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Abstract In this work we produced a long‐term reanalysis of the phytoplankton community structure
in the Mediterranean Sea and used it to define ecoregions. These were based on the spatial variability
of the phytoplankton type fractions and their influence on selected carbon fluxes. A regional ocean color
product of four phytoplankton functional types (PFTs; diatoms, dinoflagellates, nanophytoplankton, and
picophytoplankton) was assimilated into a coupled physical‐biogeochemical model of the Mediterranean
Sea (Proudman Oceanographic Laboratory Coastal Ocean Modelling System‐European Regional Seas
Ecosystem Model, POLCOMS–ERSEM) by using a 100‐member ensemble Kalman filter, in a reanalysis
simulation for years 1998–2014. The reanalysis outperformed the reference simulation in representing the
assimilated ocean color PFT fractions to total chlorophyll, although the skill for the ocean color PFT
concentrations was not improved significantly. The reanalysis did not impact noticeably the reference
simulation of not assimilated in situ observations, with the exception of a slight bias reduction for the situ
PFT concentrations, and a deterioration of the phosphate simulation. We found that the Mediterranean
Sea can be subdivided in three PFT‐based ecoregions, derived from the spatial variability of the PFT
fraction dominance or relevance. Picophytoplankton dominates the largest part of open ocean waters;
microphytoplankton dominates in a few, highly productive coastal spots near large‐river mouths;
nanophytoplankton is relevant in intermediate‐productive coastal and Atlantic‐influenced waters. The
trophic and carbon sedimentation efficiencies are highest in the microphytoplankton ecoregion and
lowest in the picophytoplankton and nanophytoplankton ecoregions. The reanalysis and regionalization
offer new perspectives on the variability of the structure and functioning of the phytoplankton
community and related biogeochemical fluxes, with foreseeable applications in Blue Growth of the
Mediterranean Sea.

1. Introduction

The composition of the phytoplankton community has a profound influence on the functioning of marine
ecosystems, impacting ecosystem health (e.g., eutrophication and harmful algae blooms, e.g., Hallegraeff,
2003), services (e.g., aquaculture and fishery, e.g., Cury et al., 2008), and climate feedbacks through carbon
sequestration (e.g., Bopp et al., 2005). Phytoplankton impact marine biogeochemical fluxes and trophic net-
works, in relation to their size (e.g., picophytoplankton (PIC), nanophytoplankton (NNP), and microphyto-
plankton (MIC) have different affinities for nutrients and only the latter are palatable to fishes) and to
their functional characteristics (e.g., diatoms, typically large in size, can assimilate silicate, while nanosized
coccolitophores impact the cycling of calcium; Chisholm, 1992). Phytoplankton functional types (PFTs) are
defined as groups of phytoplankton that have a distinct function in the ecosystem (Baretta et al., 1995).

PFTs can be investigated by means of ocean color observations (IOCCG, 2014). A variety of algorithms have
been proposed to derive PFTs biomass and production from satellite observations (Kostadinov et al., 2017).
However, these data sets are limited to the first optical depth of the ocean, and the derivation of vertical struc-
ture and of fluxes other than primary production is highly uncertain (Lee et al., 2015). State‐of‐the‐art ecosys-
tem models can describe PFTs and the related biogeochemical and trophic fluxes, but the skill of model
simulations is often poor, mainly due to the difficulty of formulating and parameterizing PFT processes
(Shimoda & Arhonditsis, 2016). Merging PFT ocean color and ecosystem models through data assimilation
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was proposed as a novel approach to estimate better the phytoplankton community structure and related
fluxes in marine ecosystems (Ciavatta et al., 2018). Better simulations of diatoms, dinoflagellates, NNP,
and PIC biomass, as well as estimates of related biogeochemical fluxes, were delivered in both a reanalysis
simulation (Ciavatta et al., 2018) and (pre)operational predictions (Skákala et al., 2018) in the North West
European Shelf Sea ecosystem, through the assimilation of a regional ocean color PFT product (Brewin
et al., 2017).

In theMediterranean Sea, regional ocean color algorithms and products were used to characterize the spatial‐
temporal variability of PFTs (Di Cicco et al., 2017; Navarro et al., 2014, 2017; Sammartino et al., 2015;
Uitz et al., 2012; Volpe et al., 2007). Observation‐based analysis showed that small‐sized groups, either
PIC (Magazzù & Decembrini, 1995) or NNP (Uitz et al., 2012), can dominate the primary production
in the Mediterranean Sea, although MIC production can also be relevant in some spring‐blooming
Mediterranean areas (Uitz et al., 2012). Modeling studies have investigated the variability of primary pro-
duction (e.g., Di Biagio et al., 2019; Lazzari et al., 2012, 2016), but they only focused on the phytoplank-
ton community as a whole.

Model and ocean color total chlorophyll were used to define ecoregions in the Mediterranean Sea (Ayata
et al., 2018; Basterretxea et al., 2018; d'Ortenzio & Ribera d'Alcalà, 2009; Mayot et al., 2016). Ecoregions
can be defined as areas characterized by distinctive and rather homogeneous ecosystem features, such as
the phenology of the total phytoplankton community, as conducted in the above cited papers. The above total
chlorophyll‐based regionalizations, along with regionalizations based on hydrodynamics and biogeochemis-
try, have been recently integrated as layers of a “consensus”map, aiming to support the understanding of the
ecosystem functioning as well as the implementation of the Marine Strategy Framework Directive in the
Mediterranean Sea (Ayata et al., 2018). To the authors' knowledge, a regionalization based on PFTs from
either ocean color or models has not been carried out yet, despite PFTs having profound effects on the ecosys-
tem features, such as biogeochemical fluxes and trophic webs.

The objective of this work is to define PFT‐based ecoregions in the Mediterranean Sea and to characterize
their carbon fluxes, by merging information on PFTs from model simulations and ocean color observations.

To achieve this objective, we assimilated a regional ocean color product for PFTs (Di Cicco et al., 2017) into an
assimilative modeling system for the Mediterranean Sea. This system uses the coupled physical‐biogeo-
chemical model Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS)‐
European Regional Seas Ecosystem Model (ERSEM) of the Mediterranean Sea developed by Holt et al.
(2008) and updated by Kay and Butenschön (2018), and we applied the PFT assimilation framework
developed by Ciavatta et al. (2018). Previous applications of ERSEM to investigate the Mediterranean
Sea biogeochemistry, in both assimilative and not assimilative simulations, include the works by Vichi
et al. (1998), Allen et al. (1998, 2002, 2003), Petihakis et al. (1999, 2002, 2007), Triantafyllou et al.
(2000, 2003), Zavatarelli et al. (2000), Blackford (2002), Pinardi et al. (2003), Kalaroni et al. (2016), and
Tsiaras et al. (2017). A skill assessment was performed to evaluate the reanalysis adequacy in represent-
ing the average spatial variability of the phytoplankton community structure. The ecoregions have been
defined by computing multiannual average of reanalyzed surface PFT fractions, assessing spatial patterns
of the PFT dominance or relevance, and evaluating the spatial variability of vertically integrated
carbon fluxes.

The paper is structured as follows. Section 2 describes the ecosystem model, the setup of the assimilation
algorithm, the data, the metrics applied for skill evaluation, and the method applied to identify the different
PFT ecoregions and to characterize selected carbon and trophic fluxes. The results are presented and dis-
cussed in section 3, where the skill of the reanalysis is evaluated by using (i) the assimilated ocean color
chlorophyll products (section 3.1) and (ii) not assimilated in situ data set (section 3.2). Section 3.3 presents
the PFT‐based ecoregions, and section 3.4 compares their carbon and trophic fluxes. Concluding remarks
and future applications are pointed out in section 4.

