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13 Abstract

14 Bivalve farming is a major European aquaculture activity, representing 48.5% of total biomass 

15 produced. Italy is one of the largest consumers of oysters but local production does not meet the 

16 market demand. Italy has approximately 384 000 ha of shallow lagoons in its coastal area, already 

17 devoted to extensive aquaculture activities which could also represent potential locations for Pacific 

18 oyster (Crassostrea gigas, Thunberg, 1793) farming.

19 The aim of this study is to enhance Pacific oyster farming in shallow coastal lagoons by testing 

20 novel farming technologies and validating an existing bioenergetic growth model (ShellSIM). 

21 Commercial performance of Pacific oysters and associated environmental parameters were 

22 monitored in two Sardinian coastal lagoons (San Teodoro and Santa Gilla, Italy). Oyster growth and 

23 survival were compared during a production cycle for two rearing systems: traditional systems 

24 (floating bags or lanterns) and Ortac units. The latter has not been previously tested in coastal 

25 lagoons. Measured performances were compared with ShellSIM predictions to evaluate the model’s 

26 ability to predict growth and the potential production in other coastal lagoons. 



27 Results showed that at the end of a six months cycle the oysters mean weight and Condition Index 

28 were significantly higher (p value < 0.05) in floating bags than in Ortac, (55.8 ± 0.9 g and 50.1 ± 

29 1.3 g; 4.6 ± 0.1 and 3.9 ± 0.1 respectively). Also, the minimum commercial size (40 g) was reached 

30 by 98 % and 68 % of the oyster farmed in floating bags and Ortac units respectively.  On the other 

31 hand, oysters reared in the Ortac showed a higher survival than in the floating bags (95.8 ± 0.9 % 

32 and 82.1 ± 3.4 %, respectively).

33 ShellSIM growth predictions were highly correlated with the observed data in both lagoons. 

34 However, high values for RMSD indicated that ShellSIM predictions were significantly validated 

35 for San Teodoro lagoon but not for Santa Gilla suggesting further tailoring to some environmental 

36 conditions to produce more realistic growth predictions.

37 Results of this study indicate that both floating bags and Ortac system should be employed during 

38 the production cycle to maximise oysters’ survival and growth performances. Furthermore, this 

39 study provides a new validated tool to farmers and stakeholders to monitor oysters performances 

40 and estimate productivity in local waters.
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48 1. Introduction

49 Italy is one of the main seafood consumers in Europe and amongst the World’s top 10 importers, 

50 estimated at 5.6 million US dollars in 2016 (FAO, 2016). Different species of shellfish, crustaceans 

51 and fish are farmed using both extensive and intensive methods.  

52 In 2016, in Italy most aquaculture companies were farming shellfish contributing to over 64% of the 

53 total aquaculture production being the largest producer of Manila clam (Venerupis philippinarum 

54 (Adams and Reeve, 1850)) and the third producer of Mediterranean mussel (Mytilus 

55 galloprovincialis (Lamarck, 1819)) in Europe. A smaller production includes grooved carpet shell 

56 (Ruditapes decussatus (Linnaeus, 1758)) and Pacific oyster (Crassostrea gigas (Thunberg, 1793)) 

57 (Eurofish, 2016; FAO, 2016). Pacific oyster is native to Japan and coastal regions of Asia, and due 

58 to its wide adaptation range at different environmental conditions, is the most widespread cultured 

59 oyster species in the world (Shatkin et al., 1997). 

60 In 2016, Europe produced 23000 tonnes of Pacific oysters 145 of which were of Italian origin (30 

61 tonnes by a single Sardinian company (FAO 2011 - 2018 Fishstat.J)). Italy is one of the largest 

62 consumers of oysters in Europe importing 6500 tonnes per year primarily from France, major 

63 reason why there is an opportunity to diversify Italian shellfish farming in the future 

64 (Sardegnaagricoltura.it, 2016, FAO, 2016).  Sardinia has approximately 10000 ha of shallow coastal 

65 lagoons representing the 2.6% of the total lagoon area in Italy (Bazzoni et al., 2013). Many of these 

66 lagoons are used for extensive finfish farming, but are potential sites for Pacific oyster farming.

67 Currently, depending on environmental conditions such as water depth, tidal range, water exchange 

68 rates and bottom substrates, three main oyster farming methods are used: off-bottom culture, on-

69 bottom culture and suspended culture (Buestel et al., 2009). In Sardinian lagoons suspended culture 

70 is the most commonly used due to their environmental conditions. More specifically, floating bags 

71 are designed to keep the oyster growing at the water surface where most of the food is available. 

72 These are manufactured in square and diamond mesh patterns (from 4 to 23 mm), suspended on the 



73 surface thanks to two floaters which allow periodic exposure of the oysters to the air to reduce 

74 biofouling and strengthen the adductor muscle.

