neuromus-
cular activity [3]. A key innovation underpinning
this fundamental signaling process has been the
evolution of four-domain voltage-gated Na+/Ca2+

channels (4D-Cavs/Navs). These channels are widely
distributed across eukaryote diversity [4], albeit
several eukaryotes, including land plants and fungi,
have lost voltage-sensitive 4D-Cav/Navs [5–7].
Because these lineages appear to lack rapid
Na+/Ca2+-based action potentials, 4D-Cav/Navs are
generally considered necessary for fast Na+/Ca2+-
based signaling [7]. However, the cellular mecha-
nisms underpinning the membrane physiology of
many eukaryotes remain unexamined. Eukaryotic
phytoplankton critically influence our climate as
major primary producers. Several taxa, including
the globally abundant diatoms, exhibit membrane
excitability [8–10]. We previously demonstrated that
certain diatom genomes encode 4D-Cav/Navs [4]
but also proteins of unknown function, resembling
prokaryote single-domain, voltage-gated Na+ chan-
nels (BacNavs) [4]. Here, we show that single-domain
channels are actually broadly distributed across
major eukaryote phytoplankton lineages and repre-
sent three novel classes of single-domain channels,
which we refer collectively to as EukCats. Functional
characterization of diatom EukCatAs indicates that
they are voltage-gated Na+- and Ca2+-permeable
channels, with rapid kinetics resembling metazoan
4D-Cavs/Navs. In Phaeodactylum tricornutum, which
Current Biology 29, 1503–1511,
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lacks 4D-Cav/Navs, EukCatAs underpin voltage-
activated Ca2+ signaling important for membrane
excitability, and mutants exhibit impaired motility.
EukCatAs therefore provide alternative mechanisms
for rapid Na+/Ca2+ signaling in eukaryotes and may
functionally replace 4D-Cavs/Navs in pennate dia-
toms. Marine phytoplankton thus possess unique
signaling mechanisms that may be key to environ-
mental sensing in the oceans.

RESULTS AND DISCUSSION

Diatoms are a diverse group of unicellular algae characterized by

their ability to produce a silicified cell wall (frustule). They are

abundant primary producers in marine and freshwater ecosys-

tems, particularly in coastal waters [11]. Diatoms are typified

by their ability to divide rapidly when they encounter favorable

conditions, and sophisticated signaling mechanisms most

likely contribute to their ecological success [12]. The centric

diatom Odontella sinensis exhibits spontaneous action poten-

tials resembling those produced by 4D-Cav/Navs [10, 13] (Fig-

ures 1A and 1B). However, the molecular basis and functional

roles of action potentials in these non-motile phytoplankton cells

are unknown. Our previous surveys of diatom genomes identi-

fied that the centric diatom Thalassiosira pseudonana, but not

the model pennate Phaeodactylum tricornutum, encodes a

4D-Cav/Navs gene homolog [4]. In contrast, both genomes

contain uncharacterized single-domain channels resembling

prokaryote BacNav channels, first characterized from Bacillus

halodurans (NaChBac) [14]. NaChBac yields voltage-gated,

Na+ selective currents, with activation and inactivation kinetics

typically 10–100 times slower than those of mammalian

4D-Navs [14], although representatives from marine bacteria

(e.g., NavShep from Shewanella putrefaciens) are considerably

faster [15]. We therefore reasoned that the single-domain chan-

nels identified in diatom genomes could contribute to membrane
May 6, 2019 ª 2019 The Authors. Published by Elsevier Ltd. 1503
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Figure 1. Novel Classes of 1D Voltage-Gated Cation Channels (EukCats) AreWidely Distributed in Important Eukaryotic Phytoplankton Taxa

(A) Free running membrane potential (current clamp recording) demonstrating firing of spontaneous action potentials in the diatom O. sinensis [10].

(B) Schematic diagram of a four-domain, voltage-dependent cation channel (4D-Cav/Nav), showing SF with canonical ‘‘DEKA’’ locus of Na+ selective

4D-Nav1 s [4]. The voltage-sensing S4 domain is also highlighted (++).

(C) Distribution of 4D-Cav/Nav and novel eukaryote single-domain (1D) voltage-dependent cation channels (EukCat) in diatoms. The latter are ubiquitous in diatom

genomes and transcriptomes, whereas 4D-Cav/Navs are restricted to certain centric diatoms. Data are derived from genome (G) and transcriptome (T) datasets,

as indicated in the right column. N.F. denotes not found. Species from which genes were characterized in this study are highlighted in bold. Protein IDs for all

species shown are in Data S1.

(D) Maximum likelihood phylogenetic tree of single-domain voltage-gated cation channels, including BacNavs, CatSpers, and novel eukaryote channels

(EukCats). Three distinct classes (EukCatA-C) can be observed. ML bootstrap values (>70) and Bayesian posterior probabilities (>0.95) are indicated on selected

nodes. Branch colors denote taxonomic group for EukCat channels. Details of sequences used to construct the phylogenetic tree are given in Data S2. Schematic

diagram of a EukCat channel with SF of Phaeodactylum tricornutum protein (PtEUKCATA1; protein ID 43878) is also shown (lower left), indicating the position of

transmembrane domains, selectivity filter, and coiled-coil domain (CC). By comparison, the OsEUKCATA1 (protein ID CAMPEP_0183296650) exhibits similar

structural features to PtEUKCATA1 (50.7% amino acid identity) but has an SF motif of TLDAWAD.

(E) Differential interference contrast microscopy images of diatoms P. tricornutum (scale bar represents 10 mm) and Odontella sinensis (scale bar represents

50 mm) are shown.

See also Figure S1 and Data S1 and S2.
excitability if they are strongly voltage gated and exhibit appro-

priate activation and inactivation kinetics.

To further examine the mechanisms underpinning membrane

excitability in diatoms, we determined the broader distribution

of 4D-Cav/Navs in available diatom genome and transcriptome

databases. 4D-Cav/Navs were present in only 6/24 species

surveyed (Figure 1C; Data S1), and these were confined

to centrics, indicating that pennate diatoms have most likely

lost 4D-Cav/Navs. Moreover, although two sequenced centric
1504 Current Biology 29, 1503–1511, May 6, 2019
diatom genomes contain a 4D-Cav/Nav homolog (Figure 1C), a

patchy distribution was seen in centric transcriptomes, indi-

cating absence or poor expression. Notably, 4D-Cav/Navs are

absent from the transcriptome of O. sinensis and several other

mediophyte diatoms. Thus, alternative channels may underpin

the fast Na+/Ca2+ action potentials of O. sinensis.

In contrast, single-domain channels were present in 6/6 of

diatom genomes and 17/18 of transcriptomes examined, span-

ning all major classes (Figure 1C). We also identified similar



channels in several other important eukaryote phytoplankton

(including haptophytes, dinoflagellates, cryptophytes, and

pelagophytes). Notably, these represent some of the most

ecologically significant marine phytoplankton taxa [16] (Data

S1). Phylogenetic analyses reveal that the single-domain

channels group into three strongly supported clades (Figure 1D).