2. Material and Methods
2.1. The Ecosystem Model of the Mediterranean Sea

The ecosystem dynamics of the Mediterranean Sea (Figure 1) are described by a three‐dimensional physical‐
biogeochemical model. This consists of three online coupled submodels (see Figure 2). The POLCOMS (Holt
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et al., 2008; Holt & James, 2001) describes the hydrodynamics. This provides the physical forcing to the
pelagic biogeochemical submodel, namely, the ERSEM (Baretta et al., 1995; Butenschön et al., 2016). The
third submodel is the ERSEM benthic biogeochemical model (Blackford, 1997; Butenschön et al., 2016).
The two ERSEM submodels are coupled at the same temporal and spatial resolution as the physical model
to capture the effects of the three‐dimensional hydrodynamics on the biogeochemical cycles (Holt et al.,
2004). The model grid has a horizontal resolution of 0.1° (approximately ~11 km in the meridional
direction and between 9.3 and 7.8 km in the zonal direction at the latitude of the study region) and 42
sigma coordinate levels in the vertical.

2.1.1. The Physical Submodel: POLCOMS
The physical model POLCOMS (Holt & James, 2001) is a three‐dimensional, finite difference, primitive equa-
tion model formulated in spherical‐polar coordinates on an Arakawa B‐grid. The model includes an advec-
tion scheme with stability and conservation properties (James, 1996), a vertical turbulence model (General
Ocean Turbulence Model; Burchard et al., 1999), and calculation of horizontal pressure gradients.
POLCOMS was configured for the Mediterranean Sea by Holt et al. (2008).

2.1.2. The Pelagic Biogeochemical Submodel: ERSEM
The biogeochemical processes are described by the ERSEM (Baretta et al., 1995), version 15.06 (Butenschön
et al., 2016), as in the PFT assimilative model by Ciavatta et al. (2018). ERSEM uses a functional type
approach to model the dynamics of the low trophic levels of the ecosystem. Primary producers are split into
four PFTs, including two size‐based types (PIC and NNP), dinoflagellates, and large diatoms (which,
summed up, represent the model MIC). Each of these PFTs is represented in terms of its content of chloro-
phyll, carbon, nitrogen, phosphate, and (for diatoms only) silicate. Three functional types of zooplankton
(mesozooplankton, microzooplankton, and heterotrophic nanoflagellates) prey on the phytoplankton, bac-
teria, and particulate organic matter as a function of their size. A bacterial functional type drives the micro-
bial loop, the production and recycling of dissolved organic matter in labile and recalcitrant forms, and the
regeneration of inorganic nutrients in the water column (Hansell, 2013; Polimene et al., 2006). In the func-
tional types, the stoichiometric ratios of nutrients‐to‐carbon and chlorophyll‐to‐carbon (in the PFTs) vary
dynamically (Baretta‐Bekker et al., 1997; Geider et al., 1997). The model simulates the dynamics of five inor-
ganic dissolved nutrients (carbon, nitrate, ammonium, phosphate, and silicate) and dissolved oxygen.
Nitrogen undergoes nitrification in the water column, as a function of available ammonium, temperature,
oxygen, and pH (Blackford & Gilbert, 2007; Butenschön et al., 2016). Denitrification is modeled in the sedi-
ments only (Butenschön et al., 2016).

ERSEM coupled to POLCOMS was used in the Mediterranean Sea by Kay and Butenschön (2018) and Kay et
al. (2018), by using the ERSEM parameterization of Butenschön et al. (2016). However, here the maximal
PFT carbon‐to‐chlorophyll ratios were set equal to the values in the comparable Mediterranean model by
Lazzari et al. (2012, 2016) and Teruzzi et al. (2014, 2018); i.e., 0.02 mg Chl/mg C). In fact, the original
ERSEM values were calibrated for the global ocean and led to ocean color overestimation in the
Mediterranean Sea in our preliminary sensitivity simulations (not shown).

Figure 1. Domain and bathymetry of the Mediterranean Sea model. The western boundary of the model extends into the
Atlantic as a buffer area, but results will be only shown for the Mediterranean area in the map, that is, from 5°W. The
dashed line represents the 200‐m isobaths; the dotted line represents latitude 43.5°N, here delimiting the North Adriatic.
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2.1.3. The ERSEM Benthic Submodel
The benthic submodel is the ERSEM benthic model (Blackford, 1997), as described in Butenschön et al.
(2016). In the configuration applied here, the submodel includes 35 biogeochemical variables, subdivided into
five living functional types (including three zoobenthos types, and aerobic and anaerobic bacteria), along
with particulatematter and dissolved organic and inorganic nutrients. The fluxes at the sediment‐water inter-
face are determined by sedimentation of organic matter and diffusion of inorganic nutrient across the seabed.
2.1.4. Atmospheric Forcing, Boundary Constrains, and Initial Conditions
Atmospheric forcingwas provided by the ERA‐Interim data set (Dee et al., 2011), using 6‐hourly values of sur-
face winds, sea level pressure, temperature and relative humidity, and daily accumulation of precipitation
and shortwave and longwave radiation fluxes. The resolution of the surface data was 0.75°. Ocean boundary
conditions at the western boundary were taken from a run of the same model configured for a wider domain
(Kay et al., 2018) using the same surface forcing: This provided daily values of temperature, salinity, currents,
nitrate, phosphate, silicate, dissolved inorganic carbon (DIC), and bioalkalinity. Climatological values for
river inputs of freshwater and nutrients were taken fromGlobalNEWS2 (Mayorga et al., 2010). River nutrient
concentrations were set constant; riverine freshwater discharges varied seasonally using historic data from
Dai et al. (2009) to set the variation. Climatological inputs for the North Adriatic (NAd) rivers, including
the Po River, were derived from data in Cozzi and Giani (2011). Atmospheric depositions of bioavailable
nitrogen and phosphorus were represented as in Lazzari et al. (2016), that is, temporally constant and spa-
tially different in the eastern and western basins, with values derived from Ribera d'Alcalà et al. (2003).

The initial conditions for nitrogen were derived to match the average subbasin biogeochemical‐ARGO pro-
files in de Fommervault et al. (2015). Phosphate initial conditions were set equal to 1/25 of the

Figure 2. Schematic of the coupled physical‐biogeochemical submodels of the Mediterranean Sea, including the list of the forcing functions. ERSEM = European
Regional Seas Ecosystem Model; POLCOMS = Proudman Oceanographic Laboratory Coastal Ocean Modelling System.
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nitrogen values, that is, setting the initial N:P ratio equal to an average Mediterranean value of 25 (compar-
able, e.g., to Pujo‐Pay et al., 2011). The initial conditions for the other biogeochemical and physical variables
were derived from a model simulation on a wider model domain (Kay et al., 2018). A spin‐up of 20 years was
performed before starting the reference and assimilative simulations, having verified that this was sufficient
to stabilize the patterns of the nutrients profiles.

2.2. The Assimilation System

The assimilation system is described in full in Ciavatta et al. (2016, 2018). It uses the ensemble Kalman
filter (EnKF; Evensen, 1994). This is a sequential assimilation method, which starts by randomly sam-

pling an ensemble of N state vectors xa lð Þ
0 (l = 1, 2, … , N) from an initial probability density function

for the model variables. Each ensemble member, that is, state vector, is propagated in time using the

nonlinear model equations during the “forecast step” that provides the EnKF “forecasts” xf lð Þ
i , that is,

the reanalysis states just before the subsequent assimilation step.

At time i, the forecast state x f
i and the forecast uncertainty P f

i are defined from the mean value and the cov-
ariance matrix of the N forecasted members. When at time i a vector y′i of observations of the model output

yi ¼ H xf lð Þ
i

h i
becomes available, the assimilation scheme updates (i.e., “corrects”) the forecasted states xf lð Þ

i ,

in the EnKF “analysis” step. This step scales the forecast‐to‐data mismatches, by balancing the uncertainty in

the model (P f
i ) and in the observations (Ri), and it provides the analyzed ensemble xa lð Þ

i . The difference xa lð Þ
i

−xf lð Þ
i is the “increment” (i.e., the correction) of the state vector in the analysis step. The ensemble xa lð Þ

i is the
initial condition used to simulate a new ensemble forecast for time i + 1, in a sequential procedure that esti-
mates the evolution of the model variables over the time window spanned by the assimilated data.

