

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

Spiral wrack (*Fucus spiralis*)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

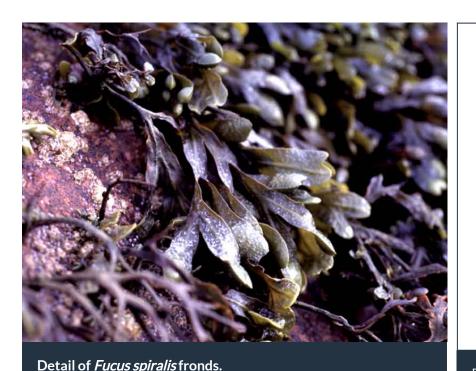
Nicola White

2008-05-29

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1337]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:


White, N. 2008. *Fucus spiralis* Spiral wrack. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1337.1

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

See online review for distribution map

Photographer: Keith Hiscock **Copyright:** Dr Keith Hiscock

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.

Nicola White **Researched by** Authority Linnaeus, 1753 **Refereed by**

Dr Graham Scott

Other common names

Synonyms

Summary

Description

An intertidal brown seaweed, found on the high shore. It grows up to 40 cm long, without air bladders and lives for up to 4 years. The species can tolerate a high level of desiccation. Fronds have a characteristic ridge along the edge of the receptacles.

0 **Recorded distribution in Britain and Ireland**

All coasts of Britain and Ireland

9 **Global distribution**

Iceland, Norway, Denmark, Netherlands, UK, Ireland, Atlantic coast of France, Spain, Morocco, Azores, East coast of America from New Jersey to Nova Scotia and isolated reports in the Northern Pacific.

🖾 Habitat

Fucus spiralis attaches to rocky substrata on sheltered to moderately exposed shores. It lives on the upper shore below the zone of Pelvetia canaliculata and above Fucus vesiculosus and Ascophyllum nodosum.

↓ Depth range

Not relevant

Q Identifying features

- Frond with smooth margin.
- Prominent midrib.
- Without air bladders.
- Frond often twisted.
- Round reproductive bodies at ends of branches, which are almost round in outline and surrounded by a narrow rim of sterile frond.

<u><u></u> Additional information</u>

A number of discrete forms of this species have been recorded. In the UK, a diminutive form *Fucus spiralis nanus* is relatively common.

✓ Listed by

% Further information sources

Search on:

Biology review

圭 Taxonomy

Phylum	Ochrophyta	Brown and yellow-green seaweeds
Class	Phaeophyceae	
Order	Fucales	
Family	Fucaceae	
Genus	Fucus	
Authority	Linnaeus, 1753	3
Recent Synonyms	-	

Siology

Typical abundance	High density
Male size range	Up to 40cm
Male size at maturity	3cm
Female size range	3cm
Female size at maturity	
Growth form	Foliose
Growth rate	1.1cm/month
Body flexibility	
Mobility	
Characteristic feeding method	Autotroph
Diet/food source	
Typically feeds on	
Sociability	
Environmental position	Epifloral
Dependency	Independent.
Supports	None
Is the species harmful?	No

1 Biology information

Fucus spiralis spends up to 90 percent of the time out of the water. It can tolerate a high level of desiccation, being able to survive 70 to 80 percent water loss. Distinct varieties of *Fucus spiralis* have been recognised, such as *Fucus spiralis* forma *nanus*, which is a dwarf form present on exposed shores. *Fucus spiralis* also hybridises with *Fucus vesiculosus* providing considerable difficulty in identification.

Habitat preferences

Physiographic preferencesStrait / sound, Sea loch / Sea lough, Ria / Voe, EstuaryBiological zone preferencesLower littoral fringeSubstratum / habitat preferencesBedrock, Cobbles, Large to very large boulders, Small boulders

Tidal strength preferences	Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences	Moderately exposed, Sheltered, Very sheltered
Salinity preferences	Full (30-40 psu), Reduced (18-30 psu), Variable (18-40 psu)
Depth range	Not relevant
Other preferences	No text entered
Migration Pattern	Non-migratory / resident

Habitat Information

Fucus spiralis favours rocks with many cracks and fissures, which probably provide some protection for developing zygotes and adult plants. It can extend into estuaries up to the 10 psu isohaline. The presence or absence of suitable substrata is considered to be one of the most important factors determining the distribution of *Fucus spiralis*.