Clade A includes diatoms; clade B representatives of the hapto-

phytes, cryptophytes, and pelagophytes; and clade C dinofla-

gellates. These clades were phylogenetically distinct from

BacNavs and CatSpers (a specialized family of weakly voltage-

gated, single-domain channels present in mammalian sperm)

[17, 18]. We have thus collectively termed these novel, single-

domain eukaryote channels 1D-EukCats. Our findings highlight

that single-domain, voltage-gated channels are far more preva-

lent in eukaryotes than previously recognized and thus warrant

further attention.

O. sinensis action potentials arise from rapid Na+- and Ca2+-

based, depolarization-activated currents with activation and

inactivation kinetics strongly resembling animal 4D-Nav/Cavs

[10]. Furthermore, the anesthetic lidocaine significantly inhibited

these currents, but not tetrodotoxin (TTX), the mammalian

4D-Nav1 blocker [3]. Diatom EukCatAs exhibit the typical organi-

zation of voltage-gated channel sub-units, with six predicted

transmembrane segments (S1–S6), including theconserved argi-

nine-rich S4 segment associated with voltage activation (Figures

1D and S1A) and a selectivity filter motif (SF) (Figure S1B) [14]. A

coiled-coil domain is alsopresent,which inBacNavs is involved in

tetramerization and gating [19]. We generated codon-optimized

constructs for heterologous expression in human HEK293 cells.

We chose representative sequences from the genetically trac-

table diatom Phaeodactylum tricornutum [20] (PtEUKCATA1)

and from O. sinensis (OsEUKCATA1) (Figures 1E, S1A, and

S1B; Methods S1). These were expressed as C-terminal GFP fu-

sions. To confirm PtEUKCATA1 and OsEUKCATA1 expression,

only cells exhibiting GFP fluorescence were used for electro-

physiological analysis (Figure S1C). Both constructs yielded

robust depolarization-activated inward currents in HEK293 cells,

with a voltage of half activation of �18.7 ± 0.4 mV (n = 14;

PtEUKCATA1) and �23.8 ± 0.2 mV (n = 12; OsEUKCATA1; Fig-

ures 2A and S1D; Table S1). EukCatA channels also exhibited

rapid kinetics (Figures 2B, 2C, and S1E): tactivation and tinactivation
time constants (measured at �10 mV) were 9.2 ± 1.9 ms

(PtEUKCATA1), 1.6 ± 0.1 ms (OsEUKCATA1), 33.0 ± 5.8 ms

(PtEUKCATA1), and 52.6 ± 2.9 ms (OsEUKCATA1), respectively

(Table S1). These are comparable to 4D-Cav/Navs and closely

resemble thoseof theO. sinensisactionpotentials [10]. EukCatAs

also exhibited sensitivity to lidocaine (Figure 2D), but not TTX

(Figure 2E). These studies indicate that EukCatAs represent a

novel class of voltage-gated channels in eukaryotes.

Na+ selectivity of BacNav channels is mediated by a

conserved SF. Modification of the B. halodurans NaChBac SF

from TLESWAS to TLDDWAD caused this highly selective Na+

channel to become Ca2+ permeable [21, 22]. The SFs of diatom

EukCatAs (PtEUKCATA1, TLE-WAD; OsEUKCATA1, TLDAWAD)

differ from the Na+-selective BacNavs (Figure S1B). To determine

Na+ and Ca2+ dependency of EukCatA currents, we performed

several cation replacements in the external solution. Replace-

ment of Na+ with N-methyl-D-glucamine (NMDG), leaving

only Ca2+ as the major extracellular cation, did not affect
the voltage-dependent inward current for PtEUKCATA1 or

OsEUKCATA1 (Figure 2F). Moreover, no reduction in maximal

current was seen for either EukCatA channel following removal

of extracellular Ca2+, leaving Na+ as the major external cation

(Figure 2F). This demonstrates that EukCatAs are permeable to

both Na+ and Ca2+. In summary, EukCatAs expressed in heterol-

ogous systems exhibit similar voltage dependency, kinetics,

pharmacology, and selectivity to O. sinensis action potentials

(Table S1) and thus offer alternativemechanisms to 4D-Cav/Navs

for rapid Na+/Ca2+ membrane excitability in diatoms.

Techniques for genetic manipulation are currently unavailable

in O. sinensis and other large diatoms amenable to electrophysi-

ological approaches. We therefore used the model pennate

P. tricornutum to test the role of EukCatAs in diatom excitability.

This species encodes three EukCatA isoforms, but 4D-Cav/Navs

are absent [4]. We examined membrane potential in wild-

type P. tricornutum cells using the voltage-sensitive dye Annine-

6-Plus (A-6-P) [23, 24] (Figure 3A). Perfusion of P. tricornutum

with elevated K+ (100 mM), which depolarizes the plasma mem-

brane in other diatoms [25], resulted in a gradual depolarization

in the majority of cells (84%; n = 37 cells; Figure 3A). In addition,

we detected very rapid depolarization events resembling action

potentials in 23%of cells (n=35cells; 12.5 fps; 15 replicateexper-

iments). This indicates thatP. tricornutum cells exhibit membrane

excitability, although it is likely that limitations in image acquisition

speed and/or sensitivity resulted in under-sampling of action

potentials using voltage imaging [26, 27].

We therefore developed tools for Ca2+ imaging in single

P. tricornutum cells because EukCatAs are Ca2+ permeable

and [Ca2+]cyt elevations are routinely used as measurements of

neuronal membrane excitability [26]. We generated a transgenic

strain of P. tricornutum stably expressing the intensiometric

fluorescentCa2+ indicator R-GECO (linePtR1; Figure 3B). To vali-

date the ability of PtR1 cells to reproducibly report [Ca2+]cyt, we

treated cells with a hypo-osmotic shock, which induces robust

[Ca2+]cyt elevations in aequorin expressing P. tricornutum [12].

Treatment with 90% artificial seawater (ASW; diluted with deion-

izedwater) resulted in a single large transient increase inR-GECO

fluorescence (average maximum intensity 2.53 ± 0.844; n = 12;

SEM), which was dependent on external Ca2+ (Figure S2) [28].

We next examined the response of PtR1 cells to membrane de-

polarization. Compared to hypo-osmotic shock, treatment with

100 mM K+ resulted in smaller (average maximum intensity

2.05 ± 0.1; n = 12; SEM) and more sustained Ca2+ elevations

(94% of cells; n = 54) that typically initiated after a short delay

(average delay to maximal fluorescence: 33.4 ± 4.77 s; Figures

3B and 3C). The observed variability in the timing of this response

is most likely due to differences in resting potential and/or the

threshold for depolarization between cells. Direct imaging of

membrane potential in PtR1 cells indicated that action potentials,

when observed, directly preceded the [Ca2+]cyt elevation in each

case (n = 4 cells exhibiting action potentials; Figure S3A). Given

that PtEUKCATA1 is Na+ and Ca2+ permeable, we examined

whether action potentials could occur without external Ca2+.

Treatment of wild-type (WT) cells with ASW containing 100 mM

K+, but no Ca2+ (+200 mMEGTA), led tomultiple action potentials

(45% of n = 23 cells; over 6 replicate experiments; Figures S3B–

S3D). This indicates that Na+ conductance is sufficient to

generate action potentials in P. tricornutum, as has also been
Current Biology 29, 1503–1511, May 6, 2019 1505
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Figure 2. Diatom EukCatAs Are Rapid-Depolarization-Activated Na+- and Ca2+-Permeable Channels

(A) Typical current traces for HEK293 cells expressing PtEUKCATA1 in response to membrane depolarization. Average peak current-voltage (I-V) curve (right),

where current was normalized to cell capacitance. Peak current: �27.4 ± 12.0 pA/pF (error bars, SEM; n = 8).