Our assimilation system uses the Evensen (2003) version of the EnKF, which includes localization of the ana-
lysis and perturbation of the assimilated observations (see also Hu et al., 2012; Natvik & Evensen, 2003; Storto

et al., 2013). The observational operatorH xf lð Þ
i

h i
links the four state variables representing the ERSEM phy-

toplankton types to the respective ocean color products (Ciavatta et al., 2018). Observations and model states
are log‐transformed prior to the analysis, to guarantee positivity of the solutions (Janjić et al., 2014), as in the
applications by Nerger and Gregg (2007), Ciavatta et al. (2016, 2018), Ford and Barciela (2017), and Skákala
et al. (2018).

The PFT assimilation scheme was set up as in Ciavatta et al. (2018). We used the EnKF with an ensemble
size of N = 100 members. We included in the analyzed state vector 35 out of the 51 ERSEM pelagic state
variables, to keep the analysis computationally affordable, in analogy with Ciavatta et al. (2018).
Coherently with the paper's objective to reanalyze the plankton community structure, we included in
the state vector all the 27 variables related to the phytoplankton, zooplankton, and bacteria functional
types, as well as eight variables representing DIC, labile, and refractory dissolved organic matter and small
particulate matter. The remaining 16 variables were updated through the model equation during the simu-
lation runtime (“forecast” step; e.g., Pradhan et al., 2019). The radius of the localized analysis was set to be
spatially variable as a function of the bathymetry. In particular, we increased the “resolution” of the ana-
lysis from oceanic toward coastal waters, by setting a radius of 100 km for grid points where the bathyme-
try is deeper than 2,000 m, 50 km for bathymetry between 50 and 2,000 m, and 25 km for bathymetry
shallower than 50 m (Ciavatta et al., 2016).

The model error is accounted for by random perturbations of the model forcing, namely, the surface
solar irradiance, thus inducing fluctuations in the underwater light field that drives photosynthesis
(Ciavatta et al., 2016). A Gaussian perturbation with standard deviation equal to 20% of the irradiance
value is added during the model forecast step. Furthermore, at the first assimilation step of each year,
the model error is added to all the variables undergoing the analysis, as white noise drawn from a dis-
tribution of pseudo‐random fields with error equal to 10% of the value of the variables. The error is low-
ered to 1% for those variables that have relatively high mean values (DIC, small particulate matter), to
avoid divergences in the concentrations of the largest pool in the model (Ciavatta et al., 2011).

The ensemble was initialized by perturbing the output of the spin‐up reference model simulation for
September 1997, that is, the first month for which ocean color products were available for
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assimilation. The perturbation applied Gaussian pseudo‐random fields with error equal to 30% of the value of
the variables.

The observational error was derived from values of the bias and root‐mean‐square deviation (RMSD) of the
PFT ocean color product (see section 2.3). The variance of the unbiased PFT concentrations regridded onto
the surface model domain and was computed following the procedure described in the Appendix of Ciavatta
et al. (2016).The PFT assimilation approach was developed in the framework of the EU Copernicus Marine
Environment Monitoring Service (CMEMS) ‐ Service Evolution Project TOSCA, and was applied with the
operational CMEMS model of the North West European Shelf‐Sea by Skákala et al. (2018).

The reanalysis simulation was run on the U.K. Natural Environment Research Council (NERC) High
Performance Computing facility “ARCHER,” using 7200 CPUs and ~10 mega allocation units and producing
~10 Tb of output.

2.3. Data

The assimilated ocean color PFT chlorophyll products were developed by Di Cicco et al. (2017) using regional
PFT algorithms for theMediterranean Sea. These algorithms are empirical relationships developed following
a global approach (Hirata et al., 2011) based on the relation between phytoplankton abundance and the
trophic status of the environment (Brewin et al., 2010, 2011; Chisholm, 1992; e.g., Devred et al., 2006; Uitz
et al., 2006). These algorithms resulted from the existing covariability between in situ PFT groups (expressed
as chlorophyll fraction) and the corresponding log10‐transformed in situ total chlorophyll a concentration,
taking account of the lognormal distribution of this pigment (Chisholm, 1992; Hirata et al., 2011).
Following previous works carried out for the global ocean (Barlow et al., 1993; Gieskes et al., 1988; Uitz et
al., 2006), the contribution of each PFT to the Mediterranean assemblage in terms of chlorophyll
concentration was computed by performing a multiple regression analysis between in situ total chlorophyll
a and seven diagnostic pigments, markers for the main algal groups (Vidussi et al., 2001). The final in situ
PFT estimation formulas and the regional satellite algorithms, with their references, are fully described in
Di Cicco et al. (2017).

The regionally tuned satellite PFT algorithms were applied to a Mediterranean multisensor (Medium‐

Resolution Imaging Spectrometer(MERIS), Moderate Resolution Imaging Spectroradiometer‐Aqua
(MODIS), and Sea‐viewing Wide Field‐of‐view Sensor(SeaWIFS) chlorophyll a satellite time series (from
September 1997 to August 2015) available from Copernicus Marine Environment Monitoring Service
(CMEMS, OCEANCOLOUR_MED_CHL_L3_REP_OBSERVATIONS_009_073 product). These chloro-
phyll data are produced by the CMEMS OC TAC (Ocean Color Thematic Assembling Centre) using an
ad hoc configuration of the ESA OC‐CCI (European Space Agency‐Ocean Color Climate Change
Initiative, www.esa‐oceancolour‐cci.org) processor at high resolution in the Italian National Research
Council Mediterranean processing chain (Volpe et al., 2012, 2019). The chlorophyll product used in Di
Cicco et al. (2017) is a merged Case I–Case II product, in which the different optical properties of inshore
and offshore waters are taken into account by applying two different regional algorithms: (i) the MedOC4
(Volpe et al., 2007) specialized for open ocean waters and (ii) the AD4 (D'Alimonte & Zibordi, 2003) for
coastal complex water. The method of D'Alimonte et al. (2003) was used for the exact identification of the
two different water types. The time series for this work includes daily values of chlorophyll a concentra-
tion quantified for four phytoplankton groups (PIC, NNP, diatoms, and dinoflagellates) and their asso-
ciated errors (bias and RMSDs) at 2‐km resolution. The ocean color PFT errors were estimated
through model validation using an independent PFT validation in situ data set (Di Cicco et al., 2017)
derived from the SeaBASS data set (Werdell & Bailey, 2005).

Using the same methods applied in Ciavatta et al. (2018), we computed unbiased concentrations and asso-
ciated standard errors of the PFT concentrations. These were then projected onto the model grid. Finally,
we computed 5‐day composites centered on the last day of each month of years 1997–2015. These composites
were assimilated on a monthly time step, and the results of the reanalysis are presented in this work for
years 1998–2014.

To corroborate the simulated sea surface temperature (SST), we used data of the Group for High Resolution
Sea Surface Temperature (GHRSST) global Level 4 AVHRR_OI product. This product uses optimal interpo-
lation (OI) by interpolating and extrapolating SST observations from different sources, which include
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satellite (Advanced Very High Resolution Radiometer [AVHRR]) and in situ platforms, i.e., ships and buoys
(Reynolds et al., 2007). The original GHRSST global Level 4 AVHRR_OI data at daily temporal resolution
and 0.25° spatial resolution were averaged to monthly values and interpolated to the model grid for compar-
ison with the model output. The in situ biogeochemical observations used to evaluate the reanalysis skill
were obtained from publicly available data sets. Temperature, salinity, nitrate, phosphate, and chlorophyll
data were provided through OGS/NODC infrastructure (http://nodc.ogs.trieste.it); we used data of biogeo-
chemical‐ARGO profiles for nitrate and oxygen (http://doi.org/10.17882/42182#58265) as well as for salinity,
temperature, and chlorophyll (BOPAD‐prof, Barbieux et al., 2017).

In situ observations of PFTs were obtained from Di Cicco et al. (2017), in turn, derived from the SeaBASS
data set (Werdell & Bailey, 2005).

