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Summary

 UK and Ireland classification

EUNIS 2008 A5.233 Nephtys cirrosa and Bathyporeia spp. in infralittoral sand

JNCC 2015 SS.SSa.IFiSa.NcirBat Nephtys cirrosa and Bathyporeia spp. in infralittoral sand

JNCC 2004 SS.SSa.IFiSa.NcirBat Nephtys cirrosa and Bathyporeia spp. in infralittoral sand

1997 Biotope SS.IGS.FaS.NcirBat Nephtys cirrosa and Bathyporeia spp. in infralittoral sand

 Description

Well-sorted medium and fine sands characterized by Nephtys cirrosa and Bathyporeia spp. (and
sometimes Pontocrates spp.) which occur in the shallow sublittoral to at least 30 m depth. This
biotope occurs in sediments subject to physical disturbance, as a result of wave action (and
occasionally strong tidal streams). The magelonid polychaete Magelona mirabilis may be frequent in
this biotope in more sheltered, less tideswept areas whilst in coarser sediments the opportunistic
polychaete Chaetozone setosa may be commonly found. The faunal diversity of this biotope is
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considerably reduced compared to less disturbed biotopes (such as FfabMag) and for the most
part consists of the more actively-swimming amphipods. Sand eels Ammodytes sp. may occasionally
be observed in association with this biotope (and others) and spionid polychaetes such as Spio
filicornis and Spio martinensis may also be present. Occasional Lanice conchilega may be visible at the
sediment surface (JNCC, 2015).

 Depth range

0-5 m, 5-10 m

 Additional information

No text entered.

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.jncc.gov.uk/marine/biotopes/biotope.aspx?biotope=JNCCMNCR00000785
http://www.google.co.uk/search?q=iNephtys+cirrosa/i+and+iBathyporeia/i+spp.+in+infralittoral+sand
http://scholar.google.co.uk/scholar?q=iNephtys+cirrosa/i+and+iBathyporeia/i+spp.+in+infralittoral+sand
http://www.google.co.uk/search?q=SS.SSa.IFiSa.NcirBat
https://mhc.jncc.gov.uk/search/?q=SS.SSa.IFiSa.NcirBat
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Habitat review

 Ecology

Ecological and functional relationships

Communities in wave exposed sand habitats and, by extension, any sediments subject to
hydrodynamic disturbance have been assumed to be primarily controlled by specific
species responses to the hydrodynamic climate and sediment characteristics which are
intimately linked, a scenario where biological interactions do not appear to play a critical
role (McLachlan, 1983). Consequently mean macrobenthic diversity and species richness
of clean mobile sands is generally lower than that of the surrounding seabed, reflecting
greater stresses inherent in such environments (Elliott et al., 1998).
Intertidal and subtidal sandy biotopes comprise an unusual ecosystem in that the
customary food chain of plants-herbivores-carnivores is not clearly discernible
(Eltringham, 1971), the physical environment being too harsh for vegetation to become
established. The absence of macroalgae means that herbivorous macrofauna either feed
on the biogenic film, on and in the deposit (e.g. Bathyporeia pelagica which is an epistrate
feeder) or on phytoplankton from the overlying seawater.
The meiofauna are likely to be important consumers of the microphytobenthic
productivity. The dominant components of sandbank meiofauna are nematodes and
harpacticoid copepods with several other taxa of variable importance (McLachlan, 1983).
There is a well established relationship between the relative proportions of nematodes,
harpaticoids and grain size. Nematodes tend to dominate in finer sediments, harpaticoids
in coarser sediments and in sediments with a median grain size of 0.3-0.35 mm they are
both equally important (Gray, 1971; McLachlan et al., 1981).
Polychaete worms are dominant infaunal predators, they are opportunistic and actively
pursue prey, so that their numbers may be closely related to that of their prey which
includes other polychaetes and small crustaceans (Meire et al., 1994). Bamber (1993)
found a significant linear correlation between declining densities of Scoloplos armiger and
increasing densities of Nephtys cirrosa in a psammophilous polychaete community from
the Solent Coast, Hampshire. Nephtys species also scavenge, as does the isopod, Eurydice
pulchra, which also actively preys upon the amphipod Bathyporeia pelagica.
Conspicuous epibenthic species that may be encountered within the biotope include
shrimps (Crangon crangon), crabs (Carcinus maenas, Cancer pagurus and Pagurus bernhardus),
starfish (Asterias rubens). Sand eels, Ammodytes sp., may be locally abundant, whilst
juvenile gadoids (Gadus morhua & Pollachius virens), adult and juvenile flatfish (Pleuronectes
platessa, Limanda limanda & Platichthys flesus) frequent the biotope to feed upon the epi-
and infauna.

Seasonal and longer term change

A seasonal pattern of abundance is demonstrated by many species, and is characterized
by annual recruitment of species increasing their density typically in late summer/autumn.
For instance, common cumaceans recorded within the biotope, Pseudocuma longicornis
and Cumopsis goodsiri, are almost entirely restricted in their presence to late summer-
autumn months (Bamber, 1993). Two reproductive peaks for Bathyporeia pelagica occur in
spring and autumn suggesting that an overwintering population matures slowly and
reproduces in the spring, and their progeny mature rapidly over five months to reproduce
in the autumn of the same year (Watkin, 1939b).

https://www.marlin.ac.uk/species/detail/1576
https://www.marlin.ac.uk/species/detail/1795
https://www.marlin.ac.uk/species/detail/1663
https://www.marlin.ac.uk/species/detail/1663
https://www.marlin.ac.uk/species/detail/2031
https://www.marlin.ac.uk/species/detail/1497
https://www.marlin.ac.uk/species/detail/1179
https://www.marlin.ac.uk/species/detail/1169
https://www.marlin.ac.uk/species/detail/1194
https://www.marlin.ac.uk/species/detail/2095
https://www.marlin.ac.uk/species/detail/84
https://www.marlin.ac.uk/species/detail/2172
https://www.marlin.ac.uk/species/detail/2172
https://www.marlin.ac.uk/species/detail/2174
https://www.marlin.ac.uk/species/detail/1495
https://www.marlin.ac.uk/species/detail/1576
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Warmer summers may cause temporary declines in the abundance of some species as a
result of recruitment failure (juveniles being potentially more sensitive). For instance in a
sandy shore community following the warm summer of 1989, Bamber (1993) recorded a
significant decrease in the Bathyporeia sarsi population, a species which shows its southern
limit of distribution in the English Channel.
Mortality of some of the infaunal and epifaunal population may be expected as a result of
any winter storms that cause suspension of the substratum.
Seasonal changes been documented for the meiofauna of sandy shores in temperate
regions, with the meiofauna occurring in lower abundance and moving deeper into the
sediment in winter (citations in McLachlan, 1983). Vertical migrations other than seasonal
have been reported in response to heavy rain, wave disturbance, tidal factors and changes
in moisture and oxygen over the tidal cycle.
Vertical migrations from the substratum into the overlying sea water are made by the
dominant crustaceans e.g. Eurydice pulchra and Bathyporeia pelagica on nearly every night
of the year. Such behaviour is endogenously controlled and has a circatidal rhythm that is
coupled to a circasemilunar pattern of emergence (Alheit & Naylor, 1976; Jones & Naylor,
1970; Preece, 1971; Fincham, 1970a & 1970b; Watkin, 1939b).

