
MarLIN
Marine Information Network
Information on the species and habitats around the coasts and sea of the British Isles

Saccharina latissima and red seaweeds on
infralittoral sediments

MarLIN – Marine Life Information Network
Marine Evidence–based Sensitivity Assessment (MarESA) Review

 

Thomas Stamp

2015-10-05

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for
the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1033]. All terms and the
MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:
Stamp, T.E., 2015. [Saccharina latissima] and red seaweeds on infralittoral sediments. In Tyler-Walters
H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews,
[on-line]. Plymouth: Marine Biological Association of the United Kingdom.
DOI https://dx.doi.org/10.17031/marlinhab.1033.1

The information (TEXT ONLY) provided by the Marine Life Information Network
(MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share
Alike 2.0 UK: England & Wales License. Note that images and other media featured on
this page are each governed by their own terms and conditions and they may or may
not be available for reuse. Permissions beyond the scope of this license are available
here. Based on a work at www.marlin.ac.uk

https://www.marlin.ac.uk/habitats/detail/1033
https://www.marlin.ac.uk
https://www.marlin.ac.uk/termsandconditions
https://www.marlin.ac.uk/


(page left blank)



Date: 2015-10-05 Saccharina latissima and red seaweeds on infralittoral sediments - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/1033 3

 

17-09-2018
Biotope distribution data provided by
EMODnet Seabed Habitats
(www.emodnet-seabedhabitats.eu)

Researched by Thomas Stamp  Refereed by Admin

Summary

 UK and Ireland classification

EUNIS 2008 A5.521
Laminaria saccharina and red seaweeds on infralittoral
sediments

JNCC 2015 SS.SMp.KSwSS.SlatR
Saccharina latissima and red seaweeds on infralittoral
sediments

JNCC 2004 SS.SMp.KSwSS.LsacR
Laminaria saccharina and red seaweeds on infralittoral
sediments

1997 Biotope SS.IMX.KSwMx.LsacX
Laminaria saccharina, Chorda filum and filamentous red
seaweeds on sheltered infralittoral sediment

 Description

On infralittoral mixed muddy substrata communities characterized by the kelp Saccharina latissima
and mixed filamentous and foliose red algae can be found. This biotope contains a number of sub-biotopes
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distinguished by the degree of either wave or tidal exposure. In moderately strong tidal streams in exposed
areas Laminaria is sparse and dense stands of red seaweeds are found attached to the boulders and
cobbles that make up a large proportion of the sediment (SlatR.CbPb). As the degree of wave and/or tidal
exposure decreases there is a change in community structure, with the density of Laminaria and the
diversity of red algal species increasing (SlatR.Gv). As the environment becomes more stable a number of
brown algal species are able to inhabit this environment and a rich infauna develops (SlatR.Sa). In the
most sheltered examples of this biotope a diverse muddy sediment infauna can be found and the
'Trailliella' phase of Bonnemaisonia hamifera may develop (SlatR.Mu).

 Depth range

0-5 m, 5-10 m, 10-20 m

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iSaccharina+latissima/i+and+red+seaweeds+on+infralittoral+sediments
http://scholar.google.co.uk/scholar?q=iSaccharina+latissima/i+and+red+seaweeds+on+infralittoral+sediments
http://www.google.co.uk/search?q=SS.SMp.KSwSS.LsacR
https://mhc.jncc.gov.uk/search/?q=SS.SMp.KSwSS.LsacR
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

SS.SMp.KSwSS.SlatR (plus sub-biotopes) and SS.SMp.KSwSS.SlatCho typically occur on a mixture
of shallow sediments and rock fractions. The mobility of the sediment and rock fractions allow
Saccharina latissima (syn. Laminaria saccharina), Chorda filum and other red and brown seaweeds to
grow on small stones and shells. Saccharina latissima and Chorda filum are important canopy
forming species within these biotopes. Four sub-biotopes are present within the
SS.SMp.KSwSS.SlatR biotope complex, which are largely distinguished by the degree of tidal flow
and wave action. As the degree of wave and/or tidal exposure decreases there is a change in
community structure, with the density of Saccharina latissima and the diversity of red algal species
increasing. A decrease in tidal flow results in increased sediment stability which in turn facilitates
mature macro-algae communities.