2.4. Skill Assessment and Similarity Evaluation

The skill of the assimilation of the ocean color PFTs (reanalysis for 1998–2014) was assessed in comparison
with a reference simulation without assimilation and in comparison with assimilated ocean color products
and independent in situ observations, by using quantitative statistical metrics, as in Ciavatta et al. (2018).
The performance of the reference and reanalysis output (y) in matching the assimilated composites of ocean
color PFT concentrations (y′c) was evaluated by computing spatial correlation and RMSD at each month of
the simulation years and then averaging in time. The skill of the reanalysis was evaluated for the output of
both the forecast and analysis steps of the assimilation algorithm (see section 2.2 for the definition of these
steps). In particular, the assessment of the analysis skill used the same ocean color products that were assimi-
lated monthly, while the assessment of the forecast used ocean color data that had not been assimilated yet.
Although this is a common procedure in the evaluation of assimilative systems (see, e.g., Gregg et al., 2009),
we stress that the not‐assimilated ocean color data used for skill assessment cannot be considered indepen-
dent from the assimilated ones, because of temporal correlations among subsequent ocean color fields
retrieved from satellites. Similarly, also the nonassimilated in situ PFT observations cannot be considered
fully independent because they were used to calibrate the assimilated ocean color PFT products (Di Cicco
et al., 2017). The remaining in situ physical and biogeochemical observations are independent from the
assimilated products.

The similarity between the reanalysis and ocean color average phytoplankton community was synthetized in
a map scaled from 0 to 1. This map was derived by (1) computing and summing the absolute differences
between the reanalysis and ocean color maps of the four PFT average fractions; (2) scaling the sums between
0 and 1, by dividing by the maximum sum; (3) computing the differences in (1) above minus the scaled sums.
In the map, the value 1 represents the maximum similarity, while 0, the lowest.

Quantitative metrics were used to evaluate the skill of the reanalysis in matching independent in situ obser-
vations. Daily values of the variables in the reanalysis data set (y) were matched up point to point in space
and time with the data (o). In particular, we computed and then showed in robust skill diagrams
(Butenschön et al., 2016; Ciavatta et al., 2018) (a) the bias calculated as the median value of the reanalysis‐
to‐observation mismatch, bias* = median(y − o), normalized by the interquartile range of the data (IQRo);
(b) the unbiased median absolute error, MAE′ =median{abs[y − o − bias*]}, normalized by IQRo, and taken
with the algebraic sign of the differences between the interquartile range of the output and the data, sign
(IQR − IQRo); and (c) the correlation coefficient. In these diagrams, the closer the point is to the center,
the lower the error of the simulation (i.e., the median bias and the unbiased absolute error).

The coherence between in situ observations and model output was evaluated also by comparing their spa-
tial distributions in bar plots, representing median and interquartile range. For discussion purposes, the
matchups were subdivided in broad zones, encompassing coastal waters (bathymetry less than 200 m),
open surface ocean and open deep ocean (with bathymetry more than 200 m and surface/deep thresholds
of 10 m for chlorophyll and 200 m for nutrients). The in situ chlorophyll observations have a detection
limit of 10−3 mg/L, and the same threshold was set to the matchup reanalysis data used in the skill assess-
ment, for the sake of consistency.

2.5. Definition of the PFT Ecoregions and Carbon Fluxes

Three PFT ecoregions were defined by assessing the spatial variability of the reanalyzed MIC, NNP,
and PIC fractions computed at the surface of the model domain, averaged in the years 1998–2014.
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The PFT fractions were computed as ratios of each PFT chlorophyll to total chlorophyll. Diatoms
and dinoflagellates fractions were summed up to define a region of dominance of MIC as a whole.
The NNP and PIC regions were defined by weighting the ratios of these two PFTs (see Table 3
for details).

In order to characterize the different regions of theMediterranean Sea, we have selected three simulated eco-
system fluxes that can be of interest for applications such as aquaculture or fisheries: (1) the ratio of gross
primary production to community respiration (GPP:CR), which defines an autotrophic system when greater
than 1; (2) the trophic efficiency, here approximated by the ratio between mesozooplankton and phytoplank-
ton biomass (mesozooplankton is the highest trophic level represented in the model), which indicates how
much of the primary production is transferred to the upper trophic levels (see, e.g., Kwiatkowski et al.,
2019); and (3) the sedimentation efficiency, here defined as the flux of particulate organic carbon (POC)
reaching the sediments, normalized by the GPP. All the fluxes, except the sedimentation efficiency, were
computed by integrating the model output from the surface to the maximum depth of 200 m, which on aver-
age incorporates the entire euphotic zone, encapsulating the vertical distribution of phytoplankton in the
Mediterranean Sea (Lavigne et al., 2015). Sedimentation efficiency was computed at the bottom of the water
column and provides an indication of the POC available to the benthic filter feeders, for example, commer-
cially relevant shellfish.

3. Results and Discussion
3.1. Skill in Matching the Ocean Color Products

The reanalysis reproduced the distributions of the PFT chlorophyll concentrations as inferred from ocean
color observations in the surface waters of the Mediterranean Sea (Figure 3). On average, PIC and NNP rea-
nalysis had the highest chlorophyll concentrations and displayed east‐west differences, though the gradi-
ents were more evident in the satellite products. The MIC group (i.e., both diatoms and dinoflagellates)
had lower average concentrations but high peak values and steep gradients in coastal areas (e.g., in the
Adriatic Sea and Gulf of Gabès). The model overestimated ocean color PIC, leading to an overall overesti-
mation of total chlorophyll. This holds in particular for the eastern basin, where NNP and diatoms were
overestimated as well.

Crucially, the simulated average distribution of the phytoplankton community structure matched well the
one inferred from the ocean color products, as shown in the maps of Figures 4 and 5. Both the model and
the ocean color products indicate the following order of dominance of PFTs on the total chlorophyll in the
Mediterranean Sea (Figure 6): (1) PIC, (2) NNP, (3) diatoms, and (4) dinoflagellates.

The PFT community structure has evident gradients in both the model and data fields (see PFT fractions in
Figure 4 and Figure S1 in the supporting information) that reflects the gradients of the simulated surface
nutrients (see section 3.2). PIC ratio is higher in the more oligotrophic eastern Mediterranean than in the
westernMediterranean. Diatoms (and dinoflagellates in the reanalysis) dominate in the nutrient‐rich coastal
waters of the Adriatic Sea, the Gulf of Gabès, and the area surrounding the Nile estuary. NNP relevance is
intermediate among the other PFTs (Figure 6): It is lower than PIC fractions in both the west and East
Mediterranean according to both the satellite and reanalysis products (see Figures 4 and S1). However, the
east‐to‐west and coast‐to‐open sea gradients are more evident in the satellite product that in the model simu-
lation of the NNP and PIC ratios.

Figure 5 shows that the reanalysis and ocean color representation of the plankton community structure
tends to be more alike in the open ocean than in coastal areas, where the normalized similarity index might
be lower than 75%. In coastal areas, often MIC (i.e., diatoms plus dinoflagellates) dominate in both the rea-
nalysis and ocean color product but with rather higher fraction values in the ocean color product (e.g., in the
NAd, Gabès gulf and Nile delta, Figure 4). Similarity is lower than 75% also in the North West
Mediterranean, North Aegean and Ionian Sea, where the reanalysis NNP fractions are noticeably lower than
in the ocean color products.
3.1.1. Comparison With the Reference Simulation
The assimilation of ocean color PFT improved the reference model simulation of the phytoplankton commu-
nity structure (i.e., PFT fractions, Figure 7a). This holds for the diatoms and dinoflagellates fractions in par-
ticular, which halved their normalized bias. The bias of the PIC also decreased slightly. NNP skill did not

10.1029/2019JC015128Journal of Geophysical Research: Oceans

CIAVATTA ET AL. 6744



improve significantly, and their reference correlation remained negative, since the west‐east gradient of the
ocean color fractions remained unrepresented (Figure 4).