75 Amongst suspended oyster culture methods, several new farming tools have been recently 

76 developed, for example Ortac units (ABBLOX), OysterGro© (OysterGro) and Zapco Tumbler 

77 (Zapco Aquaculture). These aim to improve oyster production by reducing manual labour, 

78 increasing growth rates and improving oysters’ quality (i.e. shell shape). The Ortac system has been 

79 employed in this study. The Ortac system consists of baskets made of polypropylene plastic and 

80 divided in two halves. These operate attached to a trestle and, due to their shape, an up-welling 

81 water flow is passively generated by the surrounding water currents. Furthermore, thanks to the 

82 constant movement under currents actions, this system has been designed to reduce fouling 

83 therefore requiring less handling. 

84 Aside from environmental conditions, also the use of different grow-out gears affects oyster 

85 performances as suggested by the recent study from Rankin et al., (2018).

86 The only independent trial for Ortac conducted to date to compare growth, survival and 

87 physiological performances with traditional bag systems used Ostrea edulis in Scotland (Francouer, 

88 2017). Results of this study indicated that there were no significant differences in growth between 

89 Ostrea edulis reared in the two different systems (Ortac units and traditional bags) but higher 

90 survival was observed within the Ortac units. The study presented here is the first investigation and 

91 comparison of the performance of the Ortac system in warmer climates with a smaller tidal range. 

92 Much effort has been dedicated to generate and validate growth models for bivalves (Pouverau et 

93 al., 2006). Most of the energy budget models predicting growth are net production models, which 

94 assume that energy is immediately available for the animal maintenance while the rest is used for 

95 growth or deposited as a reserve. Others are based on a dynamic energy budget approach (DEB) 

96 where energy is first stored as a reserve and then used for different metabolic processes at a 

97 catabolic rate (Kooijman, 2000; Pouvreau et al., 2006; Ren and Ross, 2001; Beadman et al., 2002). 

98 Most shellfish energy budget models are only able to simulate growth for locations where they have 



99 been calibrated, therefore restricting their use in areas with different environmental conditions 

100 (Hawkins et al., 2013; Dowd, 1997). ShellSIM growth model has been calibrated for 16 shellfish 

101 species in different locations throughout Europe, the U.S.A, China, New Zealand, Malaysia and 

102 Australia. This includes Mytilus edulis and Crassostrea gigas (ShellSIM, 2011; Hawkins et al, 

103 2013).

104 ShellSIM is based on principles of energy balance: 

105

106 Net energy balance =  Energy ingested  (Energy egested + Energy excreted + Energy expended)

107

108 and was developed as a tool to be used by farmers, scientist and environmental regulators (Hawkins 

109 et al., 2013).  Consequently, this growth model was considered to be appropriate to provide growth 

110 forecasts in Sardinian coastal lagoons with suitable validation for local conditions.   

111 The aim of this study is to validate this existing bioenergetic growth model in two ecologically 

112 different Mediterranean coastal lagoons and for two different oyster farming systems:  the Ortac and 

113 the traditional floating bags and to compare the production efficiency between these two farming 

114 systems.

115

116 2. Materials and Methods

117 2.1. Growth Trial: Ortac vs floating bags

118 This trial was performed between June 2017 and December 2017 in the lagoon of San Teodoro 

119 (northeast Sardinia: 40°48’ 38.08’’N, 9°40’26.99’’E). A total of 2400 Pacific oyster seeds (1.7 ± 0.1 

120 g, 2.9 ± 0.2 cm), from a French hatchery located in the Loire region of France, were randomly 

121 divided between 6 Ortac units and 6 Floating bags (200 individual per unit, mean total biomass per 

122 unit was 260.7 ± 5.6 g). Thirty oysters from each unit were tagged with an underwater curing epoxy 

123 resin (AquaScape) and biometric parameters were measured every two weeks (i.e. weight, length, 

124 depth and width) using a portable scale (Steinberg SBS-LW-2000A, 0.01g) and callipers 



125 (METRICA, 0.05 mm). At each sampling point, mortality was also recorded and 5 oysters per unit 

126 were selected for dry weight measurements (Mo and Neilson, 1994) and Condition Index (CI) 

127 calculations using the protocols described by Mo and Neilson (1994) for the dry weight and 

128 Davenport and Chen (1987) and Walne and Mann (1975) for CI calculations where:

129

130  CI = (Dry weight meat (g)/Dry weight meat (g) +  Dry weight shell (g)) x 100    

131  

132 The oyster culture systems were positioned in two rows of three Ortac units and three floating bags 

133 (fig.1). Ortac units were mounted onto two trestles (3 units per trestle), floating bags were attached 

134 to ropes as in the usual commercial setting of the Compagnia Ostricola Mediterranea, host of these 

135 trials.