Habitat structure and complexity

Superficially the habitat may appear to be rather homogenous, but within the sand a variety of
niches are probably available for colonization. For instance, sandbanks may show a gradient from
finer sediments to coarser sediments resulting from the prevailing current pattern. The upper sand
layers may be characterized by sand waves and ripples occurring on a variety scales, which are
continually destroyed and rebuilt by currents, a process visible at the waters surface by the
appearance of patches of suspended sediment. In other instances the distribution of different
grades of sandy sediment may be very patchy and at the bottom of depressions finer sediments,
more stable deposits, enriched with some mud might be found (Vanosmael et al., 1982).

Productivity

The macrobenthic infauna of the biotope consists of animals which feed largely on particulate
matter in or on the sand, and which are themselves preyed upon by populations of juvenile flatfish
(McIntyre & Eleftheriou, 1968). Owing to the lack of stable substrata, benthic microalgae
constitute the main primary producers of the biotope and the quality of light (as critical depth for
primary production) reaching sandbanks in the sublittoral will determine the type of microalgae
colonizing the sediment. Owing to turbulence created by tidal flow and wave action, overlying
water may be particularly turbid, limiting primary production further. Steele & Baird (1968)
estimated microphytobenthic production to be 4-9 g C/m²/yr a figure they considered to be
inadequate for the macrofauna and rich meiofauna (assuming an ecological efficiency of 10%, the
infaunal biota of this biotope would probably have an annual requirement in the region of 25 g
C/m²). To support the infauna the biotope must be subsidised to a high degree by organic matter
produced in the water column and other environments and transported to the biotope,
consequently productivity of this biotope is mostly secondary (McLachlan, 1980). Primary
production in the water column was estimated to be in the region of 95 g C/m² annually (Steele &
Baird, 1968) and some of this is directly available or may reach the benthos indirectly after
intervening trophic levels. Baird & Steele (1968) demonstrated that only 3-5% of the organic
matter in the sand was unattached, so that a continuous supply of material and rapid filtering of
water through the sand are essential if the requirements of the benthos are to be met.

https://www.marlin.ac.uk/species/detail/1663
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Recruitment processes

Characterizing macrofauna of the biotope are iteroparous, meaning that they breed several times
per lifetime. Some species have a brooding and benthic mode of reproduction whilst others are
broadcast spawners with a planktonic phase of development.

Important meiofaunal nematodes and harpacticoid copepods of the sandy shore are
reported to have year-round reproduction with generation times ranging from 1-3
months (McIntyre, 1969).
Bathyporeia pelagica may breed throughout the year, but the greatest reproductive
activity occurs during spring and late summer/autumn. Males and females pair whilst
swimming and mate on the night-time ebb tides following each new and full moon.
Development of an egg to the stage when it is released as a juvenile takes just 15 days to
complete. The overwintering population of Bathyporeia pelagica consists largely of juvenile
animals. These mature in spring to form the majority of the next breeding population and
eventually die in June and July, after a lifespan of about one year (Fish & Preece, 1970).
Eurydice pulchra breeds between April and August once sea temperatures rise above 10°C,
and the highest number of juveniles occur around the periods of maximum summer
temperatures. Although the first juveniles may reach sexual maturity before the onset of
winter, they begin breeding in the following spring and die during their second autumn
after a total lifespan of approximately 15 months. Mid-summer juveniles also mature to
breed the following summer and only reached 12 months of age before dying. In contrast,
the last broods appearing as late as October, do not mature until late the following
summer. They breed in their second October and then overwinter for a second time,
producing a second brood in the spring before dying of at 18-20 months old (Hayward,
1994; Jones, 1970; Fish, 1970).
Polychaete worms such as Nephtys spp. and spionid worms release their eggs and sperm
into the water where, after fertilization and a relatively prolonged planktonic phase of
development, they metamorphose and commence a benthic habit. Recruitment of Nephtys
species seems related to environmental conditions in central parts of the species range,
marginal populations exhibit occasional reproductive failures, e.g. Nephtys cirrosa, which is
a temperate species and reaches the northern limit of its range in the north of the British
Isles. Populations of Nephtys cirrosa on the east and west coasts of northern Britain exhibit
different reproductive patterns. In south-west Scotland gravid adults breed every year in
early autumn, whilst those on the east coast experience periods (e.g. over three years) of
reproductive failure (Olive & Morgan, 1991).

Time for community to reach maturity

As a consequence of the dynamic nature of the habitat the faunal component of the biotope is very
sparse and low in species richness. Therefore, the community might be considered 'mature' (in
terms of representative species present) only a few days or weeks after the last disturbance, as
displaced polychaetes and crustaceans re-enter the substratum.

Additional information

No text entered.

 Preferences & Distribution

https://www.marlin.ac.uk/species/detail/1576
https://www.marlin.ac.uk/species/detail/1663
https://www.marlin.ac.uk/species/detail/1795
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Habitat preferences

Depth Range 0-5 m, 5-10 m

Water clarity preferences Field Unresearched

Limiting Nutrients Field unresearched

Salinity preferences Full (30-40 psu)

Physiographic preferences Enclosed coast / Embayment, Open coast

Biological zone preferences Infralittoral

Substratum/habitat preferences Fine clean sand, Medium clean sand

Tidal strength preferences Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)

Wave exposure preferences Exposed, Moderately exposed

Other preferences

Additional Information

No text entered.