The reanalysis did not change significantly the reference skill for the PFT concentrations, excluding
dinoflagellates that were slightly deteriorated (Figure 7b). This resilience of the skill is not related to a
malfunctioning of the assimilative system but to feedbacks of the simulated ecosystem to the analysis
improvements. In fact, the analyzes had better skill than the 1‐month forecasts, as expected from a
functional assimilative system, but the forecast skill remained comparable to the reference one
(Table 1). The EnKF analysis increments shifted the model toward the ocean color gradients, by increas-
ing strongly the biomass in the West Mediterranean (NNP) and along the coasts (dinoflagellates and dia-
toms) and decreasing the biomass in the east (NNP and PIC; see Figure S2 in the supporting
information). However, these changes led also to proportional EnKF increments of nutrient content

Figure 3. Comparison of the reanalysis versus ocean color estimates of phytoplankton functional types and total chloro-
phyll concentrations in the Mediterranean Sea. The maps show the surface average values in the period 1998–2014.
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inside the phytoplankton (see phytoplankton phosphorus in Figure S2), which became a source of
nutrients to the system. This source of nutrients exacerbated the model nutrient bias and sustained
basin‐wide growth of total phytoplankton, despite localized assimilative corrections of single PFTs
(e.g., MIC increase in coastal areas). Therefore, the analysis was able to improve the reference spatial

Figure 4. Comparison of the reanalysis versus ocean color estimates of the phytoplankton community structure in the
Mediterranean Sea. The maps show the surface percentage fractions of the phytoplankton functional type chlorophyll
with respect to total chlorophyll, in the period 1998–2014.

Figure 5. Map of similarity between the reanalysis and ocean color representations of the plankton community structure.
The similarity was computed from the maps in Figure 4 as described in section 2.4. The value 1 indicates the maximum
relative similarity, and 0, the lowest. The black line represents the 75% similarity level.
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distribution of the PFT fractions (Figure 7a) even though the absolute
chlorophyll concentration of each PFT was not improved (Figure 7b).

3.2. Skill in Matching In Situ Observations

The reanalysis was relatively skilled in fitting the not‐assimilated
observations of physical and biogeochemical variables (Figure 8 and
Table 2) collected at the sampling sites shown in Figure 9. Median bias
and absolute errors were smaller than the variability of the observations
for all the variables, except for oxygen, as indicated by the circles within
the unit radius in Figure 8. The interquartile ranges of data and
reanalysis overlapped for all the variables (Table 2) and the correlations
for temperature, salinity, and chlorophyll were as high as 0.92, 0.66, and
0.44, respectively (Figure 8). Correlations for the other variables were
relatively low. Nitrate reanalysis and data overlapped, though the
simulations overestimated the observed distribution (Table 2).
Similarly, phosphate observations were overestimated in the reanalysis:
The positive bias and rightside position in Figure 8 reflects the higher
median value and larger interquartile range in Table 2. The phosphate
overestimation likely explains the overall model overestimation of chlor-
ophyll concentrations (Figure 3). In fact, phosphate remains on average
the limiting factor of primary production in our simulation, in agree-
ment with previous experimental and modeling findings (e.g., Krom et

al., 1991; Lazzari et al., 2016), implying overproduction where this nutrient was overestimated.
However, we note that phosphate data were available for model assessment only in limited areas of the
Mediterranean Sea.

The reanalysis captured the highest observed PFTs concentrations well (see the comparable values of IQ3 in
Table 2, with the exception of the underestimated NNP) but the simulated distributions tended to be skewed
toward low values (Table 2), leading to an overall negative median bias (Figure 8). We note that the number
of in situ observations available for the assessment of PFTs was relatively low compared to the
other variables.

The spatial patterns of the errors were different for the different variables, suggesting that the coupled phy-
sical‐biogeochemical model did not have systematic regional failures (Figure 9). Errors of simulated tem-
perature were higher in the area of the Gulf of Lion and Ligurian Sea (Figure 9). In the same area, also a
comparison with the GHRSST SST confirms a larger model uncertainty (Figure S3 in the supporting infor-
mation). This can be related to the model underestimation of the velocities of the Ligurian and Balearic cur-
rents and excessive summer stratification of the water column (Kay et al., 2018). The model simulated
poorly other complex hydrodynamic features, such as the gyres in the North Tyrrhenian and South
Adriatic and currents around the Sicily Island: See Figure 9 and Figure S3 in the supporting information.
This uncertainty is probably a consequence of the coarse resolution of the model grid (0.1°) and of the
meteorological forcing (0.75°) and has likely contributed to the bias of the model simulation of nutrients
and PFT concentrations.

The error patterns of salinity were less systematic, since high and low error points coexisted in the same area;
see, for example, the Algerian Basin and the Tyrrhenian Sea in Figure 9. An exception is the NAd, in proxi-
mity of the Po River, where the model simulated fresher waters than observed. Nitrate, chlorophyll, and dis-
solved oxygen also reached the highest errors in the NAd (Figure 9); this was a direct consequence of using
approximate climatological riverine discharges.

Figure 10 quantifies the systematic model overestimation of nitrate in coastal areas and in the NAd in
particular. In the NAd, our errors in nutrient estimates are comparable to current ones by operational sys-
tems (e.g., Teruzzi et al., 2018), pointing to better riverine representation as a much needed development
in Mediterranean models. On the other hand, the reanalysis was skilled in representing the nitrate distribu-
tion in open ocean sites, where the simulation and in situ observations had comparable distributions in both
surface and deep waters (Figure 10).

Figure 6. Spatial distributions of the average phytoplankton functional type
fractions in the Mediterranean Sea from the reanalysis output (blue contin-
uous bars) and ocean color (red dashed bars; surface, years 1998–2014)
computed from Figure 4. The bars represent the first and third quartiles
around the median values (circles). DIA = diatoms; DIN = dinoflagellates;
NNP = nanophytoplankton; PIC = picophytoplankton.
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The model was skilled in simulating phosphate observations in the NAd
(Figures 9 and 10). This mitigated the impact of nitrate overestimation
on primary production in the NAd, given that phosphate was the limiting
factor in our simulation. The model tended to overestimate the phosphate
data in other coastal areas and in the open ocean (Figure 10), but too few
data were available for a robust assessment (Figure 9).

Chlorophyll error did not have clear spatial patterns, since high and low
error data points coexisted in the same area (e.g., in the Algerian Sea, the
Gulf of Lion, and the NAd, Figure 9). Figure 10 shows that the reanalysis
slightly overestimated the in situ observations in the open surface water
(depths 0–10 m), where the model tended to overestimate also the ocean
color product (Figure 3). At the same time, the reanalysis distribution in
the deep open ocean (depths 10–200 m) overlapped with the lowest tail of
the observed distribution, meaning that the reanalysis tended to underes-
timate the deep chlorophyll maximum values. In the coastal areas, the
simulated and observed distributions are comparable and both reached
the highest values in the North Adriatic Sea. Here the model did not pro-
duce systematic chlorophyll outliers despite the nitrogen overestimation
because simulated phytoplankton production was limited by phosphate
(Figure 10). If chlorophyll data from the NAd are removed from our com-
parison, the reanalysis and observation distributions in coastal areas were
1 order of magnitude lower (“No NAd” in Figure 10).

The simulated PFT concentrations overlapped with the observations,
though the reanalysis was skewed toward low values (Tables 2 and S4).
However, the relatively low number of sampling stations affects the robust-
ness of the assessment (Figure 9).
3.2.1. Comparison With the Reference Simulation
The reanalysis skill inmatching the in situ observations of the biogeochem-
ical variables was not significantly different from the skill of the reference
model without assimilation (Figure 8 and Table 2). For the PFT concentra-
tions, assimilation reduced the reference bias versus in situ observations (in
particular that of PIC), but it also increased their MAE′ slightly (Figure 8).
The reanalysis skill overlapped with that of the reference for nutrients and
dissolved oxygen, while phosphate was degraded (Figure 8). The limited
impact of PFT assimilation on fitting the in situ data of these biogeochem-
ical variables was expected, because none of them was included in the
EnKF analysis (see section 2.2.1), but could only be updated in the forecast
model integration (see to this regard the discussion in Pradhan et al., 2019).
The relatively low frequency of the assimilative analyses and the relative

Figure 7. Skill of the reanalysis (circles) in representing the spatial distri-
butions of (a) the ocean color phytoplankton functional type fractions and
(b) concentration. The skill of the reference simulation is shown for
comparison (squares). IQR = interquartile range of the model estimates;
IQRo = interquartile range of the observations; MAE′ = unbiased median
absolute error; Bias = median value of the model‐to‐data deviations.
The notation of the variables is explained in Table 2.