In undertaking this assessment of sensitivity, account is taken of knowledge of the biology of all
characterizing species in the biotope. For this sensitivity assessment Saccharina latissima, Chorda
filum are the primary foci of research, however it is recognized that the red seaweed communities
of SS.SMp.KSwSS.SlatR also define these biotopes. Examples of important species groups are
mentioned where appropriate.

 Resilience and recovery rates of habitat

Saccharina latissima (syn. Laminaria saccharina) and Chorda filum are opportunistic seaweeds which
have relatively fast growth rates. Saccharina lattisima is a perennial kelp which can reach maturity
in 15-20 months ((Sjøtun, 1993) and has a life expectancy of 2-4 years (Parke, 1948). Chorda filum
is an annual seaweed, completing its life cycle in a single season (Novaczek et al., 1986). Saccharina
lattisima is widely distributed in the north Atlantic from Svalbard to Portugal (Birket et al., 1998;
Connor et al., 2004; Bekby & Moy 2011; Moy & Christie 2012). Chorda filum is widely distributed
across the northern hemisphere (Algae Base, 2015). In the North Atlantic, Chorda filum is recorded
from Svalbard (Fredriksen et al., 2014) to Northern Portugal (Araújo et al, 2009).

Saccharina lattisma and Chorda filum have heteromorphic life strategies (Edwards, 1998). Mature
sporophytes broadcast spawn zoospores from reproductive structures known as sori (South &
Burrows, 1967; Birket et al., 1998). Zoospores settle onto rock and develop into gametophytes,
which following fertilization germinate into juvenile sporophytes. Laminarian zoospores are
expected to have a large dispersal range. However, zoospore density and the rate of successful
fertilization decreases exponentially with distance from the parental source (Fredriksen et al.,
1995). Hence, recruitment can be influenced by the proximity of mature kelp beds producing
viable zoospores (Kain, 1979; Fredriksen et al., 1995). Saccharina lattisma recruits appear in late
winter early spring beyond which is a period of rapid growth, during which sporophytes can reach a
total length of 3 m (Werner & Kraan, 2004).  In late summer and autumn growth rates slow and
spores are released from autumn to winter (Parke, 1948; Lüning, 1979; Birket et al., 1998). The
overall length of the sporophyte may not change during the growing season due to marginal
erosion but growth of the blade has been measured at 1.1 cm/day, with a total length addition of
≥2.25 m per year (Birkett et al., 1998). Chorda filum recruits appear from February (South &
Burrows, 1967) after which is a period of rapid growth during which sporophytes can reach a
length of ≤6 m (South & Burrows, 1967). In culture, Chorda filum can reach reproductive maturity
and produce zoospores within 186 days (ca 6 months) of settlement but the time taken to reach
maturity may be locally variable (South & Burrows, 1967). In nature, sporophytes growth
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slows/stops from October and sporophytes may begin to die off (South & Burrows, 1967;
Novaczek et al., 1986).

Saccharina lattisma can be quite ephemeral in nature and appear early in algal succession. For
example, Lienaas & Christie (1996) removed Strongylocentrotus droebachiensis from “Urchin
Barrens” and observed a succession effect. Initially the substratum was colonized by filamentous
algae, after a couple of weeks these were out-competed and the habitat dominated by Saccharina
latissimi.  However, this was subsequently out-competed by Laminaria hyperborea. In the Isle of
Man, Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times of the year
for several years. The first colonizers and succession community differed between blocks and at
what time of year the blocks were cleared. Saccharina lattisma was an early colonizer, but within 2
years of clearance, the blocks were dominated by Laminaria hyperborea.

In 2002, a 50.7-83% decline of Saccharina latissima was discovered in the Skaggerak region, South
Norway (Moy et al., 2006; Moy & Christie, 2012). Survey results indicated a sustained shift from
Saccharina latissima communities to those of ephemeral filamentous algal communities. The reason
for the community shift was unknown, but low water movement in wave and tidally sheltered
areas combined with the impacts of dense human populations, e.g. increased land run-off, was
suggested to be responsible for the dominance of ephemeral turf macro-algae. Multiple stressors
such as eutrophication, increasing regional temperature, increased siltation and overfishing may
also be acting synergistically to cause the observed habitat shift.