𝒫 Life history

Adult characteristics

Reproductive type	Permanent (synchronous) hermaphrodite
Reproductive frequency	Annual episodic
Fecundity (number of eggs)	No information
Generation time	2-5 years
Age at maturity	2 years
Season	July - August
Life span	2-5 years
Larval characteristics	
Larval/propagule type	-
Larval/juvenile development	Not relevant

Duration of larval stage	No information
Larval dispersal potential	No information
Larval settlement period	Insufficient information

Life history information

Fucus spiralis is hermaphroditic. Receptacles are initiated during late January to February, gametes discharged during July and August, and the receptacles shed by November, although exact timing of reproduction depends on location and the form of the plant. Young plants usually reach a length of 8 to 10 cm or more before they form receptacles. Reproduction usually begins before or during the second years growth. Vegetative recruitment occurs by the formation of new fronds from existing holdfasts. This form of reproduction is important in existing stands of the population, whereas recruitment by eggs is more important in disturbed areas or in areas where germlings are protected e.g. rock crevices.

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

Thysical Tressures	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High	High	Moderate	High
Fucus spiralis is permanently at substratum loss. The species ha 1997) so recovery rates are exp	tached to the su as been observe	bstratum so wou d to readily recru	uld be removed	lupon
Smothering	High	High	Moderate	Moderate
The effects of smothering woul smothering happened when the under the sediment preventing immersed some of the plant wo The species has been observed recovery rates are expected to	e plant was eme photosynthesis puld escape buri to readily recru	ersed, all surfaces s. If smothering c al allowing the p	s of the plant w occurred while lant continue p	ould be buried the plant was hotosynthesis.
Increase in suspended sediment	Low	Very high	Very Low	Moderate
Increased siltation would cover growth rates. Upon return to ne restored.			. ,	
Decrease in suspended sediment				
Dessication	High	High	Moderate	Moderate
<i>Fucus spiralis</i> can tolerate desiccation until the water content has been reduced to 10-20% (Lüning, 1990). If water is lost beyond this critical level irreversible damage occurs. As the plant lives at the upper limit of it's physiological tolerance the plant cannot tolerate increased desiccation and the upper limit of the species distribution on the shore would become depressed. Decreased desiccation may allow the plant to grow further up the shore and may result in the species being competitively displaced by faster growing species. The species has been observed to readily recruit to cleared areas (Holt <i>et al.</i> , 1997) so recovery rates are expected to be high.				
Increase in emergence regime	High	High	Moderate	Moderate
Fucus spiralis can tolerate an en this, the plant would suffer from species distribution on the sho emersion may result in the spec and may allow Fucus spiralis to g	n desiccation ar re would becom cies being comp	nd nutrient stress le depressed. A r letitively displace	s and the upper eduction in the ed by faster gro	r limit of the eperiod of owing species
species has been observed to ra Decrease in emergence regime	apidly recruit to	cleared areas of	the shore.	

Intermediate

High

Low

Increase in water flow rate

Low

Low

High

An increase in water flow rate may cause some of the plants to be torn off the substratum. Decreases in water flow rate are unlikely to have any effect. *Fucus spiralis* has been observed to readily recruit to cleared areas (Holt *et al.*, 1997) so recovery rates are expected to be high.

Not relevant

High

Moderate

Decrease in water flow rate

Increase in temperature

Fucus spiralis can tolerate temperatures from -0.5 to 28 °C. The species is well within it's temperature range in the UK. Decreases in temperature are unlikely to have any effect because the species extends into northern Norway where water temperatures are cooler. Increase in temperature may be beneficial because the optimum temperature for growth of the species is 15 degrees C (Lüning, 1990). However the species showed suffered some damage during the unusually hot summer of 1983 when temperatures were on average 8.3 degrees C higher than normal (Hawkins & Hartnoll, 1985).

Decrease in temperature

Increase in turbidity	Low	High	Low	Moderate
The species would only be a in the light available for pho time out of the water and ca significantly by a change in t	tosynthesis. Ho an photosynthes	wever, Fucus sp	<i>piralis</i> spends up	to 90 percent of it's

Decrease in turbidity

Increase in wave exposure

Fucus spiralis lives on sheltered to moderately exposed shores. Increases in wave exposure beyond this would result in plants and germlings being torn off the substratum or mobilisation of substratum with the plants attached. Decreases in waves exposure are unlikely to have any effect, because the species occurs in very sheltered conditions. *Fucus spiralis* has been observed to readily recruit to cleared areas (Holt *et al.*, 1997) so recovery rates are expected to be high.