Table 1
Skill Metrics for the Reanalysis (Analysis and 1‐Month Forecast) and Reference Estimates of the Ocean Color Phytoplankton Functional Type and
Total Chlorophyll Concentrations

Variables

R (unitless) RMSD (mg/m3)

Analysis Forecast Reference Analysis Forecast Reference

Diatoms 0.58 0.29 0.26 0.11 0.13 0.13
Dinoflagellates 0.59 0.48 0.41 0.04 0.03 0.03
Nanophytoplankton 0.53 0.32 0.29 0.11 0.13 0.13
Picophytoplankton 0.40 0.27 0.25 0.19 0.20 0.20
Total chlorophyll 0.55 0.32 0.28 0.35 0.41 0.41

Note. The metrics are time averages of the spatial R and RMSD computed at each month of years 1998–2014 in the whole Mediterranean Sea. R = correlation;
RMSD = root‐mean‐square deviation.
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high error of the ocean color PFT data can also help explain this outcome
(see Ciavatta et al., 2018). The degradation of phosphate can be related to
the analysis increments of phosphorus content of phytoplankton, which
acted as a source of nutrients to the system, exacerbating further the refer-
ence bias (see section 3.1.1 and Figure S2 in the supporting information).
We note that deterioration of nutrients can occur when assimilating ocean
color, in particular when issues in the model lead to systematic biases in
both the phytoplankton biomass and the nutrient concentrations (see dis-
cussion in Gregg et al., 2009), such as overestimation of nutrients inputs
and chlorophyll concentration in our case. For example, assimilation of
ocean color chlorophyll worsened estimates of nitrate in the NAd in the
recent simulations of both Tsiaras et al. (2017) and Teruzzi et al. (2018),
in relation to the systematic underestimation of both chlorophyll and
nutrients in that region. Though we consider the model suitable to assess
the PFT data assimilation strategy in the context of this work (see the rela-
tively good match of model and ocean color PFT fractions in Figures 4–7
and with PFT in situ observations in Figure S4), we highlight that a com-
prehensive assessment of both nitrate and phosphate fluxes in the model
needs to be performed in future studies.

3.3. PFT Ecoregions in the Mediterranean Sea

The good skill of the reanalysis in estimating the PFT fractions inferred
from ocean color (Figures 4, 5, and 6) and the improvements with respect
to the reference simulation (in particular for MIC ratios, Figure 7a) sup-
ported the use of the reanalysis output in Figure 4 to define PFT‐based
ecoregions in the Mediterranean Sea (Table 3 and Figure 11).

The region of PIC dominance (blue in Figure 11) is the largest in the Mediterranean Sea by far. It covers the
offshore waters from the East Mediterranean to the Balearic Islands. It also includes the Central Aegean Sea
and the central and southern offshore areas of the Adriatic Sea.

The region of NNP relevance (yellow in Figure 11) covers large bands of the Mediterranean coasts, in parti-
cular in the Western Mediterranean, Adriatic Sea, and Levantine.

The region of MIC dominance (in Figure 11) is comparatively small and associated with coastal areas. It cov-
ers mainly the NAd and the Gulf of Gabès. However, it spreads also along the Italian Adriatic coast, the
Libyan coast, and the Nile Delta.

In general terms, the simulated PFT distribution is largely driven by the gradients of surface dissolved inor-
ganic nutrients available for growth (see the phosphate and nitrate distributions in Figure 9). MIC dominates

Figure 8. Skill of the reanalysis in simulating in situ observations of physical
and biogeochemical variables (circles). The skill of the reference simulation
is reported for comparison (squares). IQR = interquartile range of the
model estimates; IQRo = interquartile range of the observations; MAE′ =
unbiased median absolute error; Bias = median value of the model‐to‐data
deviations. The notation of the variables is explained in Table 2. Reference
and reanalysis skill for T and S were identical because of the one‐way cou-
pling of biogeochemistry to physics in the model applied here.

Table 2
Comparison of the Statistical Distributions of the Reanalysis (REA), Reference (REF), and Observations (OBS) Matchups in the Whole Mediterranean Sea

Variable (units) Not REA median (Q1–Q3) REF median (Q1–Q3) OBS median (Q1–Q3) N

Temperature (°C) T 15.7 (15.0–16.8) As REA median 14.6 (13.8–17.0) 501,247
Salinity (PSU) S 38.8 (35.8–39.2) As REA median 38.3 (37.7–38.6) 223,011
Oxygen (mg/L) O2 7.9 (6.5–9.2) 7.9 (6.6–9.2) 5.7 (4.7–6.9) 84,537
Nitrate (mmol/m3) NO3 5.2 (3.0–7.2) 4.9 (2.8–6.8) 2.9 (0.6–6.3) 3,477
Phosphate (mmol/m3) PO4 0.08 (0.02–0.2) 0.07 (0.02–0.2) 0.05 (0.03–0.1) 1,702
Total chl (mg Chl/m3) Chl 0.004 (1·10–3–0.3) 0.003 (1·10–3–0.3) 0.06 (7·10–3–0.3) 60,414
Diatoms (mg Chl/m3) Dia 0.006 (1·10–3–0.04) 0.004 (1·10–3–0.03) 0.02 (1·10–2–0.06) 822
Dinoflag (mg Chl/m3) Din 0.001 (1·10–3–0.02) 0.001 (1·10–3–0.01) 0.009 (5·10–3–0.02) 815
Nanophytopl (mg Chl/m3) Nnp 0.03 (6·10–3–0.07) 0.03 (6·10–3–0.07) 0.08 (4·10–2–0.2) 774
Picophytopl (mg Chl/m3) Pic 0.04 (2·10–2–0.10) 0.04 (2·10–2–0.1) 0.07 (5·10–2–0.1) 824

Note. “Not” is the notation of the variables used in Figure 8; Q1 and Q3 are the first and third quartiles, respectively; N is the number of matchups.
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the areas near the main river mouths, where nutrient abundance can sustain relatively large cells, which
require high intracellular nutrient concentration.When nutrient are not limiting, these PFTs tend to accumu-
late high amount of nutrients (luxury uptake) reducing their availability for smaller phytoplankton. Large
phytoplankton is also less heavily grazed with respect to small species: In our model MIC is only preyed on
by meso and microzooplankton, while small phytoplankton is preyed on by all the zooplankton functional
types, including heterotrophic nanoflagellates. Conversely, the fast‐growing, small PIC dominate the large
areas of oligotrophic open waters of the Mediterranean. This PFT has a higher surface to volume ratio (due
to their smaller size), and therefore, they are able to take up nutrients at lower concentration than large cells.
In the model, this feature is described through a parameter representing the affinity for nutrients during
uptake (Butenschön et al., 2016); for example, the PIC affinity for phosphorus is double that in diatom.
Finally, NNP, which has intermediate characteristics with respect to the other two groups, is relevant

Figure 9. Spatial distribution of the reanalysis errors in simulating the in situ observations collected at Mediterranean
sampling sites (crosses). The error is the median absolute difference normalized by the median observation at each site
and scaled between the first and third quartiles of the median absolute difference values across sites. The relative errors
have increasing values from 0 (low error, black color) to 1 (high error, red color). The maps show the reanalysis average
values of the biogeochemical variable in the years 1998–2014.
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where nutrients are present at intermediate concentrations, as at the edges of themain river plumes and other
coastal areas influenced by smaller rivers. Hydrodynamics impacted clearly our simulation and
regionalization. For example, the NNP zone expands in the Alborán Sea and beyond because of some
oceanic nutrient inputs and mesoscale dynamics associated with the inflow of Atlantic waters, which
increases the productivity of those areas (d'Ortenzio & Ribera d'Alcalà, 2009).

The regionalization is based on a reanalysis that matched well the PFT structure inferred from ocean color,
but additional considerations might be needed for those areas where the consensus between reanalysis and
ocean color was lower. These areas are exemplified by the 75% similarity line in Figure 11, whichwas reported
from the results in Figure 5.