(B) Steady-state inactivation: representative current traces (left) used to obtain steady-state inactivation curves (right) for PtEUKCATA1 (n = 17). Average

normalized data were fitted using the Boltzmann equation (see STAR Methods) for both activation (solid circles) and steady-state inactivation (open circles)

curves. Error bars: SEM (see Table S1 for time constants).

(C) Recovery from inactivation; superimposed currents obtained by a double-pulse protocol using a varying interval (Dt) between the two voltage pulses (left).

Holding potential was�120mV and the test pulse 40mV for 100ms, and the recovery pulse of�40mV for 5 s was applied between 100ms and 1,700ms after the

test pulse. The peak currents elicited by the recovery pulse were normalized in order to construct the recovery curve. A single exponential was fitted to the

averaged normalized recovery curve yielding t for recovery (first order exponential fit) of 650 ± 33.5 ms (error bars, SEM; n = 3).

(D and E) Impact of lidocaine (D) and tetrodotoxin TTX (10 mM; E) on diatom EukCatA channels: PtEUKCATA1 and OsEUKCATA1. Plots show mean% inhibition

(relative to control current); error bars: SEM, n shown in parentheses. Inhibition of native HEK cell Na+ currents by TTX (10 mM) is also shown. TTX had no

statistically significant impact on currents PtEUKCATA1 and OsEUKCATA1 (Student’s t test: p values: >0.5; n = 3).

(F) Mean peak currents generated following external cation substitution relative to the control external solution for PtEUKCATA1 (SF: TLE-WAD) and

OsEUKCATA1 (SF: TLDAWAD; with representative traces for PtEUKCATA1, right; relative current was calculated by dividing the peak current in the test solution

by the peak current in the control extracellular solution E1; Table S2). Replacement of extracellular Na+ with NMDG did not affect EukCatA currents. Similarly,

removal of Ca2+ had no effect. Replacement of Ca2+ with Ba2+ (in the absence of Na+) slightly enhanced the EukCatA currents. Error bars: SEM; nl shown in

parentheses. Extracellular and intracellular (pipette) solutions are given in Table S2.

See also Figure S1, Methods S1, and Tables S1 and S2.
reported for O. sinensis when Ca2+ is removed [29]. Moreover,

multiple action potentials were more frequently observed in the

absence of Ca2+ (7/10 cells exhibited multiple action potentials,

compared to 1/8 cells in the presence of Ca2+). In contrast,

K+-mediated Ca2+ elevations were not observed in PtR1 cells

in the absence of Ca2+ (Figure S3E), indicating that external

Ca2+ is necessary for depolarization-activated Ca2+ signaling

in P. tricornutum. Together, these results suggest that a

Ca2+-dependent negative feedback mechanism may regulate

P. tricornutum membrane excitability. Thus, despite lacking
1506 Current Biology 29, 1503–1511, May 6, 2019
4D-Cav/Nav channels, plasma membrane depolarization in

P. tricornutum leads to rapid action-potential-like depolarization

events and [Ca2+]cyt elevations.

In addition to PtEUKCATA1, the P. tricornutum genome con-

tains two further EukCatA isoforms that share 49.7% and

50.0% amino acid sequence identity (JGI protein IDs 54164

and 43828, respectively; Figure S1). Transcriptome data indi-

cate that PtEUKCATA1 is expressed in P. tricornutum cells in

standard liquid culture [30], and we confirmed its expression

using RT-PCR. To examine the role of PtEUKCATA1 in
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Figure 3. PtEUKCATA1 Is Required for

Depolarization-Activated Ca2+ Signaling

(A) Left: (i) shows an epifluorescence microscopy

image of a Phaeodactylum tricornutum cell stained

with the voltage-sensing dye Annine-6-Plus (A-6-P)

[23, 24]. The kymograph shows changes in A-6-P

fluorescence along the highlighted section of the

plasma membrane (ii) following exposure to ASW +

100mMK+ (after 15 s for 30 s; 10 frames/s). Transient

decreases in fluorescence (red arrows), indicative of

rapid depolarization of membrane potential, can be

observed following the much slower initial depolari-

zation in response 100 mM K+. DF/F over time (s) is

plotted below. Calibration of A-6-P in rat INS-1 cells

using a similar imaging configuration indicated a

decrease in fluorescence of 10% for membrane

depolarization of 100 mV [23].

(B) Left: an epifluorescence microscopy image

of a P. tricornutum (PtR1) cell expressing cyto-

plasmic-localized R-GECO Ca2+ reporter. Right:

pseudocolored time-lapse images following mem-

brane depolarization by perfusion with ASW con-

taining elevated K+ (100mM). Time (s) after treatment

is indicated. Pseudocolor represents the change in

fluorescence (F/F0), indicating a rise in cytosolic

Ca2+.

(C) Representative cytosolic Ca2+ elevations due to

membrane depolarization. Change in fluorescence

intensity of R-GECO in 5 representative PtR1 cells

exposed to 100 mM K+ is shown. The experiment

was carried out on three independent subcultures of

the PtR1 line, with similar results.

(D) The effect of membrane depolarization on PtR1-

eukcatA1 knockout mutant (line A3). 100 mM K+

did not induce cytosolic Ca2+ elevations in the

PteukcatA1 mutant; 5 representative cells are

shown. The experiment was carried out on three

independent subcultures of the mutant line A3,

with similar results.

(E) Mean maximal change in fluorescence of

R-GECO in response to depolarization (100 mM K+)

for PtR1 and four independent PtR1-eukcat-A1

mutant lines (A3, E3, B6, and B8). Error bars: SEM;

number of cells examined per line (n) over 3

independent experiments; p values (Student’s

t test): *p < 0.05; **p < 0.01; ***p < 0.001.

(F–H) Complementation of depolarization-activated

Ca2+ signaling phenotype in PtR1-eukcatA1 mutant

A3 transformed with WT PtEUKCATA1 gene.

Representative fluorescence traces of cells of three

independent complemented lines are shown: C1 (F),

C2 (G), and C3 (H) exposed to ASW with elevated K+

(100 mM) after 30 s for 90 s. The experiment was

carried out on three independent occasions with

similar results.

See also Figures S3 and S4.
generating depolarization-activated Ca2+ elevations, we em-

ployed CRISPR-Cas9 gene editing to generate bi-allelic

knockout mutants in the PtR1 line (Figures S4A and S4B;

STAR Methods). PtR1-eukcatA1 mutants exhibited only a

modest reduction in specific growth rate in liquid culture (Fig-

ure S4C). However, four mutants were unable to generate
depolarization-activated Ca2+ elevations (Figures 3D and 3E).