 Species composition

Species found especially in this biotope

Bathyporeia spp.
Eurydice pulchra
Haustorius arenarius
Nephtys cirrosa
Pontocrates arenarius
Scoloplos armiger
Spiophanes bombyx

Rare or scarce species associated with this biotope

-

Additional information

The occurrence of rare species and very high diversity is unusual in mobile sandbanks. However,
important species of interstitial polychaete may be recorded within the biotope, for instance,
Polygordius appendiculatus, which has a preference for coarse and medium sands. In mobile subtidal
sandbanks in the North Sea, Vanosmael et al., (1982) found exceptional numbers of
Epilonematidae and Draconematoidea (Nematoda) and three important species of interstitial
polychaetes, Polygordius appendiculatus, Protodriloides chaetifer and a species of the genus
Protodrilus. Such species are adapted to the extreme instability of the substratum of the sandbanks
and are confined to such biotopes (Elliott et al., 1998).

https://www.marlin.ac.uk/glossarydefinition/waterclarity
https://www.marlin.ac.uk/species/detail/1663
https://www.marlin.ac.uk/species/detail/1795
https://www.marlin.ac.uk/species/detail/1705
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

The biotope description and characterizing species are taken from JNCC (2015). This biotope is
characterized by mobile clean sand sediments in shallow water The mobility of the sediment leads
to a species-poor community, with polychaetes (Nephtys cirrosa), and burrowing amphipods
(Bathyporeia spp. characterizing the biotope. The sediments and wave exposure are key factors
maintaining the biotope and are considered in the sensitivity assessments where the pressure may
alter these.  

 Resilience and recovery rates of habitat

The species inhabiting this biotope are characteristic of mobile sediments and are adapted to the
high levels of disturbance.  The species present in the biotope must either be able to withstand
mobile sediments through physical robustness, mobility and ability to re-position within sediments
such as Nephtys cirrosa and the mobile amphipods and/or to recover rapidly to sustain population
losses following severe erosion. Characterizing species typically have opportunistic life history
strategies, with short life histories (typically two years or less, see below), rapid maturation and
extended reproductive periods. Typically they produce juveniles that are either brooded
(amphipods and isopds) and are therefore present to repopulate the disturbed habitat directly, or
have pelagic larvae (Nephtys cirrosa) capable of dispersal within the water column. Adults may also
be transported in the water column.

The amphipods characterizing this biotope are found in sediments subject to physical disturbance,
as a result of wave action or in wave sheltered biotopes, strong tidal streams. This group is,
therefore, tolerant of disturbed environments and can recover quickly. Bathyporeia spp. are short
lived, reaching sexual maturity within 6 months with 6-15 eggs per brood, depending on species. 
Reproduction may be continuous (Speybroeck et al., 2008) with one set of embryos developing in
the brood pouch whilst the next set of eggs is developing in the ovaries. However, specific
reproductive periods vary between  species and between locations (Mettam, 1989) and bivoltine
patterns (twice yearly peaks in reproduction) have been observed (Mettam, 1989; Speybroeck et
al., 2008). Adult amphipods are highly mobile in the water column and recolonization by the adults
is likely to be a significant recovery pathway.  The life history traits of rapid sexual maturation and
production of multiple broods annually support rapid local recolonization of disturbed sediments
where some of the adult population remains.

Nephtys cirrosa is a relatively long-lived polychaete with a lifespan of 6 to possibly as much as 9
years. It matures at 1 year and the females release over 10,000 (and up to 80,000 depending on
species) eggs of 0.11-0.12mm from April through to March. These are fertilized externally and
develop into an early lecithotrophic larva & a later planktotrophic larva which spends as much as
12 months in the water column before settling from July-September. The genus has a relatively
high reproductive capacity and widespread dispersion during the lengthy larval phase. It is likely to
have a high recoverability following disturbance (MES, 2010). Adults are mobile and capable of
swimming and adults are therefor qable to migrate in and out of this biotope.

Resilience assessment. As a consequence of the dynamic nature of the habitat the faunal
component of the biotope is very sparse and low in species richness. Therefore, the community
might be considered 'mature' only a few days or weeks after the last storm event, as the mobile
species displaced from the biotope and those from adjacent area colonize the substratum via the
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surf plankton. Even following severe disturbances recovery would be expected to occur within a
year; biotope resilience is therefore assessed as ‘High’ for any level of impact (e.g. where resistance
is ‘None’, ‘Low’ or ‘Medium’).

NB: The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance. Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact.  This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognizable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: High A: Medium C: NR Q: High A: High C: High Q: High A: Medium C: Low

The amphipods that occur within this habitat are mobile and can avoid unfavourable conditions to
some extent. Bathyporeia life cycles vary between locations and this is related to temperature
(Mettam, 1989). Preece (1971) tested temperature tolerances of Bathyporeia pelagica and
Bathyporeia pilosa in the laboratory.  Individuals acclimated to 15oC for 24 hours were exposed to
temperature increases (water temperature raised by 0.2oC/minute). As test  temperature were
reached individuals were removed, placed in seawater at 4oC and allowed to recover for 24 hours
at which point mortalities were tested. Amphipods were also allowed to bury into sediments and
held at test temperatures for 24 hours of 32.5 oC, 31.8oC and 29.5oC before being allowed to
recover in fresh seawater at 15oC for a further 24 hours, before mortalities were assessed. Upper
lethal temperatures (the temperature at which 50% of individuals died for adult males and gravid
females of Bathyporeia pilosa were 37.5oC and 39.4oC, respectively. Bathyporeia pelagica exhibited
lower tolerances and adult males and gravid females had upper lethal temperature tolerances of
33.4 and 34.2oC respectively. These tests measures short-term exposure only and species had
lower tolerance for longer-term (24 hour exposure).  No mortality occurred for Bathyporeia pilosa
individuals held at 29.5oC and 30.8oC; however 15% of individuals exposed to water temperatures
of 31.8oC and 96% at 32.5oC died. Bathyporeia pelagica exhibited lower tolerances, 11% of
individuals died after 24 hr exposure to 29.5oC and 100% mortality occurred at 30.8oC and above
(Preece, 1971).

