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= UK and Ireland classification

Mixed kelps with scour-tolerant and opportunistic foliose
red seaweeds on scoured or sand-covered infralittoral rock

Mixed kelps with scour-tolerant and opportunistic foliose
red seaweeds on scoured or sand-covered infralittoral rock

Mixed kelps with scour-tolerant and opportunistic foliose
red seaweeds on scoured or sand-covered infralittoral rock

Mixed kelps with scour-tolerant and opportunistic foliose
red seaweeds on scoured or sand-covered infralittoral rock

EUNIS 2008 A3.125
JNCC 2015 IR.HIR.KSed.XKScrR
JNCC 2004 IR.HIR.KSed.XKScrR

1997 Biotope IR.MIR.SedK.XKScrR

W Description

Bedrock and boulders, often in tide-swept areas, that are subject to scouring, or periodic burial, by
sand characterized by a canopy of mixed kelps (including Saccharina latissima, Laminaria hyperborea

https://www.marlin.ac.uk/habitats/detail/183 ]



Date: 2015-12-16 Mixed kelps with scour-tolerant and opportunistic foliose red seaweeds on scoured or sand-covered infralittoral rock

- Marine Life Information Network

and Saccorhiza polyschides) and Desmarestia spp; there may also be an under-storey of foliose
seaweeds that can withstand scour or burial. This biotope often occurs below a L. hyperborea
forest, close to a rock-sediment boundary. Red seaweeds such as Calliblepharis ciliata are able to
withstand the effects of scouring as they have tough fronds and a stoloniferous base from which
new growth occurs. Other seaweeds are annuals growing rapidly in the spring, taking advantage of
the calmer summer weather. At some times of the year, seaweeds may be sparse (due to urchin
grazing?), leaving predominantly kelps and encrusting coralline algae.

| Depthrange
0-5m, 5-10m, 10-20 m

Additional information

E

« Listed By

-none -
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Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR are within the
sediment-affected or disturbed kelp and seaweed communities (IR.HIR.KSed) habitat complex. As
aresult of nearby sediment scouring or seasonally unstable infralittoral rock, opportunistic brown
seaweeds; Desmarestia spp., Saccharina latissima (formerly Laminaria saccharina) and Saccorhiza
polyschides can proliferate. Laminaria hyperborea can be present within the community, however,
due to the disturbed nature of IR.HIR.KSed biotopes does not become fully established and
sporophytes do not typically survive beyond a couple of seasons (Connor et al., 2004).

Due to the disturbed nature of IR.HIR.KSed biotopes the understory community can vary locally
and is characterized d by scour tolerant or ephemeral red seaweeds, such as Corallina officinalis,
Plocamium cartilagineum, Chondrus crispus, Dilsea carnosa, and encrusting coralline algae. Faunal
diversity and abundance are also generally low and typically limited to encrusting bryozoans
and/or sponges. In areas sheltered from sediment scour or sediment, the stability biological
diversity increases and Laminaria hyperborea becomes more dominant (Connor et al., 2004).

In undertaking this assessment of sensitivity, account is taken of knowledge of the biology of all
characterizing species/taxa in the biotope. However, 'indicative species' are particularly important
in undertaking the assessment as they structure and characterize the biotope. For this sensitivity
assessment the opportunistic brown seaweeds; Desmarestia spp., Saccharina latissima and
Saccorhiza polyschides are the primary foci of research. Examples of important species groups are
mentioned where appropriate.

Resilience and recovery rates of habitat

Desmarestia spp., Saccorhiza polyschides & Saccharina latissima (formerly Laminaria saccharina) are
opportunistic seaweeds which have relatively fast growth rates when compared to other perennial
species, and dominate areas subject to recurrent disturbance or in areas where environmental
conditions limit competition from Laminaria hyperborea.

Desmarestia spp. and Saccharina latissima are widely distributed in the north Atlantic from Svalbard
to Portugal (Birket et al., 1998; Conor et al., 2004; Bekby & Moy 2011; Moy & Christie 2012),
Saccorhiza polyschides from mid-Norway to Ghana, and present in parts of the Mediterranean
(LGning, 1990). Desmarestia spp. are a genus of annual seaweeds with a life expectancy of ca 8
months (Gagnon et al., 2013). Saccorhiza polyschides is also termed as an annual and can reach
maturity in 8 months, although sporophytes that do not reach maturity within the first growth
season can overwinter and have a life expectancy of 16 months (Birket et al., 1998; Fernandez,
2011), during which time fronds can reach a length of 3-4m (D. Birkett, pers. obs in Birkett et al.,
1998). Saccharina lattisma is a perennial kelp which can reach maturity in 15-20 months and has a
life expectancy of 2-4 years.