We have confidence in our definition of the MIC region, although the region is included in the coastal areas
where the similarity was lower than 75% (Figure 11). In fact, theMIC‐dominated areas were overlapping sub-
stantially in the reanalysis and ocean color products. The two products differed in the magnitude of the MIC
domination, which was noticeably higher from the satellite algorithm than from the model, for example, in
the MIC spots in the NAd and in the Gulf of Gabès (Figure 4).

Portions of the PIC region are also bounded by the 75% similarity line, most notably the highly productive
Ligurian Sea/Gulf of Lion and the North Aegean Sea (Figure 11). Here NNPwas dominant in the ocean color
product, while PIC fraction was more than 50% in the reanalysis product (Figure 4). Given the difference in
the two products, the consideration of information from in situ PFT observations and local‐scale modeling
might be needed to confirm the classification of the Ligurian Sea/Gulf of Lion and the North Aegean Sea.

The Ligurian Sea/Gulf of Lion was previously classified as a “blooming” area, based on clustering analysis of
the phenology of total chlorophyll from ocean color (d'Ortenzio & Ribera d'Alcalà, 2009; Mayot et al., 2016).
The ocean color product applied in our work indicates a climatological NNP blooming or dominance in the
region from November to May, and PIC dominance from June to October; on the other hand, our reanalysis
simulated NNP dominance only in the month of December (climatological analysis), and PIC dominance in
the rest of the year (not shown). The reanalysis and ocean color dissimilarity in representing the PFT seasonal
succession and average dominant PFT in the Ligurian Sea/Gulf of Lion is possibly related to our inadequate
simulation of the Rhone river inputs (see the highest dissimilarity at the river mouth in Figure 5), also to the

Table 3
Definition of the phytoplankton functional type (PFT) ecoregions in Figure 11

PFT
ecoregion Definition

MIC Microphytoplankton is dominant: Here microphytoplankton chlorophyll (sum of diatoms and dinoflagellates) ratio to total chlorophyll is higher
than the remaining PFT chlorophyll ratios.

NNP Nanophytoplankton is relevant: Here the nanophytoplankton ratio is the second highest ratio (after picophytoplankton) and summed with micro
ratio is higher than the dominant pico ratio.

PIC Picophytoplankton is absolutely dominant: Here the pico ratio is higher than 50%.

Note. The ecoregion were computed using the surface reanalysis PFT fractions shown in Figure 4.

Figure 10. Comparison of the nitrate, phosphate, and chlorophyll reanalysis (blue continuous bars) and in situ data (red dashed bars) in the Mediterranean
Sea: coastal, open surface ocean (0–200m; 0–10m for chlorophyll) and open deep ocean (200m to bottom; 10–200m for chlorophyll). In “NoNAd,”matchups in the
North Adriatic (latitudes higher than 43.5°N) were excluded from the computation of the coastal distribution. The bars represent the first and third quartiles around
the median values (circles).
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misrepresentation of the complex hydrodynamics of the area (see section 3.2). In this region, higher‐resolu-
tion models might be needed to resolve the hydrodynamic impact on the nutrient transport and zooplankton
grazing on the phytoplankton community structure (Auger et al., 2014). However, we note that the satellite
model used here was parameterized using high‐performance liquid chromatography (HPLC) pigment data
(Di Cicco et al., 2017). In the Atlantic Ocean, differences have been seen between size‐fractionated chloro-
phyll estimated throughHPLC and through size fractionatedfiltration (Brewin et al., 2014), with implications
for satellite size‐fractionated chlorophyll and primary production algorithms (see Brewin et al., 2014; Brewin
et al., 2017). For Mediterranean waters, future efforts should be placed on collecting in situ data using other
techniques (e.g., flow cytometry, microscopy, and size‐fractioned filtration) alongside HPLC, to aid in calibra-
tion of future ocean color phytoplankton community structure algorithms.

In the North Aegean Sea, field data suggested that the area is overall dominated by PIC (>60%, Ignatiades
et al., 2002; Siokou‐Frangou et al., 2002), supporting our reanalysis‐based classification (Figure 11). Also, a
local‐scale ecosystem model confirmed the dominance by PIC in the North Aegean Sea (44%, Tsiaras
et al., 2014), while MIC dominance and NNP dominance were driven by nutrient river discharges in confined
coastal spots of the North Aegean Sea, for example, the Thermaikos Gulf identified as NNP also in our
regionalization (Figure 11).

Finally, the NNP region is bounded by the 75% similarity line in the Alborán Sea, Italian Adriatic coast, and
South East Levantine (Figure 11). Here the reanalysis and the ocean color are in general coherent in pointing
out NNP in relevant fractions, supporting our classification, though the absolute magnitudes of the fractions
can be quite different in the two products (see Figure 4). The different magnitudes are likely related to both
the coarse resolution and approximate riverine inputs in ourmodel. Because of that, ourmodel cannot resolve
the PFTs as accurately as locally tuned models, which could capture the ecosystem effect of eddies near the
Gibraltar Strait (Ramirez‐Romero et al., 2014), of the Po input transport (Polimene et al., 2006) and of the
Nile plume (e.g., Petihakis et al., 2009). Some in situ observations available in the above areas seem to support
their classification in the NNP region. For example, relevant autotrophic NNP fractions were observed in the
surface waters of the South East Levantine (comparable to the PIC biomass, Tanaka et al., 2007), in the
Alborán Sea (up to 40% of the phytoplankton community, Arin et al., 2002), and in the west coast of the
Adriatic Sea (e.g., the largest abundance fractions in Zoppini et al., 1995).

It is worth noting that the MIC and NNP ecoregions in Figure 11 are larger in space than the ecoregions
obtainable from the reference simulation (Figure S5 in the supporting information). If compared to ecor-
egions estimated from the ocean color product, the reanalysis area of NNP relevance is less extended
(Figure S6 in the supporting information) and comparable to the area where NNP is dominant in the
ocean color product (Figure S7 in the supporting information).

3.4. Regional Plankton‐Driven Biogeochemical and Trophic Flows

The magnitude and variability of selected, normalized carbon fluxes, and trophic flows in the Mediterranean
PFT ecoregions are presented in Figure 12. Our regionalization approach is supported by these results,

Figure 11. Phytoplankton functional type (PFT)‐based ecoregions of the Mediterranean Sea. The PFT ecoregions are
defined in Table 3. MIC = microphytoplankton; NNP = nanophytoplankton; PIC = picophytoplankton. The ecoregions
were derived from the surface reanalysis PFT fractions shown in Figure 4. The red line represents the similarity value of
75% derived in Figure 5.
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because the vertical fluxes were relatively homogeneous within the regions and distinct between regions. In
fact, the spatial interquartile ranges were relatively small and not overlapping in Figure 12, with
some exceptions.

MIC is the most distinct region, having the maximal and more variable values of all the normalized fluxes.
Crucially, the NNP region also diverges from the PIC region in terms of trophic and sedimentation effi-
ciency. That means “relevant” fractions of NNP can make a difference in fluxes in areas dominated by
PIC. Apparently, this does not hold for the GPP normalized by the total respiration, since this ratio is not
significantly different in NNP and PIC.

The regional differences of the simulated fluxes in Figure 12 can be explained based on our model formula-
tion of the PFT traits. The differences are also determined by “emergent properties” of the ecosystem. These
are features that are not coded explicitly in the model but arise from nonlinear synergies of biogeochemical
and physical states simulated by the model, such as spatial shifts of the plankton trophic web in relation to
nutrient and organic matter availability.

The community production‐to‐respiration ratio (GPP:CR) is higher than 1 on average, characterizing the epi-
pelagic Mediterranean as an overall autotrophic system (Figure 12). The ratio is higher in the nutrient‐rich
coastal areas dominated by MIC. In the model, large phytoplankton is preyed by mesozooplankton, support-
ing the herbivorous food chain and leading to higher transfer efficiency toward upper trophic levels than in
regions where only smaller zooplankton are active. This trophic structure implies production of relatively
large POC (from fast‐sinking large organisms, fecal pellets, grazing, and mortality detritus), which leads to
the highest sedimentation efficiency in the MIC region.