Emery & Stevensen (1957) reported that Nephtys spp. could withstand summer temperatures of
30-35 °C so is likely to withstand the benchmark acute temperature increase. An acute increase in
temperature at the benchmark level may result in physiological stress endured by the infaunal
species but is unlikely to lead to mortality.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary seasonally
from 4-19 oC (Huthnance, 2010).  A chronic increase in temperature throughout the year of 2oC
may fall within the normal temperature variation and an acute increase in water temperatures
from 19 to 24oC for a month may be tolerated by the characterizing species supported by deeper

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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burrowing and/or migration. For Bathyporeia spp. temperature increases above 30oC appear to be
critical based on Preece (1971). Biotope resistance is therefore assessed as ‘High’ and resilience as
‘High’ so that the biotope is assessed as ‘Not sensitive’. Increased water and air temperatures and
desiccation may lead to greater synergistic effects and the loss of characterizing amphipods and
isopods may result in shifts between the variant sub-biotopes. 

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Crisp (1964) reported that species of amphipod and isopods seemed to be unharmed by the severe
winter of 1962-1963. This may be due to burial in sediments buffering temperature or seasonal
migration to deeper waters to avoid freezing. 

Preece (1971) tested the temperature tolerances of Bathyporeia pelagica and Bathyporeia pilosa in
the laboratory.  Individuals acclimated to 15oC for 24 hours were placed in a freezer in wet
sediment. As test temperatures were reached individuals were removed and allowed to recover
for 24 hours at which point mortalities were tested. Amphipods were also allowed to bury into
sediments and held at test temperatures of -1oc, -3oC and -5oC for 24 hours before being allowed
to recover in fresh seawater at 15oC for a further 24 hours before mortalities were assessed.
Lower lethal short-term tolerances of Bathyporeia pilosa and Bathyporeia pelagica were -13.6oC and
-6.4oC respectively.  Sensitivity to longer-term exposure is greater, especially for Bathyporeia
pelagica. Bathyporeia pilosa individuals could withstand temperatures as low as -1oC for 24 hours,
while 42% of Bathyporeia pelagica died. At -3oC 5% of Bathyporeia pilosa died (100% of Bathyporeia
pelagica) but this rose to 82% at -5oC.

Nephtys cirrosa reaches its northern limit in Scotland, and German Bight of the North Sea. A
decrease in temperature is likely to result in loss of the species from the SS.SSa.SSaVS biotope in
Scotland.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary seasonally
from 4-19 oC (Huthnance, 2010).  A chronic decrease in temperature throughout the year of 2oC
may fall within the normal temperature variation but an acute decrease in water temperatures
from 4oC to -1oC at the coldest part of the year may lead to freezing and lethal effects on for a
month may be tolerated by the characterizing species supported by deeper burrowing and/or
migration to deeper waters. For Bathyporeia spp. seawater temperature decreases below
-1oC appear to be critical based on Preece (1971). Biotope resistance is therefore assessed as
‘Medium’ and resilience as ‘High’ so that biotope sensitivity is assessed as 'Low'.

Salinity increase (local) No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This biotope is found in full salinity (30-35 ppt) habitats (JNCC, 2015), a change at the pressure
benchmark is therefore assessed as a change to hypersaline conditions. Little evidence was found
to assess responses to hypersalinity. However, monitoring at a Spanish desalination facility where
discharges close to the outfall reached a salinity of 53, found that amphipods were sensitive to the
increased salinity and that species free-living in the sediment were most sensitive. The study area
did not host any of the species characterizing this biotope but the results indicate a general
sensitivity (De-la-Ossa-Carretero, et al., 2016).
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Sensitivity assessment.  Not assessed, ‘No evidence’.

Salinity decrease (local) Medium High Low
Q: High A: Medium C: High Q: High A: Low C: High Q: High A: Low C: High

The biotope is found in full salinity habitats (JNCC, 2015). A change at the pressure
benchmark refers to a decrease from full to variable (18-35 ppt), or to reduced salinity (18-30
ppt). Bathyporeia pelagica migrates seaward in response to reduced salinities, the effect of which is
enhanced by higher temperature (Preece, 1970). Bathyporeia pilosa is, however, more tolerant of
low salinities and is capable of reproducing at salinities as low as 2 (Khayrallah, 1977). Populations
of Bathyporeia pilosa within the upper reaches of the Severn Estuary experience wide fluctuations
in salinity ranging from 1-22 depending on the season and tidal cycle (Mettam, 1989). The
physiological stress for this environment affects size and reproduction (Mettam, 1989).
Speybroeck et al. (2008) noted that Bathyporeia pilosa tends to occur subtidally in estuarine and
brackish conditions. Local populations may be acclimated to the prevailing salinity regime and
may exhibit different tolerances to other populations subject to different salinity conditions
and, therefore, caution should be used when inferring tolerances from populations in different
regions.  

A reduction in salinity at the pressure benchmark could result in the loss of species or changes in
abundance and biotope reversion to the biotope SS.SSa.SSaVS.MoSaVS which occurs in typical
mobile sand conditions but in reduced salinities and lacks Nepthys cirrosa and Bathyporeia spp.
(although these may be washed in from adjacent communities) (JNCC, 2015) or a change
to SS.SSa.SSaVS.NcirLim, which occurs in variable salinity and contains the bivalve  Limecola
balthica.

Sensitivity assessment. A decrease in salinity is likely to lead to changes in species abundance and
richness and may lead to biotope reclassification. Biotope resistance is assessed as ‘None’ and
resilience as ‘High’ (following restoration of typical habitat conditions). Sensitivity is therefore
assessed as ‘Medium’. 

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Water movement is a key factor physically structuring this biotope although exposure to wave
action may be more significant for many examples than tidal streams. This biotope is recorded
where tidal streams are weak (<0.5 m/s)or very weak (negligible) (JNCC, 2015), in areas where
flows are lower, wave action may be more important in maintaining the sediment mobility that
structures the biotope.  Where similar sand habitats occur in  more sheltered areas the biological
structure alters in response to the increased or decreased sediment mobility with
Magelona mirabilis found in higher abundances in more sheltered habitats and Chaetozone setosa
found in more disturbed habitats (JNCC, 2015). An increase in disturbance may lead to biotope
reversion to the similar biotope SS.SSa.IFiSa.IMoSa which occurs in more disturbed areas. A
decrease in disturbance may lead to changes to SS.SSa.IMuSa.FfabMag, where finer sediments are
deposited.