High

Moderate

Decrease in wave exposure

Noise	Tolerant	Not relevant	Not sensitive	Not relevant	
Seaweeds have no known mecha	nisms for perce	ption of noise.			
Visual Presence	Tolerant	Not relevant	Not sensitive	Not relevant	
Seaweeds have no known mecha	nism for visual	perception.			
Abrasion & physical disturbance	Intermediate	High	Low	Low	
Abrasion may kill germlings and damage the fronds of established seaweeds. Fucoids are intolerant of abrasion from human trampling, which has been shown to reduce the cover of seaweeds on a shore (Holt <i>et al.</i> , 1997). Germlings are probably particularly intolerant of this factor. <i>Fucus spiralis</i> has been observed to readily recruit to cleared areas (Holt <i>et al.</i> , 1997) so recovery rates are expected to be high.					
Displacement	High	High	Moderate	Moderate	
Fucus spiralis is permanently attac	ched to the sub	stratum and wo	uld not be able	to re-establish	

itself if removed. The species has been observed to readily recruit to cleared areas (Holt et al.,

https://www.marlin.ac.uk/habitats/detail/1337

1997) so recovery rates are expected to be high.

₫	Chemical Pressures				
		Intolerance	Recoverability	Sensitivity	Confidence
	Synthetic compound contamination Insufficient information		Not relevant		Not relevant
	Heavy metal contamination	Intermediate	<mark>High</mark>	Low	Moderate
	Adult fucoid algae accumulate h chemical pollution (Holt <i>et al.</i> , 19 metal pollution. Copper retarded greater than 5.8 µg/l and caused of 12.24 µg/l for 10 days (Bond e to cleared areas (Holt <i>et al.</i> , 1997	997). However, g d the growth rai permanent dar et al., 1999). The	germlings appea te of <i>Fucus spiral</i> nage in sporelin species has bee	ar to be intolera lis sporelings at gs exposed to c en observed to r	nt of heavy concentrations oncentrations
	Hydrocarbon contamination	High	<mark>High</mark>	Moderate	Low
	Fucoids generally show limited i disappeared from heavily oiled s species suffered less than <i>Pelvet</i> probably due to it's position high for a long time before being was	hores some mo <i>ia canaliculata</i> b n on the shore, v	nths after the A ut more than fuc vhich means the	moco Cadiz oil coids further do oil can be pres	spill. The own the shore,
	Radionuclide contamination		Not relevant		Not relevant
	Insufficient information				
	Changes in nutrient levels	Intermediate	<mark>High</mark>	Low	Low
	Decreases in nutrient concentra increase in nutrient concentration nutrients would lead to overgrow spiralis is reported to be more co the Oslofjord, Norway (Fletcher the shore are rapidly recruited b	on may enhance wth of the plant ommon than oth , 1996). Recove	e growth rates b s by ephermera her fucoids in the	ut high concent I green algae. H e sewage pollut	rations of owever, Fucus ed inner part of
	Increase in salinity	Intermediate	Very high	Low	Moderate
	<i>Fucus spiralis</i> can experimentally estuaries down to 10 psu so it m		•	u, but it is only f	ound in
	Decrease in salinity				
	Changes in oxygenation		Not relevant		Not relevant
	Reduced oxygenation is unlikely by photosynthesis. However, no		-	•	s own oxygen
۲	Biological Pressures	Intolerance	Recoverability	Sensitivity	Confidence
	Introduction of microbial pathogens/parasites		Not relevant	,	Not relevant
	Insufficient information				
	Introduction of non-native species		Not relevant		Not relevant

Extraction of this species

Intermediate

High

Moderate

Low

Fucus spiralis rapidly recruits to cleared areas (Holt et al., 1997) so would recover reasonably quickly from extraction of 50 percent of the area.

Extraction of other species

Not relevant

Not relevant

Insufficient information

Additional information

Importance review

Policy/legislation

- no data -

\bigstar	Status		
	National (GB) importance	-	Global red list (IUCN) category
NIS	Non-native Native	-	

Origin - Date Arrived

1 Importance information

Fucus spiralis does not support encrusting or sessile epifauna although the amphipod *Hyale* and the littorinids *Littorina obtusata* and *Littorina saxatilis* occur amongst fronds which provide shelter from desiccation. A range of epiphytes may also grow on the fronds.

-

Bibliography

Anderson, C.I.H. & Scott, G.W., 1998. The occurrence of distinct morphotypes within a population of Fucus spiralis. Journal of the Marine Biological Association of the United Kingdom, **78**, 1003-1006.

Bond, P.T., Brown, M.T., Moate, R.M., Gledhill, M., Hill, S.J. & Nimmo, M., 1999. Arrested development in *Fucus spiralis* (Phaeophyceae) germlings exposed to copper. *European Journal of Phycology*, **34**, 513-521.

Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

Fletcher, R.L., 1996. The occurrence of 'green tides' - a review. In *Marine Benthic Vegetation*. *Recent changes and the Effects of Eutrophication* (ed. W. Schramm & P.H. Nienhuis). Berlin Heidelberg: Springer-Verlag. [Ecological Studies, vol. 123].

Floc'h, J. H. & Diouris, M., 1980. Initial effects of Amoco Cadiz oil on intertidal algae. Ambio, 9, 284-286.