136 Oysters of both systems were cultured following the standard conditions of the company, with 24hrs 

137 of air exposure every two weeks to prevent biofouling, changing of the floating bags mesh (4, 9, 14 

138 and19 mm) according to oysters’ size, and based on the increasing Pacific Oysters biomass. Grading 

139 was performed for both Ortac units and floating bags keeping similar biomass in both systems.

140  

141 2.2. ShellSIM validation for floating Bag units (San Teodoro Lagoon)

142 A survey of the dominant currents in the area was conducted during the neap (minimum) and spring 

143 (maximum) tides using GPS tracking drifters (drogues) (Cromey and Black, 2005). The drifters 

144 were released at the same time at three different points, one hour before the tidal peak until one hour 

145 after. During the survey the wind direction and speed was recorded by a fixed weather station (La 

146 Crosse WS3650). These information was fed to ShellSIM model to account for the hydrodynamic 

147 and ecological conditions within the lagoon. 

148 Three floating bags per each area were stocked with C. gigas (838 ± 36.4 g, 811.5 ± 17.8 g and 

149 709.8 ± 40.1 g total biomass) with a mean size in weight and length of 4.5 ± 0.3 g and 4.0 ± 0.2 cm 



150 (POS 1), 4.5 ± 0.3 g and 3.9 ± 0.2 cm (POS 2), 3.9 ± 0.2 g and 3.9 ± 0.2 cm (POS 3). The oysters 

151 were cultured following the standard procedures described above. 

152 Sampling for oyster growth was performed monthly for 5 months. Each month 80 individuals unit-1 

153 were randomly measured for wet weight 30 of which also measured for length, depth and width. 

154 Other 10 individuals unit-1 were collected for dry weights measurements.

155 Environmental data: temperature (T, °C), salinity (Sal, ‰), dissolved oxygen (DO, mg L-1), total 

156 particulate matter (TPM, mg/L), particulate organic matter (POM, mg L-1), particulate organic 

157 carbon (POC, mg m-3) and Chlorophyll-a (Chl-a, µg L-1) were collected in the immediate vicinity of 

158 the farming gears. Temperature, salinity and dissolved oxygen were collected at a depth of 15 cm, 

159 with a multiparametric probe (HACH HQ40d) and data loggers (HOBO: UTBI-001, U26-001 and 

160 U24-002-C respectively for T, DO and Sal). Temperature data loggers were set-up to take 

161 measurements every 30 minutes, while the Sal and DO probes measured values every 2 hrs.

162 Water for the TPM, POM, POC was collected using 1L pre-rinsed in sample water plastics bottles, 

163 while 5L pre-rinsed in sample water plastic bottles were used to collect water for Chl-a analysis. 

164 Laboratory analysis for TPM and POM were performed according to Hawkins et al. (2013), while 

165 Chl-a analysis according to Lorenzen (1967). For POC measurements water was collected in 1 L 

166 pre-rinsed plastic bottles then filtered in 47-mm diameter GF/F filters previously combusted at 450 

167 °C. POC samples were analysed with a CEI Flash smart elemental analyser. The average values of 

168 each environmental parameter were used to run the model, excluding September 2017, when no data 

169 were collected due to farmers’ activities and weather constraints. 

170

171 2.3. ShellSIM validation for lantern systems (Santa Gilla Lagoon)

172 In order to validate the growth model in a different location, a growth trial was performed between 

173 May 2017 and September 2017, in Santa Gilla lagoon (39°12’28.2’’N 9°05’53.5’’E). Three lanterns 

174 with five compartments each and a mesh size of 3.5 x 5 mm, were stocked with 500 oysters per 

175 compartment (mean weight = 4.4 ± 0.1 g; mean length = 3.6 ± 0.6 cm). The oysters were farmed 



176 following the standard production protocols, grading and changing the mesh size according to 

177 oysters’ size and biomass. Growth was measured monthly when 70 individuals per lantern were 

178 randomly sampled and weighted, 30 of which were also measured for shell length, depth and width. 

179 Furthermore, 10 individuals per lantern were collected for dry weight measurements. 

180 Environmental data sampling and analysis were conducted as described above. The monthly means 

181 of all the environmental data were used to run the growth model. 

182

183 2.4. ShellSIM Validation for Ortac units and floating Bags (San Teodoro Lagoon)

184 In order to validate the model for different gear types, a new experiment was set up in the lagoon of 

185 San Teodoro (July 2017 – December 2017). In this occasion the model performance were also tested 

186 on a different farming system i.e. the Ortac units.

187 Farming methods, growth measurements, sample collection and analysis of all environmental 

188 parameters were conducted as described previously. A bi-weekly mean of all the environmental data 

189 were used to run the ShellSIM, except for November and December, when data were collected only 

190 one per month due to farmers’ activities and weather constraints. 

191

192 2.5. Statistical Analysis

193 Prior to analyses, data were tested for normality and homogeneity of variance Weight gain, 

194 biometrics measures differences, survival rate and Condition index differences, over time were 

195 analysed by general linear model followed by a Tukey post-hoc test where significant differences 

196 occurred.