Resilience assessment. Saccharina latissima, Chorda filum have the potential to rapidly recover
following disturbance. Saccharina latissima has been shown to be an early colonizer within algal
succession, appearing within 2 weeks of clearance, and can reach sexual maturity within 15-20
months. Chorda filum has rapid growth rates, capable of reaching sexual maturity within a year.
Resilience has therefore been assessed as ‘High’.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

None High Medium
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The temperature isotherm of 19-20°C has been reported as limiting Saccharina latissima
geographic distribution (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990)
however the optimal temperature range for sporophyte growth is 10-15 °C (Bolton & Lüning,
1982). Bolton & Lüning (1982) experimentally observed that sporophyte growth was inhibited by
50-70% at 20 °C and following 7 days at 23 °C all specimens completely disintegrated. In the field
Saccharina latissima has shown significant regional variation in its acclimation to temperature
changes, for example Gerard & Dubois (1988) observed sporophytes of Saccharina latissima which
were regularly exposed to ≥20 °C could tolerate these temperatures, whereas sporophytes from
other populations which rarely experience ≥17 °C showed 100% mortality after 3 weeks of
exposure to 20 °C. Therefore the response of Saccharina latissima to a change in temperatures is
likely to be locally variable.

In experiments, Lüning (1980) observed that Chorda filum could not reproduce at 15-20 °C but
found that sporophytes could tolerate ≤26 °C.

Northern to southern Sea Surface Temperature (SST) ranges from 8-16 °C in summer and 6-13 °C

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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in winter in the UK (Beszczynska-Möller & Dye, 2013). The effect of this pressure is likely to be
regionally variable.

Sensitivity assessment. Ecotypes of Saccharina lattisma have been shown to have different
temperature optimums (Dubois, 1988). Both a 2 & 5 °C increase in temperature when combined
with high UK summer temperatures in the south of the UK could cause large scale mortality of
Saccharina lattisma and inhibit Chorda filum reproduction. Resistance has been assessed as ‘None’,
Resilience as ‘High’. Sensitivity has been assessed as ‘Medium’.

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Saccharina lattissima and Chorda filum are widespread throughout the arctic. Saccharina lattissima
has a lower temperature threshold for sporophyte growth at 0°C (Lüning, 1990). Chorda filum
sporophytes can also tolerate 0 °C, Novaczek et al., (1986) observed that 99% of newly settled
zoospores died at 0 °C but sporophytes transferred from 5°C to 0°C remained healthy and
continued to grow for a period of 2 months. Novaczek et al., (1986) therefore demonstrated that
sporophytes could tolerate exposure to low (≥0°C) temperatures, but that exposure could have
negative effects on larval survival and recruitment processes. Subtidal red algae can survive at
-2°C (Lüning, 1990; Kain & Norton, 1990). The distribution and temperature tolerances of these
species suggests they likely be unaffected by temperature decreases assessed within this pressure.

Sensitivity assessment. Resistance has been assessed as ‘High’, resilience as ‘High’”. Sensitivity has
been assessed as ‘Not Sensitive’.

Salinity increase (local) Medium High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: NR A: NR C: NR

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day
exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34
psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between
25-55 psu. However, Birkett et al. (1998) suggested that kelps are stenohaline and therefore long-
term increases in salinity may be detrimental.

Chorda filum can be found in rock pools (South & Burrows, 1967). High air temperatures cause
surface evaporation of water from rock pools, so that salinity steadily increases. The extent of
temperature and salinity change is affected by the frequency and time of day at which tidal
inundation occurs. If high tide occurs in early morning and evening the diurnal temperature follows
that of the air, whilst high water at midday suddenly returns the temperature to that of the sea
(Pyefinch, 1943). It should be noted however that local populations may be acclimated to the
prevailing salinity regime and may therefore exhibit different tolerances to other populations
subject to different salinity conditions and therefore caution should be used when inferring
tolerances. However, it is likely that Chorda filum is tolerant of short-term salinity increases.