At the other extreme, in the oligotrophic PIC region, the median primary production is low and detritus is
mainly directed to the dissolved pool (or to small, slowly sinking particles), explaining the smallest sedimen-
tation efficiency. In this region small grazers are advantaged with respect to mesozooplankton, leading to the
low efficiency of transfer toward upper trophic levels. These results are coherent with the findings of Allen
et al. (2002) and by Lazzari et al. (2016), who estimated that 50% of the potential production is channelled
toward the dissolved pool in the Eastern Mediterranean, almost entirely covered by our PIC region.

Normalized fluxes and flows in the NNP region sit between the two other regions (e.g., trophic and sedimen-
tation efficiency), consistent with the intermediate traits of the NNP type (e.g., intermediate parameter
values for the mesozooplankton predation and sinking rates in the model).

We argue that the simulated ecoregion efficiencies are meaningful for the real Mediterranean ecosystem
because of the substantial correspondence between the reanalysis and ocean color PFT fraction distributions
(Figures 4–7), despite somemodel biases and lack of data to corroborate the carbon flux estimates. In fact, the
flows and fluxes in Figure 12 are all normalized quantities; thus, they should be affected only at the second
order level by the biases in the phytoplankton biomasses shown in Figure 3. In addition, although flux data
were not available to corroborate our novel PFT ecoregions, there is some consistency between flux
estimates from our reanalysis and previous works at the scale of the whole Mediterranean Sea. Table 4

Figure 12. Normalized carbon fluxes in the reanalysis phytoplankton functional type ecoregions in Figure 11 (average values in 1998–2014). The height of the box
represents the median value of the region, while the error bar represents the spatial variability within the region (i.e., the interquartile range). Fluxes are defined in
section 2.5 and were integrated from the surface to the maximum depth of 200 m. The sedimentation efficiency is an exception, because it was computed at the
bottom of the water column. The distributions of the carbon fluxes used in the computation of the efficiencies are shown in Figure S8 in the supporting information.
CR = community respiration; GPP = gross primary production; MIC = microphytoplankton; NNP = nanophytoplankton; PIC = picophytoplankton.
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shows that our estimates of the net primary production by the total phytoplankton community matches well
the one by Uitz et al. (2012), who used observations from ocean color and in situ campaigns. The confidence
bound for our estimates was derived from the range of our 100‐member ensemble simulation, and it overlaps
with the range provided by Uitz et al. (2012). We note that these estimates are lower than the ones derived
from sparse in situ observations (Sournia, 1973) and from other model simulations (Di Biagio et al., 2019).

Our MIC net production is comparable to the one estimated by Uitz et al. (2012) based on their PFT ocean
color algorithm, but NNP and PIC production diverge by ~100%. This difference is possibly related to our
overestimation of the PIC biomass, in particular in the North West Mediterranean area (Figure 3).
However, the PIC production might be underestimated by the ocean color algorithm of Uitz et al. (2012).
The Uitz et al. (2012) algorithm is parameterized using pigment data. Differences have been seen in the
Atlantic when using ocean color algorithms of size‐fractionated primary production tuned using size‐fractio-
nated filtration‐based methods (Brewin, Tilstone, et al., 2017), with higher estimates of PIC production (see
Table 3 of Brewin, Tilstone, et al., 2017). In addition, in situ studies have reported a 65% PIC contribution
to the total Mediterranean production (Magazzù &Decembrini, 1995), comparable to 60%we estimated here.
Reducing uncertainty in phytoplankton community structure in the Mediterranean Sea will ultimately
require more in situ campaigns collecting information on phytoplankton community structure using a range
of techniques (e.g., flow cytometry, microscopy, and size‐fractioned filtration, alongside HPLC).

Carbon export to the sediment represents 8% of the net primary production in our simulation (Table 4). This
value needs to be corroborated in future studies, since other estimates are not available for comparison at the
scale of the Mediterranean Sea, to the authors' knowledge.

4. Conclusions

The Mediterranean Sea can be subdivided into three PFT ecoregions, which are homogeneous in the surface
phytoplankton community structure as well as in selected, vertically integrated carbon and trophic fluxes:

1. a relatively small region of microphytoplankton dominance, in the most productive coastal areas, where
the flows of food and POC toward the upper trophic levels and the sediments, respectively, reach the
highest efficiency;

2. a large region of picophytoplankton dominance, covering mainly oligotrophic open ocean waters, which
is the less efficient in transferring food and POC;

3. a region where nanophytoplankton is relevant, in coastal and Atlantic‐influenced waters, where the effi-
ciency of the carbon fluxes is intermediate.

The regionalization was based on a skilled reanalysis of the phytoplankton community structure of the
Mediterranean Sea (1998–2014). The reference simulation of the community structure (i.e., PFT fractions)
was improved by the assimilation of a regional, quality‐assessed ocean color PFT product, confirming the use-
fulness of this approach for the reanalysis of marine ecosystems (Ciavatta et al., 2018). However, the reana-
lysis did not improve significantly the simulation of in situ data of not‐assimilated biogeochemical
variables, whichwere not included in themultivariate analysis, and deteriorated the simulation of phosphate,
as a consequence of the analysis leading to an increase in the phytoplankton nutrient contents. The

Table 4
Average values and uncertainty of selected carbon fluxes in the Mediterranean Sea

Flux (g C·m−2·year−1) Mean min–max Sat producta In situ observationsb Modelc

Net production total phyto 69 65.6 ÷ 72.1 68 (65 ÷ 71) 80–90 104
Net production diatoms 7 6.5 ÷ 7.5 12
Net production dinoflag. 2.3 2.1 ÷ 2.5
Net production nanophyto 17.6 16.7 ÷ 18.5 33
Net production picophyto 42 39.8 ÷ 44 23
Export to sediments 5.2 5 ÷ 5.4

Note. The uncertainty is presented as minimum–maximum range of the model ensemble in the reanalysis simulation. The fluxes were integrated through the
entire water column. Their units are in grams of carbon per square meter per year, and the total flows for the whole Mediterranean Sea can be obtained by multi-
plying the fluxes by the area of themodel domain: 2.4695·1018 m2. Previous published estimates of the fluxes at the scale of the wholeMediterranean Sea are listed
for comparison.
aUitz et al. (2012). bSournia (1973). cDi Biagio et al. (2019).
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application of mass‐conserving assimilative schemes preventing nutrient divergences could be useful to miti-
gate the issue (e.g., Hemmings et al., 2008), but model improvements to reduce the reference nutrient biases
and thus increase the assimilation efficacy are certainly a priority. Such possible improvements include the
coupling of higher‐resolution physical models or reanalysis (e.g., Adani et al., 2011; Teruzzi et al., 2018), more
realistic representation of riverine discharges and improved parameterization of the model PFT chlorophyll‐
to‐carbon ratios.

We acknowledge the limits of our regionalization, which is based on time averaged, surface PFT chlor-
ophyll estimates, and therefore cannot represent the seasonal, interannual, and vertical variability of the
plankton community structure. These choices were functional to provide a concise regionalization of the
Mediterranean, corroborated by surface satellite data, and characterized by homogenous, vertically inte-
grated ecosystem fluxes.

Our regionalization can add a useful layer of information for basin‐scale planning of ecosystem studies, man-
agement actions, and sustainable exploitation of the Mediterranean Sea, for example, in the context of the
European Marine Strategy Framework Directive (Ayata et al., 2018). For example, one could speculate that
the MIC region identified here is the most suitable for fisheries or aquaculture activities sustained by large
and efficient particulate organic matter flows (e.g., shellfish production). Then, local ecosystem, high trophic
level, and aquaculture models (e.g., Brigolin et al., 2014; Petihakis et al., 2012; Politikos et al., 2015; Tsiaras
et al., 2014) could be nested off‐line to our reanalysis for fine‐scale analysis and aquaculture planning within
the sustainable macroregions identified in this work. Such kind of application is the object of our current
research in the framework of the European H2020 TAPAS Project.
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