In contrast, the PtR1-eukcatA1 mutants showed no defect in

their response to hypo-osmotic stress when compared to WT

PtR1 cells (Figures S4D–S4F). This indicates that the Ca2+

signaling phenotype in PtR1-eukcatA1 mutants is due to spe-

cific defects in depolarization-activated Ca2+ signaling, rather
Current Biology 29, 1503–1511, May 6, 2019 1507
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Figure 4. Gliding Motility, but Not Growth, Is Impaired in PtR1-eukcatA1 Mutants

(A) Cumulative movement of P. tricornutum cells on solid agar. P. tricornutum cells on agar plates adopt the oval morphotype and exhibit gliding motility

(demonstrated by a diffuse ‘‘halo’’ around colonies spotted onto an agar plate—inset). % increase in spot area is shown after 27 days. The area of the halo is

reduced in PtR1-eukcatA1mutants compared to PtR1. Error bars indicate SEM; n = 4; p values (Student’s t test): *p < 0.05; **p < 0.01; ***p < 0.001. No statistical

difference was evident between WT and PtR1 (R).

(B) Time-lapse video microscopy of gliding oval P. tricornutum cells. Oval morphotypes cells (numbered) were placed onto a thin agarose layer and covered with

ASW. Gliding cells leave tracks in the agarose, indicating their path. The starting position of the cells is indicated in the final image (white oval). In the images

shown, cells either exhibit constant forward motility (cell 4), multiple reversals of direction (cell 5), or no motility (cell 2). Scale bar represents 50 mm.

(C) Percentage of motile cells for WT, PtR1, and four PtR1-eukcatA1 mutant lines over 10-min experiments. p values (Fisher’s exact test): *p < 0.05; **p < 0.01;

***p < 0.001.

(D) Description of metrics used to quantify gliding motility in oval P. tricornutum cells. Linear velocity indicates the displacement from the starting position.

Curvilinear velocity is the total distance traveled.

(E) Live-cell imaging of oval cells shows that mean linear velocity is significantly reduced in PtR1-eukcatA1mutants compared to the PtR1 line. n, total number of

cells quantified across 4 independent experiments; error bars indicate SEM; p values (Student’s t test): *p < 0.05; **p < 0.01; ***p < 0.001.

(F) Comparison of curvilinear velocity of the same lines. Error bars indicate SEM; p values (Student’s t test): *p < 0.05; **p < 0.01; ***p < 0.001.

(G) Gliding locomotion in P. tricornutum cells is inhibited in the absence of Ca2+. Cells were prewashed with either ASW or ASW-Ca2+ + 200 mM EGTA prior to

motility assay (*Fisher’s exact test: ***p < 0.001).

(H) Mean linear velocity of PtR1-eukcatA1mutant A3 compared to PtR1 (R) and three independent complemented lines: C1; C2; and C3. Error bars indicate SEM;

p values (Student’s t test): *p < 0.05; **p < 0.01; ***p % 0.001.

See also Figure S4.
than broader defects in cellular Ca2+ signaling. The results are

consistent with a role for voltage-dependent EukCatA channels

in generation of action potentials and initiating Ca2+ elevations.

Because two of the PtR1-eukcatA1 mutants (A3 and E3) did not

retain the Cas9 gene (Figure S4A), we reintroduced the WT
1508 Current Biology 29, 1503–1511, May 6, 2019
PtEUKCATA1 gene into mutant A3 under its native promoter

and confirmed expression of the WT PtEUKCATA1 transcript

in these lines (Figure S4G). This resulted in partial or complete

complementation of the defective phenotype (n = 3; Fig-

ures 3F–3H). These data provide conclusive evidence that



PtEUKCATA1 is required for depolarization-activated Ca2+

signaling in P. tricornutum.

In addition, we noticed a potential defect in cell motility in cells

grown on agar plates. P. tricornutum transitions from its plank-

tonic fusiform morphotype to a motile oval morphotype on solid

media [31]. The oval cells possess a partially silicified cell wall

with a raphe [32], which enables the cell to glide across a solid

surface. Evidence suggests that diatom gliding motility is Ca2+

dependent [33]. When uniform numbers of P. tricornutum cells

(1 3 104) were spotted onto agar plates, ‘‘halos’’ of motile cells

were visible in WT and PtR1 lines after 27 days, but these were

consistently reduced in diameter in the PtR1-eukcatA1 mutants

(Figure 4A). To investigate whether a defect in motility could ac-

count for this observation, we used video microscopy to track

motility of individual oval cells (Figure 4B). The PtR1-eukcatA1

mutants exhibited significant defects in the proportion of motile

cells (Figure 4C) and in gliding velocity (mm/s) compared to

PtR1 andWT (Figures 4D–4F). Video microscopy also confirmed

that gliding is Ca2+ dependent in P. tricornutum, as the cells ex-

hibited little or no motility in ASW without Ca2+ (+200 mM EGTA;

Figure 4G). Furthermore, a significant restoration of linear veloc-

ity was observed for two of the three complemented lines

(C2 and C3) compared to mutant A3 (Figure 4H). Together, these

results provide strong evidence that PtEUKCATA1 is involved in

Ca2+-dependent locomotion in P. tricornutum.

Our work demonstrates that EukCatAs are important in

voltage-regulated Ca2+ signaling and in the Ca2+-dependent

gliding motility. Diatom gliding is vital for vertical migration in

sediments [34] and migration toward nutrients [35]. Inhibition of

Ca2+ influx leads to a reduced gliding speed in Navicula permi-

nuta, although it does not impair the photophobic response

[33]. Ca2+ influx through EukCatAs may therefore be important

for processes associated with propulsion, e.g., the secretion

of mucopolysaccharide or regulation of cytoskeleton dynamics

[36]. However, it is also clear that EukCatAs most likely play

wider roles in diatom biology. Gliding is only observed in the

oval morphotype in P. tricornutum, although PtEUKCATA1

clearly contributes to Ca2+ signaling in response to membrane

depolarization in fusiform cells (Figure 3B), which are non-motile.

Furthermore, gliding motility is only found in pennate diatoms,

whereas EukCatAs appear to be present in all diatoms. Fast

Ca2+-dependent signaling processes have been identified

in non-motile diatoms that could be mediated by EukCatAs.

For example, the centric diatom Pleurosira laevis rapidly re-dis-

tributes its chloroplasts following mechanostimulation that is

proposed to be mediated by a Ca2+ influx following plasma

membrane depolarization [37]. Depolarization-regulated chan-

nels are prevalent in plant and animal lineages and critically

underpin many cellular processes, including solute transport

[38], pathogen detection [39, 40], and cellular wounding re-

sponses [41]. The ubiquitous presence of EukCatAs within dia-

toms suggests that they may also contribute to diverse signaling

processes.

Notably, our findings demonstrate that EukCatAs provide

alternative mechanisms for fast Na+/Ca2+-based electrical excit-

ability in eukaryotes. Unlike EukCatAs, 4D-Cav/Navs are absent

in many diatom taxa and appear to have been lost entirely

in pennate species. However, although the model pennate

P. tricornutum lacks 4D-Cav/Nav channels, it still exhibits very
rapid depolarization events (Figure 3A). This suggests that

EukCatAs can functionally replace 4D-Cav/Navs and may have

contributed to their loss or functional diversification in the

pennate diatoms. This functional redundancy means that, in

contrast to land plants, the loss of 4D-Cav/Navs has not resulted

in the loss of rapid Na+/Ca2+-based excitability in the pennate di-

atoms. Excitability is observed in certain specialized plant cells,

such as the Venus flytrap sensory hair cell that displays some-

what slower action potentials (t1/2 of�0.3 s), with the depolariz-

ing phase most likely carried through rapid R-type Cl� channels

[42]. Further work is required to establish the nature of the repo-

larizing outward conductance of diatom action potentials, which

is typically carried by voltage-dependent K+ outward rectifier

channels in excitable animal cells.