Demarestiales and Laminariales have heteromorphic life strategies (Edwards, 1998). Mature
sporophytes broadcast zoospores which settle onto rock and develop into gametophytes,
following fertilization these germinate into juvenile sporophytes. Kelp zoospores are expected to
have a large dispersal range, but zoospore density and the rate of successful fertilization decreases
exponentially with distance from the parental source (Fredriksen et al., 1995). Hence, recruitment
following disturbance can be influenced by the proximity of mature kelp beds producing viable
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zoospores to the disturbed area (Kain, 1979; Fredriksen et al., 1995). The exact mechanism of
zoospore release in Desmarestia spp. is unknown but it may occur during a period of senescence
(mentioned below)(Gagnon et al., 2013). Saccorhiza polyschides & Saccharina latissima both release
zoospores from reproductive structures known as sori, located centrally on the blade (Saccharina
latissima & Saccorhiza polyschides), stipe and holdfast/bulb (Saccorhiza polyschides).

Desmarestia spp. and Saccorhiza polyschides sporophytes appear from March-April, beyond which is
a period of rapid growth. Desmarestia spp. reach their maximum size by September (ca 60 cm).
Sporophytes then begin to decay (known as the senescence period) and typically die off by late
October (Edwards, 1998; Gagnon et al., 2013). Saccorhiza polyschides sporophytes are capable of
growing <6.2 cm per week (Norton, 1970; Fernandez, 2011) and reaching a maximum length of 3-4
m (Birket et al., 1998; Fernandez, 2011). The onset of maturity triggers a phase of senescence in
which growth ceases and the frond erodes, resulting in the blade becoming progressively smaller
and by winter the entire sporophyte can disappear (Birket et al., 1998; Fernandez, 2011).
Saccharina latissima recruits appear in late winter early spring beyond which is a period of rapid
growth, in late summer and autumn growth rates slow and spores are released from autumn to
winter (Parke, 1948; Liining, 1979; Birket et al., 1998). The overall length of the sporophyte may
not change during the growing season due to marginal erosion but growth of the blade has been
measured at 1.1 cm/day, with a total length addition of 22.25 m per year (Birket et al., 1998).

Light intensity and temperature are key development triggers for Desmarestia spp. (Edwards,
1998). However other factors, such as nutrient availability and the abundance of coralline algae
may also influence recruitment (Edwards, 1998). Desmarestia spp. sporophytes are typically rare in
areas with established kelp canopies but have rapid growth in response to increases in light
intensity and changes from red-blue wave lengths, indicating an opportunistic life history when
kelp canopies are thinned/cleared (Chapman & Burrows, 1970; Miiller & Lithe, 1981; Edwards,
1998). Edwards (1998) found Desmarestia ligulata recruitment was cued by seasonal changes in day
length but the recruitment was increased in in areas where kelp canopies were cleared. In kelp
clearances, Desmarestia ligulata was capable of rapidly achieving ca 50-90% coverage whereas
abundance remained low under kelp canopies at ca <10% coverage. Field and experimental
observations of Desmarestia aculeata in Port Erin, UK have found that light intensity is a principal
factor in the development of gametophyte and sporophyte development, and hence recruitment
processes (Kain, 1966; Chapman & Burrows, 1970). In winter, a season in which Desmarestia
aculeata sporophytes are absent from marine habitats, Kain (1966) collected visually bare stones
from Port Erin, Isle of Man. When the stones were exposed to high illumination (2,780 lux) for 18
hours a day and maintained at 5°C, Desmarestia aculeata sporophytes grew successfully.
Demonstrating that increases in light intensity are an important trigger for Desmarestia spp.
growth and recruitment.

Saccharina lattisma can be quite ephemeral in nature and appear early in algal succession. For
example, Lienaas & Christie (1996) removed Strongylocentrotus droebachiensis from “Urchin
Barrens” and observed a succession effect. The substratum was colonized initially by filamentous
algae, but after a couple of weeks, these were out-competed and the habitat dominated by
Saccharina latissima which themselves were subsequently out-competed by Laminaria hyperborea.
In the Isle of Man, Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times
of the year for several years. The first colonizers and succession community differed between
blocks and at what time of year the blocks were cleared. However, Saccharina lattisma was an early
colonizer, but within 2 years of clearance the blocks were dominated by Laminaria hyperborea.

Resilience assessment. All three canopy forming seaweeds that characterize IR.HIR.KSed.Sac,

https://www.marlin.ac.uk/habitats/detail/183
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IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR are opportunistic species with
rapid colonization and growth rates. Both Desmarestia spp. and Saccorhiza polyschides are capable
of reaching maturity within a year. Saccharina latissima has been shown to be an early colonizer
within macroalgal succession, appearing within 2 weeks of clearance. Therefore, resilience has
been assessed as ‘High'.