197 End points of all biometrics measures, survival rate and condition index, were analysed by one-way 

198 ANOVA followed by post-hoc Tukey's Multiple Comparison tests where significant differences 

199 occurred.  

200 To assess fitness between the prediction made by ShellSIM and observed data, Taylor diagrams and 

201 skill scores (S) were used (Taylor, 2001). A Taylor diagram is a way to show graphically how well a 



202 model prediction fits the observed data, using correlation, centred root mean square difference 

203 (RMSD) and amplitude of their variation (standard deviations). The skill score proposed by Taylor 

204 (2001) quantifies model performance against observed data. 

205

206 3. Results

207 3.1. Growth Trial: Ortac vs floating bags

208 At the end of the of the production cycle (October to December), the Pacific oysters farmed in the 

209 floating bags had a significantly higher weight and shell depth (p value = 0.001, 0.001 respectively) 

210 to those in the Ortac units (55.8 ± 0.9 g, 50.1 ± 1.3 g; 26.6 ± 0.2 g, 24.2 ± 0.3 g) (figs.2a, 2c). 

211 Oysters farmed into the Ortac units showed instead a significant higher growth in shell length (86.9 

212 ± 1, 75.4 ± 0.6, p value = 0.001 Ortac and floating bags respectively), and shell width (46.2 ± 0.5 

213 mm, 44.6 ± 0.4 mm, p value = 0.017) (fig.2b, d).

214 Survival was significantly higher (p = 0.001) in the Ortac units compared to the floating bags (95.8 

215 ± 0.9%, 82.1 ± 3.4 %) (fig.3). The highest mortality occurred between June and July (3.8 ± 1 %, 

216 16.3 ± 3.3 % Ortac units and floating bags respectively). 

217 The condition index at the end of the production cycle was significantly higher (p value = 0.001) in 

218 the floating bags compared to the Ortac units (4.6 ± 0.1, 3.9 ± 0.1) (fig.4) and the smallest 

219 commercial size (40 g) was reached by the 98 % and 69 % of the oyster farmed in the floating bags 

220 and Ortac units respectively (fig.5).  

221

222 3.2. ShellSIM validation in San Teodoro Lagoon

223 Three areas with different current speed (POS1 0.15 m s-1, POS2 0.07 m s-1; POS 3 0.04 m s-1) were 

224 identified in San Teodoro. A decreasing speed gradient from the sea mouth to the internal part of 

225 the lagoon was identified. Consequently, these areas were used as experimental locations to monitor 

226 the oysters’ growth and the environmental parameters required by the growth model.



227 Environmental data are illustrated in Table 1. ShellSIM predicted, during a 6 months production 

228 cycle, a final weight and length of 19.7 g, 48.4 g and 121.6 g; 6.0 cm, 8.3 cm and 11.5 cm, 

229 respectively for POS 1, POS 2 and POS 3. 

230 The measured weight and length at the end of this production cycle, was 16.4 ± 1.1 g, 46.9 ± 2.1 g, 

231 48.9 ± 1.5 g and 5.4 ± 0.3 cm, 8.2 ± 0.3 cm, 9 ± 0.2 cm, respectively in POS 1, POS 2 and POS 3.

232 Figure 6 shows that measured growth in weight and length, fitted the predicted growth curve in 

233 POS 2, while in POS 1 and POS 3 ShellSIM overestimate the final mean growth in weight and 

234 length respectively 20.5, 12.1, 148.8 and 27.9 %. The calculated skill score for the three different 

235 areas indicate the best fitting between observed and predicted measures of weight and length, 

236 respectively in POS 2 (S=1; S=1), POS 1 (S=0.87; S=0.81) and POS 3 (S=0.42; S=0.79). 

237 Standard deviation, Centred Root Mean square difference (RMSD), correlation and the overall skill 

238 score of the performance of the predicted growth curve to fit the observed data in the lagoon of San 

239 Teodoro are shown in Figure 7 and Table 2.  

240

241 3.3. ShellSIM validation in Santa Gilla Lagoon

242 Environmental data collected in the lagoon of Santa Gilla and their seasonal variations are 

243 illustrated in Table 3. 

244 The measured growth in weight and length (79.5 ± 1.8 g and 9.1 ± 0.1 cm) did not fit the predicted 

245 growth curve (data not shown), and the calculated skill score indicates a very poor fit between 

246 observed and predicted measures of weight and length, respectively S=0.003 and S=0.17 (Table 2). 