Outside of the diatom lineages, we identified two other classes

of EukCats, found in haptophytes, cryptophytes, and pelago-

phytes (EukCatBs) and dinoflagellates (EukCatCs). The relation-

ships between the EukCat clades were not well resolved, and

they may not share common ancestry. However, it is interesting

that the EukCats are found only in photosynthetic lineages with

red-alga-derived plastids that dominate marine phytoplankton

communities [43]. The broad distribution of EukCats among

major phytoplankton lineages suggests that 1D voltage-gated

cation channels are likely to play important and previously un-

foreseen roles in eukaryote biology. Gaining further insight of

the wider properties of the different EukCat classes is therefore

vital to determine their functional roles and better understand

the evolution of environmental sensing mechanisms in the

oceans more broadly.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli Top10 Thermo Fisher Scientific Cat. No. C404003

Chemicals, Peptides, and Recombinant Proteins

Tetrodotoxin (citrate) Tocris Bioscience Cat. No. 1078

Nifedipine Sigma-Aldrich Cat. No. N7634

Spermidine Sigma-Aldrich Cat. No. S2626

Tungsten M-10 Microcarriers BioRad Cat. No. 1652266

Nourseothricin Jena BioScience Cat. No. AB-102L

Poly-L-lysine Sigma Aldrich CAS 25988-63-0

Zeocin InvivoGen Cat. No. ant-zn-1

Antibiotic Antimycotic (from GIBCO) LIFETECH A5955-100ML

Opti Mem (from GIBCO) LIFETECH 31985062

Fetal Bovine Serum (from GIBCO) LIFETECH 10270-098

Critical Commercial Assays

Phire Plant Direct PCR Kit Thermo Fisher Scientific Cat. No. F130WH

Q5 Site-Directed Mutagenesis Kit (New England BioLabs, Hitchin, UK) E0554S

SuperScript III Reverse Transcriptase Thermo-Fisher Scientific 18080093

ISOLATE II RNA Mini Kit Bioline BIO-52071

Experimental Models: Cell Lines

HEK293 Cells Public Health England Culture Collection

or The American Type Culture

Collection (ATCC)

ECACC 85120602

Experimental Models: Organisms/Strains

Phaeodactylum tricornutum

(strain CCAP1055/1)

Culture Collection of Algae & Protozoa https://www.ccap.ac.uk/

Oligonucleotides

Single guide A RNA oligo 1 (ccPt43878A_F) Eurofins TCGAGATGATGACATTGGAATGGG

Single guide RNA A oligo 2 (ccPt43878A_R) Eurofins AAACCCCATTCCAATGTCATCATC

Single guide RNA B oligo 1 (ccPt43878B_F) Eurofins TCGAGGAGGAATACTACTGGGCCT

Single guide RNA B oligo 1 (ccPt43878B_F) Eurofins AAACCCCATTCCAATGTCATCATC

Cas9_F Eurofins CTTCGACCTTGCGGAAGATG

Cas9_R Eurofins CCGGACGAGAGCTTTAAGGA

PtEUKCATA1_F Eurofins TTTTGGTGCTTATTCTCTACGTC

PtEUKCATA1_R Eurofins TATGCGTTCTTGGGTCTCCT

Recombinant DNA

pcDNA3.1-C-eGFP Genscript N/A

NaChBac pTracer CMV2 Addgene [14] 60835

pCLS16604_pNAT Fayza Daboussi (French National Institute

for Agricultural Research) [44]

N/A

pKSdiaCas9_sgRNA Addgene [20] 74923

pKSdiaCas9_sgRNA ccPt43878A This study N/A

pKSdiaCas9_sgRNA ccPt43878B This study N/A

Pphat1 https://www.ncbi.nlm.nih.

gov/nuccore/AF219942

AF219942

pcDNA3.1-C-Egfp_PtEUKCATA1 This study N/A

pcDNA3.1-C-Egfp_OsEUKCATA1 This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Geneious Biomatters Limited https://www.geneious.com/

Clampex 10.2 acquisition software Molecular Devices,

Sunnyvale, California

N/A

pClamp software Molecular Devices,

Sunnyvale, California

N/A

NIS-ELEMENTS v.3.1 software Nikon Instruments

Europe B.V.

https://www.nikoninstruments.com/

en_GB/Products/Software/NIS-

Elements-Advanced-Research/

NIS-Elements-Viewer

ImageJ [45] N/A

MtrackJ [46] https://imagescience.org/meijering/

software/mtrackj/

MEGA7 [47] https://www.megasoftware.net/

BEAST v1.8 [48] http://beast.community/

SigmaPlot (version 11) http://www.sigmaplot.co.uk/

PHYTOCRISPEX [49] https://www.phytocrispex.biologie.

ens.fr/CRISP-Ex/

The Broad Institute sgRNA design program https://portals.broadinstitute.org/gpp/

public/analysis-tools/sgrna-design

Other

35 mm glass-bottomed dishes IBL Baustoff + Labor GmbH D35-10-0-N

PDS-1000/He Particle Delivery System Bio-Rad, Hercules, CA, USA N/A

1350 PSI Rupture Disks BioRad 1652330

He Macrocarriers BioRad 165-2257
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Colin

Brownlee (cbr@mba.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and culturing
Algal strains

Phaeodactylum tricornutum strain CCAP1055/1 was obtained from the Culture Collection of Algae and Protozoa (SAMS limited,

Scottish Marine Institute (Oban, UK)) (Key Resources Table). P. tricornutum cells were maintained in either filtered seawater

(FSW) or artificial seawater, ASW (450 mM NaCl, 30 mM MgCl2, 16 mM MgSO4, 8 mM KCl, 10 mM CaCl2, 2 mM NaHCO3, and

97mM H3BO3), supplemented with f/2 nutrients [50], with 100cmM Na2SiO3.5H2O, but not vitamins). Cultures were grown routinely

in FSW, but were acclimated to ASW for 1-2 weeks prior to Ca2+ imaging experiments that required defined media. Cultures were

maintained at 18�C under 50-80 mmol m�2 s�1 light on a 16t8 h light:dark cycle.

Cell lines

HEK293 cells (ATCC CRL-1573) were grown in a humidified incubator at 37�C in 5% CO2 and 95%O2. Growth medium consisted of

high glucose DMEM–Dulbecco’s Modified Eagle Medium with Antibiotic Antimycotic (GIBCO), and 10% FBS (GIBCO). Cells were

passaged every 3 – 4 days at 1:6 or 1:12 dilutions (cell/mm2).