Sensitivity assessment. The sediments that characterize this biotope and sub-biotopes are mobile
sands that range from medium to fine, a change at the pressure benchmark (increase or decrease)
may lead to some changes in sediment sorting. Based on the range of water flows experienced,
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biotopes occurring in habitats at the middle of the range are considered to be 'Not sensitive' to an
increase or decrease in flow at the pressure benchmark. Changes in water flow in areas sheltered
from wave action could. however, lead to changes in biotope classification due to the increase in
sediment stability.

Emergence regime
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to sublittoral biotopes.​

Wave exposure changes
(local)

High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

Water movement is a key factor physically structuring this biotope, with sediment sorting and
mobilisation by tidal streams and wave action modifying the sediments present and the level of
disturbance. The assessed biotope is found in habitats that are exposed to sheltered from wave
action (JNCC, 2015).

Sensitivity assessment. Wave action is a key factor structuring this biotope through sediment
mobility.  As the biotope occurs across two wave exposure categories (JNCC, 2015) this is
considered to indicate, by proxy, that a change in wave exposure at the pressure benchmark is less
than the natural range of wave heights experienced.  Biotope resistance to this pressure is
therefore assessed as ‘High’ and resilience as ‘High (by default) so that the biotope is considered to
be ‘Not sensitive’ at the pressure benchmark. 

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Levels of contaminants that exceed the pressure benchmark may cause impacts. For most metals,
toxicity to crustaceans increases with decreased salinity and elevated temperature, therefore
marine species living within their normal salinity range may be less susceptible to heavy metal
pollution than those living in salinities near the lower limit of their salinity tolerance (McLusky et
al., 1986). Jones (1973; 1975b) found that mercury (Hg) and copper (Cu) reacted synergistically
with changes in salinity and increased temperature (10°C) to become increasingly toxic to species
of isopod, including Eurydice pulchra.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

In general, crustaceans are widely reported to be intolerant of synthetic chemicals (Cole et al.,
1999) and intolerance to some specific chemicals has been observed in amphipods. Powell (1979)
inferred from the known susceptibility of Crustacea to synthetic chemicals and other non-lethal
effects, that there would probably also be a deleterious effect on isopod fauna as a direct result of
chemical application. All were killed at about 10 ppm BP 1002 after 24 hours exposure, whilst at 5
ppm four out of five individuals survived when transferred to clean seawater.

Radionuclide
contamination

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

Information concerning the reduced oxygen tolerance of Nephtys cirrosa was not found but
evidence (Alheit, 1978; Arndt & Schiedek, 1997; Fallesen & Jørgensen, 1991) indicated a similar
species, Nephtys hombergii, to be very tolerant of episodic oxygen deficiency and at the benchmark
duration of one week.

Laboratory studies by Khayrallah (1977) on Bathyporeia pilosa, indicated that it has a relatively
poor resistance to conditions of hypoxia in comparison to other interstitial animals. However,
Mettam (1989) and Sandberg (1997) suggest that Bathyporeia pilosa can survive short-term
hypoxia.

Sensitivity assessment.  This biotope  is characterized by mobile sands in areas that experience
strong water flows or are wave exposed. The mixing effect of wave action and water movement
will limit the intensity and duration of exposure to deoxygenated waters. The species
characterizing the biotope are also mobile and able to migrate vertically or shorewards to escape
unsuitable conditions. Biotope resistance is therefore assessed as ‘High’ and resilience as ‘High’ (by
default) so that the biotope is considered to be ‘Not sensitive’.

Nutrient enrichment High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

In-situ primary production is limited to microphytobenthos within and on sediments and the high
levels of sediment mobility may limit the level of primary production as abrasion would be likely to
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damage diatoms (Delgado et al., 1991). The amphipods feed on epipsammic diatoms attached to
the sand grains (Nicolaisen & Kanneworff, 1969). Both these groups may benefit from slight
nutrient enrichment if this enhanced primary production. 

Sensitivity assessment.  Nutrient level is not a key factor structuring the biotope at the pressure
benchmark. In general, however, primary production is low and this biotope is species poor and
characterizing species may be present at low abundances (depending on sediment mobility).
Biotope resistance is therefore assessed as ‘High’, resilience as ‘High’ (by default) and the biotope
is considered to be ‘Not sensitive’.

Organic enrichment High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The biotope occurs in mobile sand sediments where wave action leads to particle sorting, in-situ
primary production is restricted to microphytobenthos although sediment mobility may restrict
production levels (Delgado et al., 1991). 

Sensitivity assessment.  At the pressure benchmark organic inputs are unlikely to significantly
affect the structure of the biological assemblage or impact the physical habitat, due to
remobilisation and transport by wave or currents. Biotope sensitivity is therefore assessed as
‘High’ and resilience as ‘High’ (by default) and the biotope is therefore considered to be ‘Not
sensitive’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The biotope is characterized by the sedimentary habitat (JNCC, 2015), a change to an artificial or
rock substratum would alter the character of the biotope leading to reclassification and the loss of
the sedimentary community including the characterizing polychaetes and amphipods.

Sensitivity assessment. Based on the loss of the biotope, resistance is assessed as ‘None’, recovery
is assessed as ‘Very low’ (as the change at the pressure benchmark is permanent and sensitivity is
assessed as ‘High’.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Physical change (to
another sediment type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The pressure benchmark refers to the simplified Folk classification developed by Long (2006) and
the UK Marine Habitat Classification Littoral and Sublittoral Sediment Matrices (Connor et al.,
2004). The biotope occurs on mobile sands, a change at the pressure benchmark refers to a change
to sandy muds or muddy sands or to coarser gravel sediments. Experiments by Van Tomme et al.
(2013) have shown that the optimal sedimentary habitats for some of he species that characterize
this biotope vary slightly. Bathyporeia pilosa prefer the finest sediments, although at a subtidal
dredge disposal site the change to a finer sediment led to a reduction in the abundance of
Bathyporeia pilosa (Witt et al., 2004). Bathyporeia sarsi has a broader preference and also occurred
in medium-coarse sediments (Van Tomme et al., 2013). 

Nepthys cirrosa occurs in fine to coarser sands, with greatest abundance in the Belgium part of the
North Sea recorded in medium grain sizes (Degraer et al., 2006). A change to gravelly sand is
unlikely to impact this species, however, a change to muddy sand may limit the species abundance
as the species displays a slight preference for low mud content levels (< 10%) (Degraer et al., 2006).
 