Sensitivity assessment. The evidence suggests that Saccharina latissima and Chorda filum can
tolerate short-term exposure to hypersaline conditions (≥40‰-MNCR full salinity). An increase in
salinity to ≥40‰ may however be above the optima for characterizing species and cause a decline
in growth, and possibly loss of red algae and a reduction in species diversity.  Resistance has been
assessed as ‘Medium’, resilience as ‘High’. The sensitivity of this biotope to an increase in salinity



Date: 2015-10-05 Saccharina latissima and red seaweeds on infralittoral sediments - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/1033 8

has been assessed as ‘Low’.

Salinity decrease (local) Medium High Low
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day
exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34
psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between
25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability.
After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at
approx. 30% of control. After 5 days at 5 psu Saccharina latissima specimens became bleached and
showed signs of severe damage. The experiment was conducted on Saccharina latissima from the
Arctic, and the authors suggest that at extremely low water temperatures (1-5°C) macroalgae
acclimation to rapid salinity changes could be slower than at temperate latitudes. It is therefore
possible that resident Saccharina latissima of the UK maybe be able to acclimate to salinity changes
more effectively.

Chorda filum is tolerant of low salinities (Wilce, 1959; Hayren, I940; Norton & South, 1969), and
has been recorded at Björnholm, Finland at a salinity as low as 5.15%o (Hayren, I940). Norton &
South (1969) observed that Chorda filum could develop sporophytes at ≥5%o under laboratory
conditions, however at low salinities the time taken to develop into sporophytes took 65 days at
5%o, or 16 days at 35%o. It was also noted that below 9%o sporophytes did not grow above 2 mm
in length.

Sensitivity assessment.  A decrease in one MNCR salinity scale from “Full Salinity” (30-40psu) to
“Reduced Salinity” (18-30 psu) would inhibit Saccharina lattissima photosynthesis and hence
growth. Chorda filum is highly tolerant of low salinity and is unlikely to be affected at the bench
mark level. However, a shift to reduced salinity conditions is likely to result in a change in the
infauna community and an overall reduction in species diversity. Therefore, resistance has been
assessed as ‘Medium’ resilience as ‘High’. Sensitivity of this biotope to a decrease in salinity has
been assessed as ‘Low’.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites, the 1st had maximal
water velocities of 0.3 m/sec and the 2nd 0.1 m/sec. At site 1 Saccharina latissima had significantly
larger biomass than at site 2 (16 kg/m to 12 kg/m respectively). Peteiro & Freire (2013) suggested
that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard &
Mann (1979) measured Saccharina latissima productivity at greater water velocities and found
Saccharina latissima productivity is reduced in moderately strong tidal streams (≤1 m/sec) when
compared to weak tidal streams (<0.5 m/sec).

Chorda filum sporophytes often grow on unstable objects, such as pebbles and shell. Owing to the
typically unstable substratum which Chorda filum grows on, whole populations can be moved
during storms and deposited in more sheltered locations where development will continue (South
& Burrows, 1967). The survival of Chorda filum sporophytes following transport of their attached
substrata indicates the species is relatively tolerant to changes in water flow or wave action.
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As highlighted by Connor et al., (2004) large increases in tidal flow (>0.5 m/s) are likely to influence
biotope structure and smaller changes in tidal flow (e.g. 0.1-0.2m/s) are not likely to have a
significant effect on the characterizing species. A change in tidal flow of 0.1-0.2 m/sec in low
energy biotopes e.g. SS.SMp.KSwSS.SlatR.Mu, may however remove finer sediment fractions (e.g.
mud) and may therefore change the biotope. However, evidence is lacking and a change in tidal
velocities is not likely to result in a significant change to the dominant species.

Sensitivity assessment. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has
been assessed as ‘Not Sensitive’.

Emergence regime
changes

Medium High Low
Q: Medium A: High C: High Q: High A: Low C: High Q: Medium A: Low C: High

SS.SMp.KSwSS.SlatR and SS.SMp.KSwSS.SlatCho are recorded from 0-10m, while SlatR can extend
to 20m (Connor et al., 2004). Therefore the upper limit of the biotopes in the sub-littoral fringe
(South & Burrows, 1967; White & Marshall, 2007) could be exposed during some low tides.