METHOD DETAILS

Bioinformatics analysis
Sequence similarity searches were carried out to survey a broad range of eukaryote genomes and transcriptomes for single and four-

domain voltage-gated ion channels (Data S1; Figure 1). Query sequences from Bacillus halodurans C-125 NaChBac (protein id:

BAB05220.1) and BacNav-like sequences previously identified in diatom (P. tricornutum protein id: 43878) [4, 51], in addition to

the 4D-Cav/Nav sequence of T. pseudonana (protein id: 22071) were used. Transcriptome databases surveyed were obtained
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from the Marine Microbial Eukaryote Sequencing Project (MMETSP, https://www.imicrobe.us/#/projects/104) [52]. The MMETSP

databases provide transcriptome sequencing resources for ecologically significant marine microbial eukaryotes spanning the

breadth of the eukaryotic tree of life (with representatives from all the major eukaryote super groups including the Archaeplastida,

Alveolates, Stramenopiles, Rhizaria, Opisthokonts, Amoebozoa and Excavata). Eukaryote genomes from a range of sources were

also used. The genomes of E. huxleyi [51], T. pseudonana [53], P. tricornutum [54], Pavlovales sp. CCMP2436, Aureococcus anapha-

gefferens clone 1984, Volvox carteri f. nagariensis EVE [55], Coccomyxa subelipsoida C-169 [56], Ostrecocccus lucimarinus

CCMP2514, Ostrecocccus tauri OTH95 [57], Micromonas sp. RCC299 [58], Porphyra umbilicalis [59], Pelagophyceae sp.

CCMP2097, Pseudo-Nitzschia multiseries CLN-47, Guillardia theta CCMP2712, and Bigelowiella natans CCMP2755 were obtained

from Joint Genome Institute http://genome.jgi.doe.gov/. Further searches were performed at NCBI (http://blast.ncbi.nlm.nih.gov/

Blast.cgi) (Thalassiosira oceanica), the Cyanidioschyzon merolae genome project (http://merolae.biol.s.u-tokyo.ac.jp/) [60], the

Cyanophora Genome project (http://cyanophora.rutgers.edu/cyanophora/home.php) [61], Symbiodinium microadriaticum portal

(http://reefgenomics.org/blast/) [62], DictyBase (http://dictybase.org/; Dictyostelium discoideum), EnsemblProtists (http://protists.

ensembl.org/index.html; Trypanosoma brucei, Naegleria gruberi and Acanthamoeba castellanii) or the Ectocarpus siliculosus

genome portal (http://bioinformatics.psb.ugent.be/orcae/) [63].

Databaseswere searched using BLASTP and TBLASTNwith an E-value cut off score of 1E�10. Each hit was inspectedmanually for

relevant protein domains using Interpro [64], looking specifically for voltage-sensing domain (IPR005821), ion transport domain

(IPR027359) and EF hands (IPR011992). The presence of a minimum of three pore domains was used as a threshold for candidate

4D-Cav/Navs in order to distinguish them from other voltage-gated cation channels. Protein hits of all ids reported in this study are

given in Data S1.

Phylogenetic analyses of EukCat, Catsper and BacNav sequences were performed usingmultiple sequence alignments generated

with MUSCLE via the Molecular Evolutionary Genetics Analysis (MEGA7) software [47]. After manual refinement, GBLOCKS0.91B

was employed to remove poorly aligned residues, using the least stringent parameters [65], resulting in an alignment of 172 amino

acid residues. Maximum likelihood trees were generated using MEGA7 with 100 bootstraps. Model analysis was performed in

MEGA7 to determine an appropriate substitution model (WAG+G+I). Bayesian posterior probabilities were additionally calculated

using BEAST v1.8.4 [48] running for 10000000 generations.

Synthesis of heterologous expression plasmids for HEK293 cells
Amino acid sequences of proteins used for heterologous expression are described in Methods S1. Coding sequences for

OsEUKCATA1 were obtained from MMETSP transcriptomic datasets: O. sinensis (protein id: CAMPEP_0183296650; transcriptome

database id: MMETSP0160). To confirm these sequences we amplified the open reading frame (ORF) from cDNA made from

liquid cultures of O. sinensis (using the primers: Osinensis_F1: ATGAAGGACGAGAACAGCATCCC, Osinensis_R1: AGAAT

CAGTCTGGTTTTGTTGAAGATGCAC). The coding sequence for PtEUKCATA1 (protein id: 43878) was predicted by the JGI genome

project for P. tricornutum. To confirm correct prediction of intron/exon boundaries for this gene model, the predicted ORF of

PtEUKCATA1 was amplified from cDNA made from a liquid culture of P. tricornutum CCAP1055/1 (using the primers: Pt43878_F:

GCCATCCGATGATGCAAGGAATCGTGGAG and Pt43878_R: AAACATTCTCGGGGACTTCTC). cDNA was synthesized using

SuperScript III reverse transcriptase fromRNA extracted using ISOLATE II RNAMini Kit (Bioline) following themanufacturer’s instruc-

tions. Codon-optimized versions of the transcripts were then synthesized (GenScript, Piscataway, NJ) for characterization in human

expression systems, and sub-cloned into pcDNA3.1-C-eGFP using HindIII and BamHI. A 6 bp Kozak sequence (GCCACC) was

included upstream of the ATG, and the stop codon removed.

Transfection of HEK293 cells
HEK293 cells were plated for transfection onto glass-bottom (35mm) Petri-dishes coatedwith poly-L-lysine (ibidi GmbH,Germany) to

help with cell adhesion. Transfections of HEK293 were performed with 4 mL Lipofectamine 2000 (Invitrogen) and 1-2.5 mg plasmid

DNA per 35 mm2, each prepared separately with Opti-MEM (GIBCO). The lipofectamine and DNA were mixed and allowed to rest

for 5 min. before 200 mL of the mixture was added to each plate. After 12-30 h of incubation, cells were rinsed and maintained

with fresh growth media and kept in the incubator at 37�C with 5% CO2/95% O2 until used for electrophysiological experiments.

Expression of the transgene was confirmed by fluorescence microscopy.

HEK293 whole cell patch-clamp electrophysiology
Electrophysiological recordings were carried out at room temperature with an Axopatch 200B or Multiclamp 700B amplifier (Molec-

ular Devices, Sunnyvale, California) through a PC computer equipped with a Digidata 1332 analog-to-digital converter in conjunction

with pClamp 9.2 or pClamp10.1 software (Molecular Devices, Sunnyvale, California). Patch electrodes were pulled from filamented

borosilicate glass (1.5 mm OD, 0.86mm ID) using a P-97 puller (Sutter Instruments, Novato, CA, USA) to resistances of 2-5 MU. For

analysis of OsEUKCATA1), unpolished electrode tips were coated with beeswax to minimize pipette capacitance. Voltage errors

incurred from the liquid junction potentials (LJPs) and series resistance (recorded from the amplifier) were corrected by subtraction

post hoc. These corrected voltages were used to plot IV curves and in all subsequent investigations. The amplitudes of the currents

were measured from the baseline to the peak value and were normalized for cell capacitance as whole-cell current densities (pA/pF).