247 Standard deviation, Centred Root Mean square difference (RMSD) and correlation are shown in 

248 Figure 8 and Table 2.  

249

250 3.4 ShellSIM Validation on Ortac vs floating bags

251 Environmental data collected to run ShellSIM and their changes are shown in Table 4.



252 In this trial, ShellSIM was run in POS 2 for two different farming systems. It predicted a growth of 

253 48.6 g and 8.3 cm in weight and length respectively for the Ortac system, and a growth of 49.1 g 

254 and 8.2 cm for the floating bags over a 6 months production cycle. At the end of this production 

255 cycle, the measured weight and length were 50.1 ± 1.3 g and 8.7 ± 0.1cm for the Ortac and 55.8 ± 

256 0.9 g and 7.5 ± 0.1 cm for the floating bags. Figure 9 shows that during the production cycle, the 

257 measured mean weight and length in the Ortac units and floating bags were underestimated by 

258 ShellSIM, except for the final length farmed in the floating bags which was accurate. Indeed, in 

259 November there was a change in trend of the model prediction, from underestimation to 

260 overestimation (the model overestimated the final mean length of 8.2 %), while the final weight was 

261 still overestimated by 11.9%.

262 Moreover Figure 9 shows that ShellSIM at the end point of the production cycle of the oysters reared 

263 inside the Ortac units, unlike the rest of the predictions, slightly underestimated growth in weight and length 

264 by 3% and 4.4% respectively.

265 The calculated skill score indicates that the best fitting between observed and predicted measures of 

266 weight and length, respectively in Ortac (S=0.95, S=0.93) compared to floating bags (S=0.90, 

267 S=0.89). Standard deviation, Centred Root Mean square difference (RMSD), correlation and the 

268 overall skill score of the performance of the predicted growth curve to fit the observed data in this 

269 trial in the San Teodoro lagoon are shown in Figure 10 and Table 2.  

270

271 4. Discussion and conclusions

272 The results of this study provide new information to improve C. gigas farming and a growth 

273 prediction tool in shallow coastal lagoons. The higher survival rate in the Ortac units for the first two 

274 months and the higher growth in weight and CI in the floating bags, suggest a potential mixed use of 

275 the two systems during the production cycle. Specifically, the Ortac units may be employed when 

276 Pacific oysters are more susceptible to stress and during the stressful period (e.g smaller size and 

277 hottest periods) and floating bags thereafter. In this way it would be possible to reduce the costs of 



278 the equipment, avoiding several floating bags with different meshes depending on the oysters’ sizes, 

279 and a minor loss of individuals due to mortality.

280 There was no statistically significant difference in growth between Ortac units and floating bags, but 

281 at the end of the production cycle there was a significant higher mean weight in the floating bags 

282 than in the Ortac units. Comparison of these results with previous studies are difficult due to 

283 difference in culture techniques and effects of other experimental variables such as initial oyster size 

284 and the production season.

285 In many studies it is reported that shell morphology in bivalves is influenced by population density, 

286 predation responses, handling and grow-out methods (Telesca et al., 2018; Seed, 1968; Brake et al., 

287 2003; Kube et al., 2011; Griffiths and Buffenstein, 1981; Van Erkom Schurink and Griffiths, 1993; 

288 Bayne, 2000; Sheridan et al., 1996).  We also observed a difference in shape between the animals 

289 reared in floating bags or Ortac with the latter longer and wider compared to the former which were 

290 instead thicker and with a higher C.I. 

291 The morphological differences found between individuals farmed in the two different farming gears, 

292 are probably due to the different interaction that these tools have with the currents. Under low 

293 current speed typical of shallow lagoons, the shape of the Ortac units may have not promoted the 

294 rocking motion required to generate enough rubbing between oysters and the farming gear, causing 

295 less shell chipping, which is widely recognised as a factor promoting shell depth and a higher meat 

296 content (Brake et al., 2003; Holliday, 1991; O’Meley, 1995; Robert et al., 1993). 

297 Moreover, the fact that the animals did not move enough inside the Ortac units probably induced 

298 those in the innermost part to grow more in length and width in order to increase the filtering 

299 surface. Nonetheless, results of this study are comparable with those obtained by Francouer et al., 

300 (2017) who reared Ostrea edulis using the Ortac system in Scotland. 

301 Mortality may depend on the farming system (Pernet et al., 2012). Improved survival in the Ortac 

302 system could be due to the shading effect provided by a more solid structure, which would shelter 

303 farmed individuals from direct sunlight and desiccation, particularly during the earlier part of the 



304 growth cycle and during air exposure periods. (Potter and Hill, 1982; Spencer-Davies, 1970). 

305 Moreover, different studies report that one of the stress factors associated to mortalities is 

306 temperature, and sudden small changes may have a large effect on the survival of bivalves (Pernet et 

307 al., 2018; Pernet et al., 2012; Petton et al., 2015; Le Deuff et al., 1994, Le Deuff et al., 1996; 

308 Sauvage et al., 2009; Kennedy and Mihursky, 1971). Again the more solid structure of the Ortac 

309 may have promoted more stable temperature and reduced stress.