Hardy, F.G. & Guiry, M.D., 2003. A check-list and atlas of the seaweeds of Britain and Ireland. London: British Phycological Society

Hawkins, S.J. & Hartnoll, R.G., 1985. Factors determining the upper limits of intertidal canopy-forming algae. *Marine Ecology Progress Series*, **20**, 265-271.

Hazlett, A. & Seed, R., 1976. A study of *Fucus spiralis* and its associated fauna in Strangford Lough, Co. Down. *Proceedings of the Royal Irish Academy*, **76**, 607-618.

Holt, T.J., Hartnoll, R.G. & Hawkins, S.J., 1997. The sensitivity and vulnerability to man-induced change of selected communities: intertidal brown algal shrubs, *Zostera* beds and *Sabellaria spinulosa* reefs. *English Nature, Peterborough, English Nature Research Report* No. 234.

Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

Niemeck, R.A. & Mathieson, A.C., 1976. An ecological study of Fucus spiralis. Journal of Experimental Marine Biology and Ecology, 24, 33-48.

Norton, T.A. (ed.), 1985. Provisional Atlas of the Marine Algae of Britain and Ireland. Huntingdon: Biological Records Centre, Institute of Terrestrial Ecology.

Robertson, B.L., 1985. Reproductive ecology and canopy structure of Fucus spiralis (L.) Botanica Marina, 30, 475-482.

Scott, G.W., Shaw, J.H., Hull, S.L., Pickaert, C. & Burlak, A.M., 1999. Some implications of plant size in monotypic and polytypic populations of *Fucus spiralis*. *Journal of the Marine Biological Association of the United Kingdom*, **80**, 359-360.

Vernet, P. & Harper, J.L., 1980. The costs of sex in seaweeds. Biological Journal of the Linnean Society, 13, 129-138.

Datasets

Bristol Regional Environmental Records Centre, 2017. BRERC species records recorded over 15 years ago. Occurrence dataset: https://doi.org/10.15468/h1ln5p accessed via GBIF.org on 2018-09-25.

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

Cofnod – North Wales Environmental Information Service, 2018. Miscellaneous records held on the Cofnod database. Occurrence dataset: https://doi.org/10.15468/hcgqsi accessed via GBIF.org on 2018-09-25.

Environmental Records Information Centre North East, 2018. ERIC NE Combined dataset to 2017. Occurrence dataset: http://www.ericnortheast.org.uk/home.html accessed via NBNAtlas.org on 2018-09-38

Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2014. Occurrence dataset: https://doi.org/10.15468/erweal accessed via GBIF.org on 2018-09-27.

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2015. Occurrence dataset: https://doi.org/10.15468/xtrbvy accessed via GBIF.org on 2018-09-27.

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2016. Occurrence dataset: https://doi.org/10.15468/146yiz accessed via GBIF.org on 2018-09-27.

Kent Wildlife Trust, 2018. Biological survey of the intertidal chalk reefs between Folkestone Warren and Kingsdown, Kent 2009-2011. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Manx Biological Recording Partnership, 2017. Isle of Man wildlife records from 01/01/2000 to 13/02/2017. Occurrence dataset: https://doi.org/10.15468/mopwow accessed via GBIF.org on 2018-10-01.

Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset: https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.

Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1995 to 1999. Occurrence dataset: https://doi.org/10.15468/lo2tge accessed via GBIF.org on 2018-10-01.

Merseyside BioBank., 2018. Merseyside BioBank (unverified). Occurrence dataset: https://doi.org/10.15468/iou2ld accessed via GBIF.org on 2018-10-01.

National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

Outer Hebrides Biological Recording, 2018. Non-vascular Plants, Outer Hebrides. Occurrence dataset: https://doi.org/10.15468/goidos accessed via GBIF.org on 2018-10-01.

Royal Botanic Garden Edinburgh, 2018. Royal Botanic Garden Edinburgh Herbarium (E). Occurrence dataset: https://doi.org/10.15468/ypoair accessed via GBIF.org on 2018-10-02.

South East Wales Biodiversity Records Centre, 2018. SEWBReC Algae and allied species (South East Wales). Occurrence dataset: https://doi.org/10.15468/55albd accessed via GBIF.org on 2018-10-02.

South East Wales Biodiversity Records Centre, 2018. Dr Mary Gillham Archive Project. Occurance dataset: http://www.sewbrec.org.uk/ accessed via NBNAtlas.org on 2018-10-02

Yorkshire Wildlife Trust, 2018. Yorkshire Wildlife Trust Shoresearch. Occurrence dataset: https://doi.org/10.15468/1nw3ch accessed via GBIF.org on 2018-10-02.