Activation curves were derived by plotting normalized sodium conductance (GNa) as a function of test potential and fitted with the

Boltzmann equation:
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I=GmaxðVm­VrevÞ=f1+ exp½ðVm­V0:5Þ=k�g; (Equation 1)

where I is the peak current at the given test potential Vm, Vrev is the reversal potential, Gmax is the maximal slope conductance, V0.5 is

the half-point of the relationship, and k is the slope factor. Voltage-dependent inactivation was similarly determined with a Boltzmann

equation:

I=Imax = 1=f1+ exp½ðVm­V0:5Þ=k�g; (Equation 2)

where V0.5 isis the voltage at which 50% of the current is inactivated (the midpoint of the inactivation curve), and k is the slope factor.

Statistical analyses were performed with Sigma Plot 11.0 (Systat Software, Inc., Chicago, IL). Data are shown as the mean ± SEM

(n, number of experiments).

Native phytoplankton cell patch-clamp recording and analysis
O. sinensis single electrode voltage clamp recordings were obtained as previously described [10, 13]. Briefly, cells were plated into

coverslip dishes in ASW consisting of; 450mMNaCl, 30 mMMgCl2, 16mMMgSO4, 8mMKCl, 10mMCaCl2, 2 mMNaHCO3 pH 8.0.

Cells were impaled through the girdle band with a sharp microelectrode filled with 1 M KCl (resistance 10 MU) mounted on the head-

stage of an Axoclamp 900A amplifier (Molecular Devices), controlled with a Sutter MP285motorizedmicromanipulator (Sutter Instru-

ments, Petaluma, CA). Current and voltage signals were pre-amplified 5- 10 3 before being acquired using a Digidata 1200 with

Clampex 10.2 acquisition software (Molecular Devices, Sunnyvale, CA). The gain for the switch clampwas between 5-10 and switch-

ing frequency > 13 kHz for the data presented.

Generation of P. tricornutum constructs
We employed the CRISPR-Cas9 vector developed by Nymark et al., (2016) for editing the PtEUKCATA1 gene (protein id: 43878) in

P. tricornutum [20]. We designed two sgRNAs targeted to generate a short deletion, which has proven efficient for high-throughput

screening for bi-allelic mutants via PCR in diatoms [66]. A library of candidate sgRNAs was generated using the PHYTOCRISPEX [49]

web tool with default parameters (NGGPAM, and CRISPR start from ‘G’). The Broad Institute sgRNA design program (https://portals.

broadinstitute.org/gpp/public/analysis-tools/sgrna-design) was used subsequently to obtain ‘on-target’ efficiency scores. Two

20 bp guide RNAs (ccPt43878A: GATGATGACATTGGAATGGG and ccPt43878B: GGAGGAATACTACTGGGCCT) that passed the

PHYTOCRISPEX OFF-target criteria were chosen based on their ON-target scores (0.45 and 0.51, respectively) and position within

the gene. Target sgRNAswere predicted to disrupt the region encoding the pore domain of the protein in order tomaximize disruption

of channel function. Complementary oligos containing flanking overhang sequences corresponding to the pKS diaCas9_sgRNA

plasmid (Addgene: 74923) were then synthesized. One mg of complementary oligos for ccPt43878A (ccPt43878A_F: TCGAGATGAT

GACATTGGAATGGG and ccPt43878A_R: AAACCCCATTCCAATGTCATCATC) and ccPt43878B (ccPt43878B_F: TCGAGGAG

GAATACTACTGGGCCT and ccPt43878B_R: AAACCCCATTCCAATGTCATCATC) were annealed in a reaction mix containing

1 3 T4 Ligase Buffer (NEB) in a total volume of 50cml, incubated for 10 min at 85�C and allowed to cool to room temperature. The

resulting annealed oligos were ligated into pKS diaCas9_sgRNA using a molar vector to insert ratio of 1:20, and a T4 DNA ligase

(Fermentas). Plasmids were verified via Sanger sequencing.

For the PtEUKCATA1 complementation construct, we amplified the PtEUKCATA1 gene from 747 bp upstream of the ATG up to,

but not including, the stop codon (TGA) using primers: PtEUKCATA1_comp_F-AACCAATGCATTGGCTGCAGGTCGACTAGGGC

CACAGGTA and PtEUKCATA1_comp_R-AAACATTCTCGGGGACTTCTC. The forward primer includes a flanking PstI site, for down-

stream cloning into a derivative of the pPha-T1 vector (accession AF219942): pPha-T1-Venus vector, using PstI and StuI sites. To

make the pPha-T1-Venus vector we synthesized a codon-optimized Venus sequence (accession AJN91098.1) incorporating an

EcoR1 and StuI site upstream of the ATG, and a 30 BamH1 site (GenScript, Piscataway, NJ). The codon optimized Venus construct

was then sub-cloned into the pPha-T1 (accession AF219942) vector using EcoR1 and BamH1 sites.

To generate the PtR-GECO1 construct we synthesized (GenScript, Piscataway, NJ) the 1251 bp coding sequence (accession

AEO16866.1), which was sub-cloned into the P. tricornutum shuttle vector pPha-T1 (accession AF219942) conferring resistance

to the antibiotic zeocin [67] via EcoR1 and BamH1. The construct was transformed into WT P. tricornutum strain CCAP1055/1, using

zeocin for selection (see ‘Biolistic Transformation of P. tricornutum’).

Biolistic transformation of P. tricornutum
P. tricornutum cells were grown in liquid culture for 5 days. Cell density was adjusted to 13 109 cells/mL and 100 mL spread (in a 3 cm

diameter circle) in the center of an f/2 1% agar plate (made up with 50% diluted seawater without Si and vitamins), and left for 24 h in

standard growth conditions prior to transformation. The plated cells were transformed via biolistic particle bombardment using the

PDS-1000/He Particle Delivery System (Bio-Rad, Hercules, CA, USA). To prepare the DNA-loaded microparticles, 60 mg tungsten

(0.6 mm in diameter) particles werewashed 3 times in 100%ethanol and twicewith sterile deionisedwater before being re-suspended

in 1 mL sterile deionised water and distributed into 50 mL aliquots. A single aliquot of washed tungsten was then coated with 1.5 mg of

the relevant plasmid DNA using 2.5 M CaCl2 and 20 mM spermidine (BioUltra, Sigma-Aldrich, cat no. 85558) with continuous vortex-

ing. Coated particles were washed once in 100% ethanol and then re-suspended in 60 mL of 100% ethanol that was subsequently

distributed between three macrocarrier disks for particle bombardment. The P. tricornutum agar plates were positioned on the sec-

ond shelf of the PDS-1000/He Particle Delivery chamber,�7.5 cm from the stopping screen. Helium supply withminimumpressure of
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1600 psi (300 psi above the burst pressure of the 1350 psi rupture disk) and a vacuum of 23 inch Hg was used to fire the DNA-coated

microparticles toward cells. Following particle bombardment cells were incubated for 24 h under standard culturing conditions

before being transferred to selection plates (1% agar f/2 -Si and vitamins in 50%diluted seawater) with 300 mgmL�1 nourseothricin65

or 75 mg mL�1zeocin depending on the plasmid. After three weeks colonies were re-streaked onto fresh selection plates.