An increase in emergence will result in an increased risk of desiccation and mortality of Saccharina
latissima and Chorda filum. Removal of macroalgae canopy may also increase desiccation and
mortality of the undergrowth red seaweed community (Hawkins & Harkin, 1985). Providing that
suitable substrata are present, the biotope is likely to re-establish further down the shore within a
similar emergence regime to that which existed previously.

Sensitivity assessment. Resistance has been assessed as ‘Medium’. Resilience as ‘High’. The
sensitivity of this biotope to a change in emergence is considered as ‘Low’.

Wave exposure changes
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Birkett et al., (1998) suggested that Saccharina latissima is rarely present in areas of wave exposure,
where it is out-competed by Laminaria hyperborea. Chorda filum sporophytes often grow on
unstable objects, such as pebbles and shell. Owing to the typically unstable substratum which
Chorda filum grows on, whole populations can be moved during storms and deposited in more
sheltered locations where development will continue (South & Burrows, 1967).

A large increase in near-shore wave height is likely to significantly influence biotope structure. As
highlighted by Connor et al., (2004) sub-biotopes within SS.SMp.KSwSS.SlatR are largely
distinguished by wave exposure

Sensitivity assessment. A large scale increase in local wave height may increase local sediment
mobility, potentially increase dislodgment or relocation of the characterizing species (South &
Burrows, 1967; Birkett et al., 1998b). However, an increase in nearshore significant wave height of
3-5% is not likely to have a significant effect on biotope structure. Resistance has been assessed as
‘High’, Resilience as ‘High’. Sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.

 Chemical Pressures
 Resistance Resilience Sensitivity

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg
> inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole et al., (1999) reported that Hg was very toxic to
macrophytes. Similarly, Hopkin & Kain (1978) demonstrated sub-lethal effects of heavy metals on
kelp gametophytes and sporophytes, including reduced growth and respiration. Sheppard et al.
(1980) noted that increasing levels of heavy metal contamination along the west coast of Britain
reduced species number and richness in holdfast fauna, except for suspension feeders which
became increasingly dominant. Gastropods may be relatively tolerant of heavy metal pollution
(Bryan, 1984). Although macroalgae species may not be killed, except by high levels of
contamination, reduced growth rates may impair the ability of the biotope to recover from other
environmental disturbances. Thompson & Burrows (1984) observed the growth of Saccharina
latissima sporophyte growth was significantly inhibited at 50 µg Cu /l, 1000 µg Zn/l and 50 µg Hg/l.
Zoospores were found to be more intolerant and significant reductions in survival rates were
observed at 25 µg Cu/l, 1000 µg Zn/l and 5 µg/l.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

The mucilaginous slime layer coating of Laminarians may protect them from smothering by oil.
Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al. (1995)
reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelps. Similarly,
surveys of subtidal communities at a number sites between 1-22.5m below chart datum showed
no noticeable impacts of the Sea Empress oil spill and clean up (Rostron & Bunker, 1997) or during
experimental release of untreated oil in Baffin Island, Canada (Cross et al., 1987). Laboratory
studies of the effects of oil and dispersants on several red algae species (Grandy 1984) concluded
that they were all sensitive to oil/ dispersant mixtures, with little differences between adults,
sporelings, diploid or haploid life stages.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to
oil and dispersant contamination (see Smith, 1968). Saccharina latissima has also been found to be
sensitive to antifouling compounds. Johansson (2009) exposed samples of Saccharina latissima to
several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid
inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue
inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Smith (1968) observed that epiphytic and benthic red algae were intolerant of dispersant or oil
contamination during the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and
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Spermothamnion repens and some tufts of Jania rubens survived together with Osmundea pinnatifida,
Gigartina pistillata and Phyllophora crispa from the sublittoral fringe.

Radionuclide
contamination

Not relevant (NR) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: Medium A: High C: High Q: Medium A: High C: High Q: Medium A: High C: High

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae
(Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low
oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the
oxygen depletion is short-term (Frieder et al., 2012). A rapid recovery from a state of low oxygen is
expected if the environmental conditions are transient. If levels do drop below 4 mg/l negative
effects on these organisms can be expected with adverse effects occurring below 2mg/l (Cole et al.,
1999).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration
but not cause a loss of the macroalgae population directly. Resistance has been assessed as ‘High’,
Resilience as ‘High’. Sensitivity has been assessed as ‘Not sensitive’ at the benchmark level.