Sensitivity assessment. A change to either a finer muddy sediment or a coarser sediment, is likely
to lead to changes in the abundance and identity of the characterizing species . Based on the loss of
the biotope, resistance is assessed as ‘None’, recovery is assessed as ‘Very low’ (as the change at
the pressure benchmark is permanent and sensitivity is assessed as ‘High’.

Habitat structure
changes - removal of
substratum (extraction)

None High Medium

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Bathyporeia pelagica lives infaunally in the uppermost 3 cm of sandy substrata as does the isopod
Eurydice pulchra (Fish, 1970). Extraction of the sediment to 30cm is likely to remove the
characterizing polychaetes, amphipods and isopods within the footprint (although if disturbed
some may be able to escape). 

Sensitivity assessment. Biotope resistance to extraction of sediment and characterizing species is
assessed as ‘None. Resilience is assessed as ‘High’, as sediment recovery will be enhanced by wave
action and mobility of sand. The characterizing species are likely to recover through transport of
adults in the water column or migration from adjacent patches. Biotope sensitivity is therefore
assessed as ‘Medium’.

Abrasion/disturbance of
the surface of the
substratum or seabed

Low High Low

Q: High A: High C: High Q: High A: Low C: High Q: High A: Low C: High

This biotope group is present in mobile sands, the associated species are generally present in low
abundances and adapted to frequent disturbance suggesting that resistance to surface abrasion
would be high. The amphipod and isopod species present are agile swimmers and are characterized
by their ability to withstand sediment disturbance (Elliott et al. 1998). Similarly, the polychaete
Nephtys cirrosa is adapted to life in unstable sediments and lives within the sediment. This
characteristic is likely to protect this species from surface abrasion.
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Comparisons between shores with low and high levels of trampling found that the amphipod
Bathyporeia pelagica is sensitive to abrasion and compaction from human trampling, other species
including Pontocrates arenarius and the isopod Eurydice affinis also decreased in response to
trampling but Bathyporeia pelagica appeared to be the most sensitive  (Reyes-Martínez et al., 2015).
 

Sensitivity assessment. Resistance to a single abrasion event is assessed as ‘Low’ based on the
evidence for trampling from Reyes-Martínez et al. (2015). Resilience is assessed as ‘High’, based on
migration from adjacent populations and in-situ reproduction by surviving amphipods.  Sensitivity
is therefore assessed as ‘Low’. This assessment may underestimate sensitivity to high-levels of
abrasion (repeated events within a short period). The trampling evidence and the evidence for
penetration from mobile gears (see below) differ in the severity (resistance) of impact. This may be
due to different levels of intensity (multiple trampling/abrasion events vs single
penetration/towed gear impacts) or the nature of the pressure. Abrasion from trampling also
involves a level of compaction that could collapse burrows and damage species through
compression. Penetration may, however, break sediments open allowing mobile species to escape
or species may be pushed forwards from towed gear by a pressure wave where this is deployed
subtidally (Gilkinson et al., 1998). Both risk assessments are considered applicable to single events
based on the evidence and the sensitivity assessment for both pressures is the same although
resistance differs. 

Penetration or
disturbance of the
substratum subsurface

Medium High Low

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope group is present in mobile sands, the associated species are generally present in low
abundances and adapted to frequent disturbance suggesting that resistance to abrasion and
penetration and disturbance of the sediment would be high. The amphipod  species present are
agile swimmers and are characterized by their ability to withstand sediment disturbance (Elliott et
al., 1998).

Bergman and Santbrink (2000) found that direct mortality of gammarid amphipods, following a
single passage of a beam trawl (in silty sediments where penetration is greater) was 28%. Similar
results were reported from experiments in shallow, wave disturbed areas, using a toothed, clam
dredge. Bathyporeia spp. experienced a reduction of 25% abundance in samples immediately after
intense clam dredging, abundance recovered after 1 day (Constantino et al. 2009). Experimental
hydraulic dredging for razor clams resulted in  no statistically significant differences in Bathyporeia
elegans abundances between treatments after 1 or 40 days (Hall et al., 1990), suggesting that
recovery from effects was very rapid. Ferns et al. (2000) examined the effects of a tractor-towed
cockle harvester on benthic invertebrates and predators in intertidal plots of muddy and clean
sand. Harvesting resulted in the loss of a significant proportion of the most common invertebrates
from both areas. In the muddy sand, the population of Bathyporeia pilosa remained significantly
depleted for more than 50 days, whilst the population in clean sand recovered more quickly. These
results agree with other experimental studies that clean sands tend to recover more quickly that
other habitat types with higher proportions of fine sediment (Dernie et al., 2003).

Sensitivity assessment. Based on the evidence above it is considered that Bathyporeia spp. and
other characterizing species will have ‘Medium’ resistance (mortality <25%) to abrasion, their
small size, infaunal position and mobility enabling a large proportion of the population to escape
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injury. Recovery is assessed as ‘High’ and sensitivity is therefore categorised as ‘Low’.The
trampling evidence (see above) and the evidence for penetration from mobile gears  differ in the
severity (resistance) of impact. This may be due to different levels of intensity (multiple
trampling/abrasion events vs single penetration/towed gear impacts) or the nature of the
pressure. Abrasion from trampling also involves a level of compaction that could collapse burrows
and damage species through compression. Penetration may, however, break sediments open
allowing mobile species to escape or species may be pushed forwards from towed gear by a
pressure wave where this is deployed subtidally (Gilkinson et al., 1998). 

Changes in suspended
solids (water clarity)

Medium High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The characterizing species live within the sand and are unlikely to be directly affected by an
increased concentration of suspended matter in the water column. Within the mobile sands
habitat storm events or spring tides may re-suspend or transport large amounts of material and
therefore species are considered to be adapted to varying levels of suspended solids.

 Bathyporeia spp. feed on diatoms within the sand grains (Nicolaisen & Kanneworff, 1969), an
increase in suspended solids that reduced light penetration could alter food supply. However,
diatoms are able to photosynthesise while the tide is out and therefore a reduction in light during
tidal inundation may not affect this food source , depending on the timing of the tidal cycle.

Amphipods may be regular swimmers within the surf plankton, where the concentration of
suspended particles would be expected to be higher (Fincham, 1970a). Furthermore, during the
winter, when Bathyporeia pelagica extends its distribution into the mouths of estuaries the species
may encounter concentrations of suspended sediment measurable in grams per litre (benchmark is
mg/l) (Cole et al. 1999).  