To generate PtEUKCATA1mutant lines we co-transformed PtR1 cells with pNAT66 and pKSdiaCas9_sgRNA constructs, using bio-

listic transformation selecting for nourseothricin resistant colonies. Putative PteukcatA1 mutants were screened via PCR using the

Phire Plant Direct PCR Kit (ThermoFisher Scientific) with primers designed to amplify Cas9 (Cas9_F: CTTCGACCTTGCGGAAGATG

and Cas9_R: CCGGACGAGAGCTTTAAGGA) and then subsequently with primers flanking the target region for deletion

(PtEUKCATA1_F: TTTTGGTGCTTATTCTCTACGTC and PtEUKCATA1_R: TATGCGTTCTTGGGTCTCCT) to identify bi-allelic poly-

morphisms in this region. The mutant line A3 was subsequently cotransformed with the PtEUKCATA1 complementation construct

and a selection plasmid conferring resistance to Blasticidin [68].

Epifluorescence imaging in P. tricornutum
P. tricornutum cells grown in liquid culture (ASW supplemented with f/2 nutrients [50], with 100cmMNa2SiO3.5H2O, but not vitamins)

for 72 h were placed in a 35 mm glass-bottomed dish (In Vitro Scientific, Sunnyvale, CA, USA) coated with 0.01% poly-L-lysine

(Sigma-Aldrich, St Louis, MO, USA). Cells adhered to the bottom of the dish were imaged at 20�C using epifluorescence microscopy

using a Nikon Eclipse Ti microscope with a 403 , 1.30 NA oil immersion objective and detection with a Photometrics Evolve EM-CCD

camera (Photometrics, Tucson, AZ, USA). Excitation of R-GECO (PtR1) cells was performed using a pE2 excitation system (CoolLED,

Andover, UK) with 530-555 nm excitation and 575-630 nm emission filters. Images were captured using NIS-ELEMENTS v.3.1 soft-

ware (Nikon, Japan) with a 300 ms camera exposure (frame rate of 3.33 frames s�1). For membrane potential imaging cells were

stained for 5 min with voltage-sensitive dye Annine-6-Plus (A-6-P; final concentration 0.8 mg/mL), centrifuged for 2 min at

10,000 rpm and resuspended in ASW without A-6-P to minimize background A-6-P fluorescence. Excitation of A-6-P cells was per-

formed in the same manner as for the calcium imaging, using an excitation wavelength of 475-495 nm and emission wavelength of

575-615 nm. Images were recorded at 12.5 frames s�1 with 2 3 2 binning.

For simultaneous determination of membrane potential and [Ca2+]cyt, we loaded PtR1 cells expressing R-GECO with A-6-P.

Although there is some overlap in emission spectra of A-6-P and R-GECO, we were able to spatially distinguish between A-6-P local-

ized to the membrane and R-GECO fluorescence in the cytosol. A-6-P fluorescence contributes to background fluorescence in the

cytosol, but as A-6-P has a much lower dynamic range than R-GECO, this did not interfere with the detection of [Ca2+]cyt transients.

Moreover, membrane depolarization results in a decrease in A-6-P fluorescence, whereas an increase in [Ca2+]cyt causes an increase

in R-GECO fluorescence, allowing us to confirm that there wasminimal interference between these fluorophores. An excitation wave-

length of 475-495 nm and emission wavelength of 575-615 nm were used, with defined regions of interest within the cell.

During imaging, cells were continuously perfused with ASW (3 mL min�1). Depolarization treatments were delivered by switching

the perfusion from ASW to ASWwith elevated K+ (100mM) (358mMNaCl, 30mMMgCl2, 16mMMgSO4, 100mMKCl, 10mMCaCl2,

2 mM NaHCO3, and 97mM H3BO3 supplemented with f/2 nutrients [50], with 100cmM Na2SiO3.5H2O, but not vitamins) after 30 s for

90 s. For the hypoosmotic shock experiments multiple exposures to ASW diluted with deionised water were carried out. Cells

exposed to hypoosmotic shock in the absence of Ca2+ were perfused with at least 50 mL Ca2+ free media (+200 mM EGTA) in order

to minimize carryover of residual Ca2+ from the ASW growth medium.

Imageswere processed using NIS-ELEMENTS v.3.1 software. Themean fluorescence intensity within a region of interest over time

wasmeasured for each cell. Change in fluorescence intensity of R-GECOwas calculated by normalizing each trace by the initial value

(F/F0) (calcium imaging). For membrane potential imaging, DF/F was calculated by dividing the time varying fluorescence by the

baseline fluorescence.

P. tricornutum motility assays
Solid plate assays

P. tricornutum cells grown in liquid culture (sub-cultured two times previously at 3 day intervals, to ensuremaximal and uniform phys-

iological health) under standard growth conditions for 48 h were diluted to uniform cell density (53 105 cells/mL). Twenty mL of cells

were then spotted on f/2 1% square agar plates, with each plate containing a spot for each of the six genotypic lines examined. To

account for population variability the responsewas examined over cultures derived from four independent clones per cell line with six

replicates per clone, and a total of 24 spots assayed for each genotypic line. Plates were positioned at alternating right angles toward

the light source to minimize positional effects. After 27 days photographs were taken and ImageJ [45] was used to quantify original

spot area, spot spread and calculate percentage increase in area ((Total area-original spot area/original spot area) 3 100).

Video Microscopy

Prior to the assay cells were passaged 3 times on solid agar (at 5 day intervals) to ensure maximal transition to oval morphotype and

uniform good physiological health between lines. On the third transition, 5 day old cells were scraped from the plate and resuspended

into 5 mL f/2 medium before being spread on glass-bottomed dishes with 0.5 mL f/2 1% agar, and covered with liquid f/2 media. Care

was taken to ensure that cells were only removed from controlled growth conditions just prior to the motility assay. Cells were then

viewed by differential interference contrast microscopy using a Leica DMi8 microscope equipped with a 203 objective and an envi-

ronmental chamber to control temperature (18�C). The proportion of oval cells (compared to fusiform and triradiate morphotypes) in

the populations used for the assay was calculated and did not vary significantly between lines (accounting for 94%, 95%, 93%, 92%,
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99% and 99% of cells for WT, PtR1, mutant A3, E3, B6, and B8 respectively (Figures 4E and 4F). For each analysis, 10 min videos

were recorded at four frames/minute, with samples illuminated during image acquisition (camera exposure 200ms). ImageJ [45] was

used with the ImageJ plugin MTRACKJ [46] to track oval cell motility over the time-course of the experiment. Only tracks of oval cells

that were not in contact with other cells at the beginning of the video and did not cross paths with other cells were quantified to avoid

physical and biological interactions that might influence cell speed and/or path. Linear and curvilinear velocity were determined for

each cell and the overall percentage of motile cells was calculated for each line totaling four independent videos for each line. Motility

assays both carried out on plates and via video microscopy were done on well-established (at least 12 months old, sub-cultured

weekly) transgenic lines (PtR1 and mutant lines A3, E3, B6, and B8) to ensure a stable and robust phenotype.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses
Quantification of data are presented as mean ± standard error of the mean (SEM) with the precise number (n) indicated in the figure

legends and where relevant the main text. Statistical analyses were performed using a Student’s t test or a Fisher’s exact test in

SigmaPlot. Statistical differences are represented as p*, < 0.05; **, p < 0.01; ***, p < 0.001.

DATA AND SOFTWARE AVAILABILITY

The accession number for sequences/plasmids in GenBank or Fasta format from this study are given in the Key Resources Table.
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