Nutrient enrichment Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates
when in close proximity to a sewage outlet in St Andrews, UK, compared to other sites along the
east coast of Scotland. At St Andrews nitrate levels were 20.22µM, which represents an approx.
25% increase compared to other sites (approx. 15.87 µM). Handå et al. (2013) also reported
Saccharina latissima sporophytes grew approx. 1% faster per day when in close proximity to
Norwegian salmon farms, where elevated ammonium could be readily absorbed by sporophytes. 
Read et al. (1983) reported after the installation of a new sewage treatment works, which reduced
the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima
became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient
loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect
was observed in the communities, however 4-5 years into the experiment a shift occurred from
perennials to ephemeral algae. Although Bokn et al. (2003) focussed on fucoids the results could
indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral
algae species. Disparities between the findings of the aforementioned studies are likely to be
related to the level of organic enrichment.

Johnston & Roberts (2009) conducted a meta-analysis, which reviewed 216 papers to assess how a
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variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats
(including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from
all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also
highlighted that macroalgal communities are relative tolerant to contamination, but that
contaminated communities can have low diversity assemblages which are dominated by
opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Sensitivity assessment. Although short-term exposure (<4 years) to nutrient enrichment may not
affect seaweeds directly, indirect effects such as turbidity may significantly affect photosynthesis
and result in reduced growth and reproduction and increased competition form fast growing but
ephemeral species. However, this biotope is considered to be 'Not sensitive' at the pressure
benchmark, that assumes compliance with good status as defined by the WFD.

Organic enrichment Medium High Low
Q: Medium A: High C: High Q: Medium A: High C: High Q: Medium A: Medium C: High

Read et al. (1983) reported after the installation of a new sewage treatment works, which reduced
the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima
became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient
loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect
was observed in the communities, however 4-5 years into the experiment a shift occurred from
perennials to ephemeral algae. Although Bokn et al. (2003) focussed on fucoids the results could
indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral
algae species. Disparities between the findings of the aforementioned studies are likely to be
related to the level of organic enrichment.

Johnston & Roberts (2009) conducted a meta-analysis, which reviewed 216 papers to assess how a
variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats
(including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from
all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also
highlighted that macroalgal communities are relatively tolerant to contamination, but that
contaminated communities can have low diversity assemblages which are dominated by
opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).
Organic enrichment may also result in phytoplankton blooms that increase turbidity and therefore
may negatively impact photosynthesis.

Sensitivity assessment. Although short-term exposure (<4 years) to organic enrichment may not
affect seaweeds directly, indirect effects such as turbidity may significantly affect photosynthesis,
and result in reduced growth and reproduction and increased competition form fast growing but
ephemeral species Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has
been assessed as ’Low’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
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pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’. Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

If sediment were replaced with rock or artificial substrata, this would represent a fundamental
change to the biotope (Macleod et al., 2014). All the characterizing species within this biotope can
grow on rock biotopes (Birkett et al., 1998; Connor et al., 2004), however SS.SMp.KSwSS are by
definition sediment biotopes and introduction of rock would change them into a rock based habitat
complex, and the biotope would be lost

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very low’.
Sensitivity has been assessed as ‘High’

Physical change (to
another sediment type)

None Very Low High
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

SS.SMp.KSwSS are sediment based biotopes. Stabilised cobbles, pebbles, gravel and shell fractions
provide a substrate for macro-algae to dominate the community (Connor et al., 2004). An increase
in the dominance of smaller sediment fractions e.g. sand and/or mud will likely smoother the
existing biotope, inhibit successive re-colonisation of macro-algae and/or increase the sediment
scour.

Sensitivity assessment. Resistance has been assessed as ‘None’, resilience as Very low (the
pressure is a permanent change), and sensitivity as High. 