310 Results of this study indicate that the predicted growth by ShellSIM, fitted well with field 

311 measurements in the lagoon of San Teodoro. However, results from the growth trial in Santa Gilla 

312 lagoon indicate that the model would require further tailoring to local conditions to produce realistic 

313 growth projections. In particular, we tested the hypothesis that the assumption ShellSIM makes to 

314 convert concentration of food into energy available to animals does not apply to Santa Gilla Lagoon. 

315 To do this, we run the model reducing the amount of POC available to one quarter of the measured 

316 POC and the model prediction was more accurate (S = 0.97 and S = 0.95 respectively for weight and 

317 length). Indeed, POC can be considered as a very heterogeneous nutrient source composed by 

318 different materials with large variations in digestible energy content. (Mazzola and Sarà, 2001; 

319 Lawacz, 1977; Watanabe and Kuwae, 2015).

320 Further studies to identify the real digestible energy content of the Particulate Organic Carbon in 

321 Santa Gilla area is required to modify the model assumption and improve its performances. Our data 

322 also suggest that seasonality and farming system used can influence the accuracy of ShellSIM 

323 providing scope for further tailoring of the model under the local conditions. 

324 During the first-year trial in the lagoon of San Teodoro the measured growth closely fitted the 

325 predicted growth in POS 2, while in POS 1 ShellSIM slightly overestimated and in POS 3 

326 considerably overestimated the growth, both in weight and length. Similar results in POS 2 were 

327 observed in the second-year validation trial. The growth in weight and length of the oyster was 

328 different between the two farming tools, with a higher growth in weight recorded for oysters reared 

329 in the floating bags and a higher growth in length for oysters reared in the Ortac units. In this trial, 



330 ShellSIM underestimated the weight and length during the production cycle except at the end point 

331 where it only slightly underestimated weight and length in the Ortac units providing a better 

332 accuracy at harvest time. While in the floating bags the final mean weight was underestimated and 

333 the length was overestimated. 

334 These overestimation and underestimation can be potentially associated with a less than optimal 

335 rearing method (the Ortac), combined with the potential different production capacity of the 

336 different farming areas within the lagoon. Furthermore, as reported by several authors, the grow-out 

337 methods employed could affect oyster growth (Bayne, 2000; Sheridan et al., 1996). ShellSIM does 

338 not consider different grow-out methods in its variables possibly generating the discrepancy between 

339 observed and predicted growth measured in this study. Overall, ShellSIM predictions correspond 

340 with the growth trends observed by the farmers over the years (POS 3 with higher growth rates and 

341 POS 1 with lower growth rates) suggesting the good accuracy of the model with the general growth 

342 dynamics in the different areas of San Teodoro lagoon. This is reflected in the calculated skill scores 

343 (Taylor, 2001), for both validation trials in the fore mentioned lagoon.

344 Taken together, the results of this study provide information to improve bivalve growth prediction 

345 tools for Mediterranean lagoons. They could be applied to study the productivity of different sites to 

346 potentiate the oyster’s aquaculture industry and for coastal spatial planning. Moreover, the presented 

347 results indicate that Ortac units improve the oyster’s survival in the production early stage. The use 

348 of Ortac units also reduces reliance on multiple mash bags therefore simplifying production 

349 protocols.
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362

363 Figure 1.  Diagram of the experimental layout of the Ortac and Floating Bags (FB) in the San Teodoro Lagoon.

364

365

366

367 Figure 1. (a) Difference growth in weight between C. gigas farmed in two different tools (Ortac units and Floating bags). (b) 
368 Difference growth in length between C. gigas farmed in two different tools (Ortac units and Floating bags). (c) Difference growth in 
369 width between C. gigas farmed in two different tools (Ortac units and Floating bags). (d) Difference growth in depth between C. 
370 gigas farmed in two different tools (Ortac units and Floating bags). Stars indicate where significant difference occurs. (p-value < 
371 0.05). Data are presented as mean ± SE; n=6.

372



373

374 Figure 2. Comparison of survival rate between C. gigas farmed into Ortac units and Floating bags. Stars indicate where significant 
375 difference occurs. (p-value < 0.05). Data are presented as mean ± SE; n=6.

376

377
378 Figure 3. Comparison of condition index (CI) calculated as (Dry weight Meat (g)/ Dry weight Meat + Dry weight shell) *100, 
379 between C. gigas farmed into Ortac units and Floating bags. Stars indicate where significant difference occurs. (p-value < 0.05). Data 
380 are presented as mean ± SE; n=6.

381



382
383 Figure 4. Comparison of size class distribution between C. gigas farmed into Ortac units and Floating bags. 

384

385
386 Figure 5. ShellSIM growth prediction compared to the measured oyster growth in weight and length, during a production cycles 
387 performed in to three different areas (POS1, POS2 and POS3) of the San Teodoro lagoon. Measured growth data are presented as 
388 mean ± SE; n=3.