Sensitivity assessment. Increased inorganic suspended solids may increase abrasion but it is likely
that the infaunal species would be unaffected. The biotope is considered to be ‘Not sensitive’ to a
decrease in suspended solids that does not affect sediment transport and supply to the biotope.
Biotope resistance is assessed as ‘Medium’ as some effects on feeding and diatom productivity
may occur from increases in suspended solids, resilience is assessed as ‘High’, following a return to
usual conditions and sensitivity is assessed as ‘Low’. This more precautionary assessment is
presented in the table.  Indirect effects such as deposition, erosion and associated sediment
change that may result from changes in suspended solids in the long-term are assessed separately. 

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

Evidence for the effects of siltation by thick layers of added sediment from beach nourishment is
described for the heavy deposition pressure below. The pressure benchmark for light deposition
refers to the addition of a relatively thin layer of deposits in a single event.  Species adapted to
coarse sediments may not be able to burrow through fine sediments, or experienced reduced
burrowing ability. For example, Bijkerk (1988, results cited from Essink, 1999) found that the
maximal overburden through which Bathyporeia could migrate was approximately 20 cm in mud
and 40 cm in sand.  No further information was available on the rates of survivorship or the time
taken to reach the surface.
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Sensitivity assessment.  As the biotope is associated with wave exposed habitats or those with
strong currents, some sediment removal will occur, mitigating the effect of deposition. The mobile
polychaete Nephtys cirrosa and amphipods are likely to be able to burrow through a 5cm layer of
fine sediments. Biotope resistance is therefore assessed as ‘High’ and resilience as ‘High’ (by
default). The biotope is therefore considered to be ‘Not sensitive’ to this pressure.  Repeated
deposits or deposits over a large area or in sheltered systems that were shifted by wave and tidal
action may result in sediment change (see physical change pressure).

Smothering and siltation
rate changes (heavy)

Low High Low
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

Studies have found that beach ‘replenishment’ or ‘nourishment’ that involves the addition of
sediments on beaches can have a number of impacts on the infauna (Peterson et al., 2000, Peterson
et al., 2006). Impacts are more severe when the sediment added differs significantly in grain size or
organic content (Nelson et al., 1989, Peterson et al., 2000).  For example, Maurer et al. (1981) found
that the amphipod Parahaustorius longimerus which occurs intertidally in clean, well-sorted sands
and is an active, effective burrower was able to regain the surface after being buried by sand far
more easily than when buried under silt/clay mixtures.

A thick layer of sediment has a smothering effect and in most instances buried species will die
although some polychaetes can escape up to 90cm of burial In response to nourishment
(Speybroek et al., 2007, references therein). Peterson et al. (2000) found that the dominant
macrofauna were reduced by 86-99% 5-10 weeks after the addition of sediment that was finer
than the original sediments but with a high shell content.

Little empirical information was found for the ability of characterizing species to reach the surface
after burial. Bijkerk (1988, results cited from Essink, 1999) found that the maximal overburden
through which Bathyporeia could migrate was approximately 20 cm in mud and 40 cm in sand.  No
further information was available on the rates of survivorship or the time taken to reach the
surface and no information was available for other characterizing species.

Leewis et al. (2012) investigated the recovery of  Bathyporeia sarsi, following beach nourishment by
comparing beaches that had been exposed at different times. The lengths of beach nourished
varied from 0.5 kn to > 7 km.  Recovery to original abundances appeared to occur within one year
for the characterizing species which were in agreement with other studies (Leewis et al., 2012 and
references therein).  

Repeated events are not considered at the pressure benchmark but it is noted that annual beach
nourishment can alter beach sediments (see physical change pressure) and result in suppression of
macroinvertebrate populations (Manning et al., 2014).

Sensitivity assessment. The thickness of sediment applied during beach nourishment is likely to
exceed the 30cm pressure benchmark but the results from studies on the activity are informative,
particularly with regard to recovery rate. Sediment removal by wave action could mitigate the
level of effect but overall smothering by fine sediments is likely to result in mortality of
characterizing amphipods and isopods and possibly Nephtys cirrosa. Biotope resistance is therefore
assessed as ‘Low’ and resilience as High (based on Leewis et al., 2012), biotope sensitivity is
therefore assessed as ‘Low’.
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Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is not assessed. Amphipods may also consume microplastics although no negative
effects have been documented. Ugolini et al. ( 2013) found that Talitrus saltator could consume
polyethylene microspheres.  Most microspheres were expelled in 24 h. and were totally expelled in
one week. microsphere ingestion on the survival capacity in the laboratory. Analyses carried out
on faeces of freshly collected individuals revealed the presence of polyethylene and
polypropylene, confirming that microplastic debris could be swallowed by Talitrus saltator in
natural conditions. The talitrid Orchestia gammarellus has also been recorded as ingesting
microplastics in the size range 20-200µm (Thompson et al., 2004).

Electromagnetic changes No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence for the characterizing species was found to assess this pressure. For some amphipods
there is evidence for geomagnetic orientation being inhibited or disrupted by the presence of
electromagnetic fields or by changing magnetic fields. Arendse & Barendregt (1981) manipulated
magnetic fields to alter orientation of the talitrid amphipod Orchestia cavimana. 

Deep-water amphipods Gondogenia arctica have been shown to be sensitive to even weak
electromagnetic fields which cancel magnetic orientation (Tomanova & Vacha, 2016). Loss of
orientation was observed at a radiofrequency electromagnetic field of 2 nT (0.002  µT) (Tomanova
& Vacha, 2016).

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant.

Introduction of light or
shading

Medium High Low
Q: High A: Low C: Low Q: High A: Low C: High Q: High A: Low C: Low

As this feature is not characterized by the presence of primary producers it is not considered that
shading would alter the character of the habitat. No specific evidence was found to assess
the sensitivity of the characterizing species to this pressure. Changes in light level may, however,
affect activity rhythms of the invertebrates. Amphipods within the biotope prefer shade and
therefore an increase in light may inhibit activity, particularly at night when they emerge from the
sediment and are most active (Jelassi et al., 2015; Ayari, 2015). Hartwick (1976) found that
artificial lighting interfered with learning or orientation cues by Talitrids.  