Habitat structure
changes - removal of
substratum (extraction)

None High Medium

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

SS.SMp.KSwSS.SlatR (plus sub-biotopes), SS.SMp.KSwSS.SlatCho can be found on a varied mixture
of sediment and rock fractions. Extraction of substratum to 30 cm is likely to remove small
sediment fractions (e.g. gravel) and may mobilize the remaining larger rock fractions (e.g. boulders)
causing high mortality within the resident community. All characterizing species have rapid growth
rates and are likely to recover within 2 years.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High’. Sensitivity
has been assessed as ‘Medium’.

Abrasion/disturbance of
the surface of the
substratum or seabed

None Medium Medium

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Abrasion of the substratum e.g. from bottom or pot fishing gear, cable laying etc. may cause
localised mobility of the substrata and mortality of the resident community. The effect would be
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situation dependent, however, if bottom fishing gear were towed over a site it may mobilise a high
proportion of the rock substrata and cause high mortality in the resident community.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High’. Sensitivity
has been assessed as ‘Medium’.

Penetration or
disturbance of the
substratum subsurface

None High Medium

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Penetration and/or disturbance of the substrate below the surface of the seabed, may cause
localised mobility of the substrata and mortality of the resident community.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High’. Sensitivity
has been assessed as ‘Medium’.

Changes in suspended
solids (water clarity)

Low High Low
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Suspended Particle Matter (SPM) concentration has a positive linear relationship with sub surface
light attenuation (Kd) (Devlin et al., 2008). Light availability and water turbidity are principal
factors in determining depth range at which macro-algae can be found (Birkett et al., 1998b). Light
penetration influences the maximum depth at which laminarians can grow and it has been
reported that laminarians grow at depths at which the light levels are reduced to 1 percent of
incident light at the surface. Maximal depth distribution of laminarians therefore varies from 100
m in the Mediterranean to only 6-7m in the silt laden German Bight. In Atlantic European waters,
the depth limit is typically 35 m. In very turbid waters the depth at which kelp is found may be
reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in
light attenuation by suspended sediment (Lüning, 1990; Birkett et al. 1998b). Laminarians show a
decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation
coefficient =0.1-0.2/m; Staehr & Wernberg, 2009).

Sensitivity Assessment. A decrease in turbidity is likely to support enhanced growth (and possible
habitat expansion) and is therefore not considered in this assessment. An increase in water
turbidity is likely to primarily affect photosynthesis therefore growth and density of the canopy
forming seaweeds. Resistance to this pressure is defined as ‘Low’ and resilience to this pressure is
defined as ‘High’ at the benchmark level due to the scale of the impact. Hence, this biotope is
regarded as having a sensitivity of ‘Low‘.

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage mature
examples of Saccharina latissima and Chorda filum but may provide a physical barrier to zoospore
settlement and therefore could negatively impact on recruitment processes (Moy & Christie,
2012). Laboratory studies showed that kelp and gametophytes can survive in darkness for
between 6-16 months at 8 °C and would probably survive smothering by a discrete event and once
returned to normal conditions gametophytes resumed growth or maturation within 1 month
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(Dieck, 1993).

SS.SMp.KSwSS biotopes are all recorded in moderately strong tidal streams to negligible (≤1.5
m/sec) (Connor et al., 2004). In tidally exposed biotopes deposited sediment is unlikely to remain
for more than a few tidal cycles (due to water flow or wave action). In sheltered biotopes deposited
sediment could remain however are unlikely to remain for longer than a year.

Sensitivity assessment. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has
been assessed as ‘Not Sensitive’.

Smothering and siltation
rate changes (heavy)

Medium High Low
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: NR C: NR

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage mature
examples of Saccharina latissima and Chorda filum but may provide a physical barrier to zoospore
settlement and therefore could negatively impact on recruitment processes (Moy & Christie,
2012). Laboratory studies showed that kelp and gametophytes can survive in darkness for
between 6-16 months at 8°C and would probably survive smothering by a discrete event and once
returned to normal conditions gametophytes resumed growth or maturation within 1 month
(Dieck, 1993).

SS.SMp.KSwSS biotopes are all recorded in moderately strong tidal streams to negligible (≤1.5
m/sec) (Connor et al., 2004). In tidally exposed biotopes deposited sediment is unlikely to remain
for more than a few tidal cycles (due to water flow or wave action). In sheltered biotopes deposited
sediment could remain however are unlikely to remain for longer than a year.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity
has been assessed as ‘Low’.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not assessed. There is no evidence to suggest that litter would affect kelp.