389



390
391 Figure 6. Taylor diagrams representing how closely model performance (B) match the observed data (A). The similarity between 
392 model prediction and observed data is quantified in terms of their correlation, the amplitude of their variation (normalised standard 
393 deviation) and their root mean square difference (RMSD) (dashed circular arcs). The left panel contain the results for the ShellSIM 
394 validation in the san Teodoro lagoon in terms of predicting the growth in weight of the C.gigas. The right panel contain the results 
395 for the ShellSIM validation in the san Teodoro lagoon in terms of predicting the growth in length of the C.gigas.

396

397

398 Figure 8. Taylor diagrams representing how closely model performance (B) match the observed data (A). The similarity between 
399 model prediction and observed data is quantified in terms of their correlation, the amplitude of their variation (normalised standard 
400 deviation) and their root mean square difference (RMSD) (dashed circular arcs). The left panel contain the results for the ShellSIM 
401 validation in the Santa Gilla lagoon in terms of predicting the growth in weight of the C.gigas. The right panel contain the results for 
402 the ShellSIM validation in the Santa Gilla lagoon in terms of predicting the growth in length of the C.gigas.



403

404
405 Figure 9. ShellSIM growth prediction compared to the measured oyster growth in weight and length, during a production cycles 
406 performed in to two different farming systems (Ortac units and Floating bags) in the San Teodoro lagoon (July 2017 – December 
407 2017). Measured growth data are presented as mean ± SE; n=6.

408



409
410 Figure 10. Taylor diagrams representing how closely modelled performances (B) matched the observed data (A). The similarity 
411 between model prediction and observed data is quantified in terms of their correlation, the amplitude of their variation (normalised 
412 standard deviation) and their root mean square difference (RMSD) (dashed circular arcs). The left panel contain the results for the 
413 ShellSIM validation in the San Teodoro lagoon on Ortac and Floating bags in terms of predicting the growth in weight of the 
414 C.gigas. The right panel contain the results for the ShellSIM validation in the San Teodoro lagoon on Ortac and Floating bags in 
415 terms of predicting the growth in length of the C.gigas.

416

417

418

419 Table 1. Summary of the environmental data collected to run ShellSIM. These data were collected during the production cycles 
420 started in August 2016, in three different areas (POS1, POS2 and POS3) of the San Teodoro lagoon. Data are presented as mean ± 
421 SE.

T °C Sal
‰

DO 
mg/L

TPM      
mg/L

POM 
mg/L

POC 
mg/m3

Chl-a    
µg/L

August 2016

POS 1 27.1 ± 
0.1

39.3 ± 
0.1 7.2 ± 0.2 31.5 ± 12.4 5.3 ± 1.9 848.2 ± 

18.6 2.1 ± 0.2

POS 2 27.2 ± 
0.1

39.7 ± 
0.1 7.5 ± 0.1 15.5 ± 1.6 3.2 ± 0.3 1213.1 ± 

67.9 4.3 ± 0.7

POS 3 27.2 ± 
0.2

39.5 ± 
0.1 6.8 ± 0.1 19.4 ± 1.1 3.6 ± 0.2 1421.9 ± 

68.5 4.1 ± 0.1

October 2016

POS 1 23.5 ± 
0.1

39.2 ± 
0.1 8.7 ± 0.1 5.2 ± 0.2 1 ± 0.1 206.9 ± 6 0.3 ± 0.1

POS 2 24.1 ± 
0.1

38.8 ± 
0.1 8.5 ± 0.1 5 ± 0.2 1 ± 0.1 211.3 ± 

18.1 0.3 ± 0.1

POS 3 23.1 ± 
0.3

38.8 ± 
0.1 8.9 ± 0.3 21.1 ± 2.4 3.9 ± 0.2 1192.5 ± 

55.8 3.7 ± 0.3



November 2016

POS 1 17.1 ± 
0.1

39.2 ± 
0.1 9.3 ± 0.1 0.6 ± 0.03 0.5 ± 0.1 167.3 ± 

9.1 0.4 ± 0.02

POS 2 15.8 ± 
0.5

37.7 ± 
0.5 8.8 ± 0.2 2.3 ± 0.1 1 ± 0.1 485.2 ± 

33.9 2.8 ± 0.2

POS 3 14.5 ± 
0.2

38.8 ± 
0.1 9.6 ± 0.1 3.0 ± 0.04 1.1 ± 0.1 473.4 ± 

20.4 2.9 ± 0.1

December 2016

POS 1 16 ± 0.1 36.4 ± 
0.2 10 ± 0.2 1.7 ± 0.1 0.6 ± 0.1 232.8 ± 

21 0.7 ± 0.1

POS 2 17.5 ± 
0.3 37 ± 0.3 10.7 ± 

0.4 1.0 ± 0.1 0.6 ± 0.1 199.1 ± 
28.4 0.4 ± 0.1

POS 3 15.1 ± 
0.3

36.2 ± 
0.2 9.2 ± 0.6 4.8 ± 0.2 1.2 ± 0.1 408.4 ± 

24 0.9 ± 0.03

422

423

424 Table 2. Summary of how well observed data match predicted data by ShellSIM in terms of their correlation, their root-mean square 
425 difference (RMSD), the ratio of their variances and skill score (Taylor, 2001). 