Orientation by light has been well studied for intertidal amphipods (particularly Talitrus saltator).
Intertidal amphipods orientate themselves by a range of factors that include (but are not limited
to) visual cues based on solar or astronomic cues such as the moon and the geomagnetic field
(Scapini, 2014). Activity patterns are also linked to internal biological clocks that respond to diel,
tidal, lunar and seasonal cycles, so that animals are active during the most suitable time of day or
night (Scapini, 2014).  The introduction of light or an increase in shading could, therefore, alter
behavioural patterns and navigation.
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Changes in light and level of shade may indirectly affect the characterizing Bathyporeia spp.
through changes in  behaviour and food supply via photosynthesis of diatoms within sediments.
Benthic microalgae play a significant role in system productivity and trophic dynamics, as well as
habitat characteristics such as sediment stability (Tait & Dipper, 1998). Shading could prevent
photosynthesis leading to death or migration of sediment diatoms altering sediment cohesion and
food supply to the grazing amphipods.

Sensitivity assessment. Changes in light are not considered to directly affect the biotope however,
some changes in behaviour or food supply for Bathyporeia spp could result. Sensitivity is assessed
as ‘Medium’ and resilience is assessed as ’High’. Biotope sensitivity is, therefore, assessed as ‘Low’.

Barrier to species
movement

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

As the amphipods and isopods that characterize this biotope have benthic dispersal strategies (via
brooding), water transport is not a key method of dispersal over wide distances, as it is for some
marine invertebrates that produce pelagic larvae such as the characterizing Nephtys cirrosa. 
Barriers that limit tidal excursion and flushing may reduce connectivity or help to retain larvae.

Sensitivity assessment. The biotope (based on the biological assemblage) is considered to have
‘High’ resistance to the presence of barriers that lead to a reduction in tidal excursion, resilience is
assessed as ‘High’ (by default) and the biotope is considered to be ‘Not sensitive’.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant’ to seabed habitats.  NB. Collision by grounding vessels is addressed under ‘surface
abrasion.

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The characterizing species are likely to be able to detect light and some movement but are unlikely
to have any visual acuity and are considered to not be sensitive to this factor. The amphipods
emerge from the sediments at night and are unlikely to be disturbed although like many species
they may flee from movements.

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Key characterizing species within this biotope are not cultivated or translocated. This pressure is
therefore considered ‘Not relevant’ to this biotope group.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking


Date: 2016-07-01 Nephtys cirrosa and Bathyporeia spp. in infralittoral sand - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/154 22

Introduction or spread of
invasive non-indigenous
species

High High Not sensitive

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The North American amphipod Gammarus tigrinus was detected in the north-eastern Baltic Sea in
2003 and has rapidly expanded into European waters since (Jänes et al., 2015).  Native gammarids,
such as Gammarus salinus have almost disappeared from some habitats of the northeastern Baltic
Sea and the competition for space between the invasive Gammarus tigrinus the native Gammarus
salinus has been a contributing factor in certain habitats (Kotta et al., 2011). Competition for space
alone did not explain the mass disappearance of Gammarus salinus as Gammarus tigrinus did not
out-compete Gammarus salinus in all Baltic Sea habitats, limiting confidence in the evidence.
However, Gammarus tigrinus has been identified in many UK estuaries and coasts and appears
likely to influence species composition in the biotope (NBN Gateway 2016). This species prefers
lower salinities and is typical of brackish waters (Kotta et al., 2013) and is therefore not considered
a threat to this biotope where salinities are unaltered from the usual full salinity conditions.

Sensitivity assessment. The sediments characterizing this biotope are mobile and frequent
disturbance limits the establishment of marine and coastal invasive non-indigenous species as the
habitat conditions are unsuitable for most species, as exemplified by the low species richness
characterizing this biotope.This biotope is therefore considered to have 'High' resistance to this
pressure and high resilience (by default), and is assessed as 'Not sensitive' to this pressure.

Introduction of microbial
pathogens

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

 Amphipods may also be infected by a number of parasites or pathogens that alter population
numbers through changes in host condition, growth, behaviour and reproduction (Green Extabe &
Ford, 2014). Infection by acanthocephalan larvae, for example, may alter behaviour and responses
of gammarid amphipods (Bethel & Holmes, 1977). 

No evidence was found for pathogen/parasite outbreaks that may result in mass-mortalities in the
characterizing species and this pressure is not assessed.

Removal of target
species

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Intertidal populations of Nepthys cirrosa may be targeted by bait diggers.  There is limited information
on the effect of digging directly on Nephtys cirrosa populations, however there is evidence on
effects on another Nephtys species: Nephtys hombergii. Nephtys hombergii is directly removed
through commercial bait digging and by recreational anglers and abundance significantly
decreased in areas of the Solent, UK, where bait digging (primarily for Nereis virens) had occurred
(Watson et al. 2007). Recovery of Nephtys hombergii has been assessed to be very high as re-
population would occur initially relatively rapidly via adult migration and later by larval
recruitment. Dittman et al. (1999) observed that Nephtys hombergii was amongst the macrofauna
that colonized experimentally disturbed tidal flats within two weeks of the disturbance that
caused defaunation of the sediment. However, if sediment is damaged recovery is likely to be
slower, for instance Nephtys hombergii abundance was reduced by 50% in areas where tractor
towed cockle harvesting was undertaken on experimental plots in Burry inlet, south Wales, and
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had not recovered after 86 days (Ferns et al., 2000).

Sensitivity assessment. Although Nephtys cirrosa may be targeted by bait differs where this species
occurs intertidally, subtidal populations are not considered to be impacted unless there was a
change in emergence regime. This pressure is, therefore considered to be 'Not relevant' to the
assessed biotope.

Removal of non-target
species

Low High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The loss of the key characterizing species through unintentional removal would alter the character
of the biotope. The ecosystem services such as secondary production and food for higher trophic
levels would be lost. The polychaete Nephtys cirrosa and the amphipods are predated on by flat fish
and other invertebrate predators during tidal inundation (Speybroeck et al., 2007; Van Tomme et
al., 2014).

Sensitivity assessment. Biotope resistance to loss of the characterizing species is assessed as ‘Low’
as the burrowing lifestyle and mobility of species mean that a proportion of the population may
escape incidental removal. Resilience is assessed as ‘High’ based on in-situ recovery and migration
from adjacent populations and sensitivity is therefore assessed as ‘Low’. Despite the loss of a high
proportion of the characterizing species  the biotope would still be classified as belonging to
the LS.LSa.MoSa group as some examples, particularly those that are very exposed to wave action,
contain few species at low abundance (JNCC, 2015).
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