Electromagnetic changes Not relevant (NR) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant

Introduction of light or
shading

Low Medium Medium
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: Low C: Low
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There is no evidence to suggest that anthropogenic light sources would affect macro-algae.
Shading of the biotope (e.g. by construction of a pontoon, pier etc.) could adversely affect the
biotope in areas where the water clarity is also low, and tip the balance to shade tolerant species,
resulting in the loss of the biotope directly within the shaded area, or a reduction in seaweed
abundance.

Sensitivity assessment. Resistance is probably 'Low', with a 'Medium' resilience and a sensitivity
of 'Medium', albeit with 'low' confidence due to the lack of direct evidence.

Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant. This pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal
of spores.  But spore dispersal is not considered under the pressure definition and benchmark.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant. Collision from grounding vessels is addressed under abrasion above.

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) No evidence (NEv)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

At the time of writing there is no evidence for translocation of Saccharina latissima, Chorda filum
over significant geographic distances.

Introduction or spread of
invasive non-indigenous
species

None Very Low High

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non
Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher,
2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was
first recorded in the UK, Hamble Estuary, in June 1994 (Fletcher & Manfredi, 1995) and has since
spread to a number of British ports. Undaria pinnatifida is an annual species, sporophytes appear in
Autumn and grow rapidly throughout winter and spring during which they can reach a length of
1.65m (Birket et al., 1998). Farrell & Fletcher (2006) suggested that native short lived species that

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
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occupy similar ecological niches to Undaria pinnatifida, such as Saccharina latissima or Chorda filum,
are likely to be worst affected and out-competed by Undaria pinnatifida. Where present an
abundance of Undaria pinnatifida has corresponded to a decline in Saccharina lattisima (Farrel &
Fletcher, 2006) and Laminaria hyperborea (Hieser et al., 2014).

In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete
Undaria pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012)
suggested the fucoid recovery was partially due to an annual Undaria pinnatifida die back, which as
noted by Heiser et al., (2014) does not occur in Plymouth sound, UK. Undaria pinnatifida was
successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat
treatment of 70 °C (Wotton et al., 2004) however numerous other eradication attempts have
failed, and as noted by Fletcher & Farrell, (1999) once established Undaria pinnatifida resists most
attempts of long-term removal. The biotope is unlikely to fully recover until Undaria pinnatifida is
fully removed from the habitat, which as stated above is unlikely to occur.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Very low’.
The sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘High’.

Introduction of microbial
pathogens

Low High Low
Q: Low A: NR C: NR Q: High A: Low C: High Q: Low A: Low C: Low

Laminarians may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae
show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark
spots to heavy deformations and completely crippled thalli Infection can reduce growth rates of
host algae (Peters & Scaffelke, 1996). The marine fungi Eurychasma spp can also infect early life
stages of Laminarians however the effects of infection are unknown (Müller et al., 1999).

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘High’. The
sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘Low’.

Removal of target
species

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure has been assessed as ‘Not relevant’.

There has been recent commercial interest in Saccharina lattisma as a consumable called “sea
vegetables” (Birket et al., 1998). However, Saccharina lattissima sporophytes are typically matured
on ropes (Handå et al 2013) and not directly extracted from the seabed, as with Laminaria
hyperborea (Christie et al., 1998). No evidence has been found for commercial extraction of Chorda
filum.

Removal of non-target
species

None High Medium
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Low level disturbances (e.g. solitary anchors) are unlikely to cause harm to the biotope as a whole,
due to the impact’s small footprint. Thus evidence to assess the resistance of SS.SMp.KSwSS.SlatR
(plus sub-biotopes), SS.SMp.KSwSS.SlatCho to non-targeted removal is limited. It is assumed that
incidental non-targeted catch (e.g. by trawls or dredges) could mobilise sediment, remove large
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kelp species, overturn boulders and cobbles and bury smaller seaweeds and cause high mortality
within the affected area.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High’. Sensitivity
has been assessed as ‘Medium’.
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