SHELLSIM VALIDATION IN SAN TEODORO LAGOON (FLOATING BAGS)

St.dev 
Obs.

St.dev 
Pred.

RMSD Correlation Skill score

POS 1 (g) 0.3 0.43 0.14 0.98 0.87

POS 1 (cm) 0.27 0.43 0.16 1 0.81

POS 2 (g) 0.35 0.36 0.02 1 1

POS 2 (cm) 0.36 0.37 0.02 1 1

POS 3 (g) 0.14 0.38 0.24 0.99 0.42

POS 3 (cm) 0.24 0.38 0.16 0.97 0.79

OVERALL (g) 0.32 0.4 0.2 0.87 0.83

OVERALL (cm) 0.31 0.4 0.17 0.92 0.87

SHELLSIM VALIDATION ON ORTAC AND FLOATING BAGS IN SAN TEODORO 
LAGOON



ORTAC (g) 0.32 0.30 0.1 0.95 0.95

ORTAC (cm) 0.31 0.28 0.11 0.93 0.93

FLOATING BAGS (g) 0.33 0.27 0.12 0.94 0.9

FLOATING BAGS (cm) 0.27 0.31 0.13 0.9 0.89

OVERALL (g) 0.32 0.29 0.11 0.94 0.93

OVERALL (cm) 0.29 0.30 0.14 0.89 0.9

SHELLSIM VALIDATION IN SANTA GILLA LAGOON

SANTA GILLA (g) 0.01 0.4 0.39 0.97 0

SANTA GILLA (cm) 0.08 0.38 0.3 0.96 0.18

426

427

428

429 Table 3. Summary of the environmental data used to run ShellSIM. These data were collected during the production cycles started in 
430 June 2017, in the Santa Gilla lagoon.   Data are presented as mean ± SE.

T °C Sal
‰

DO
mg/L

TPM
mg/L

POM 
mg/L

POC 
mg/m3

Chl-a 
µg/L

June 2017 24.7 ± 
0.02

37.6 ± 
0.03 7 ± 0.03 2.3 ± 0.2 0.9 ± 0.1 413.1 ± 

8.2 0.7 ± 0.1

July 2017 24.8 ± 
0.02

43.3 ± 
0.1

6.1 ± 
0.04 4.6 ± 1.1 1 ± 0.1 349.5 ± 

3.3 0.7 ± 0.1

August 
2017 27 ± 0.01 35.4 ± 

0.03
5.2 ± 
0.04 6.6 ± 0.9 1.4 ± 0.1 451.4 ± 

12.6 1.8 ± 0.1

September 
2017

24.4 ± 
0.02 36 ± 0.03 6 ± 0.03 8.1 ± 0.7 2.1 ± 0.3 561.6 ± 

19.9 1.9 ± 0.1

431

432

433 Table 4. Summary of the environmental data used to run ShellSIM. These data were collected during the production cycles started in 
434 July 2017, in the San Teodoro lagoon.  Data are presented as mean ± SE. 

T °C Sal
‰

DO
mg/L

TPM    
mg/L

POM 
mg/L

POC 
mg/m3

Chl-a 
µg/L



July 2017 27.5 ± 
0.2

38.9 ± 
0.4 9.6 ± 0.3 6.1 ± 4.0 1.7 ± 1.2 358.2 ± 

62.7 1.7 ± 0.7

August 
2017

28.4 ± 
0.3

41.1 ± 
0.4 7.8 ± 0.3 3.9 ± 0.8 1.5 ± 0.2 557.6 ± 

94.2 3.1 ± 1.1

September 
2017

21.5 ± 
0.1

40.2 ± 
1.1 9.2 ± 0.1 5.4 ± 0.3 1.5 ± 0.2 491.1 ± 

30.1 1.7 ± 0.6

October 
2017 18 ± 2.1 40.7 ± 

0.1 8.3 ± 0.3 5.2 ± 0.3 1.4 ± 0.1 769.2 ± 
99 2.8 ± 0.6

November 
2017

18.3 ± 
0.3

38.4 ± 
0.3 9.4 ± 0.1 23.2 ± 3.3 3 ± 0.4 151.3 ± 

23.9
0.5 ± 
0.03

December 
2017

14.7 ± 
0.1

36.7 ± 
0.5 10 ± 0.1 12.3 ± 9.5 1.9 ± 1.3 222.4 ± 

67.4 0.8 ± 0.3
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