#® Hydrological Pressures

Resistance Resilience Sensitivity
Temperature increase  [\[eJ§ls High Medium
(local) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Saccorhiza polyschides has a wide geographic distribution, and cantolerate a wide range of
temperatures. Sporophyte growth can occur from 3-24°C and gametophyte development from
5-25°C (Norton, 1977). Fernandez (2011) however suggested that summer temperatures of
>20°C sustained for longer than a period of 30 days may inhibit development and recruitment.

Desmarestiales are unusual in that they produce and accumulate sulphuric acid within intracellular
vacuoles (McClintock et al., 1982; Connor et al., 2004; Gagnon et al., 2013). Seasonal increases in
temperatures limit the ability of the storage vacuoles to contain the acid and release it into the
surrounding environment. The continued release of acid results in progressive decolourisation,
tissue degradation and mortality of Desmarestia sporophytes (Gagnon et al., 2013). Gagnon et al.
(2013) exposed Desmarestia viridis samples during 30 hour salinity and temperature treatments,.
At 29 and 32psu (MNCR: Full Salinity scale) Desmarestia viridis was able to tolerant to changes in
temperature from 5-12°C, but exposure to 18°C was lethal to sporophytes.

The geographic distribution of Saccharina latissima is determined by the 19-20°C isotherm (Mdiller
etal., 2009). Gametophytes can develop in <23°C (Lining, 1990), but the optimal temperature
range for sporophyte growth is 10-15°C (Bolton & Liining, 1982). Bolton & Liining (1982)
experimentally observed that sporophyte growth was inhibited by 50-70% at 20°C and following 7
days at 23°C all specimens completely disintegrated. In the field Saccharina latissima has significant
regional variation in its acclimation to temperature change. For example Gerard & Dubois (1988)
observed sporophytes of Saccharina latissima which were regularly exposed to 220°C could
tolerate these temperatures, whereas sporophytes from other populations which rarely
experience 217°C showed 100% mortality after 3 weeks of exposure to 20°C. Therefore the
response of Saccharina latissima to a change in temperatures is likely to be locally variable.

Anderson et al. (2011) transplanted Saccharina latissima from the Skegerrak region, Norway an
area which has experienced a 50.7-83% Saccharina latissima decline since 2002 (Moy & Christie,
2012). Since 1960-2009 sea surface temperatures in the region have regularly exceeded 20°C (the
temperature at which Saccharina latissima growth is severely inhibited) and so has the number of
days which remain above 20°C. Anderson et al. (2011) hypothesised that high sea temperatures
were indirectly linked to Saccharina latissima deforestation in the region, causing high ephytic
loading of sporophyte fronds (estimated to cover 80 & 100% of transplanted sporophytes). High
sea temperatures has been linked to slow growth of Saccharina latissima which is likely to decrease
the photosynthetic ability of, and increase the vulnerability of Saccharina latissima to ephityic
loading, bacterial and viral attacks (Anderson et al., 2011).

Desmarestiales are sensitive to high temperatures and low salinities (Gagnon et al., 2013).

https://www.marlin.ac.uk/habitats/detail/183
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Desmarestiales are unusual in that they produce and accumulate sulphuric acid (H,SO,) within
intracellular vacuoles (McClintock et al., 1982; Connor et al., 2004; Gagnon et al., 2013). Increases
in temperatures and low salinities limit the ability of the storage vacuoles to contain the acid and
release it into the surrounding environment. The continued release of acid results in progressive
decolourisation, tissue degradation and mortality of Desmarestia sporophytes (Gagnon et al., 2013).
Gagnon et al. (2013) exposed Desmarestia viridis samples during 30 hour salinity and temperature
treatments, observing at 29 and 32 psu (MNCR: Full Salinity scale) Desmarestia viridis was tolerant
to changes in temperature from 5-12°C, exposure to 18°C was lethal to sporophytes. Furthermore
sporophytes that had already begun the senescence phase were exposed to 10.8 + 0.3°C and
completely shed all tissue from the stipe and laterals within cal5 days, whereas those exposed to
lower temperatures of 2.5+ 0.1°C lasted ca30 days. Gagnon et al. (2013) also observed Desmarestia
spp. degraded progressively in low salinity treatments of 26, 23 & 20psu (<20psu was not tested).
Therefore indicating Desmarestia spp. are highly sensitive to both high temperature (12-18°C) and
low salinities (<26 psu).

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed . XKScrR are distributed
throughout the UK (Connor et al., 2004). Northern to southern Sea Surface Temperature (SST)
ranges from 8-16°C in summer and 6-13°C in winter (Beszczynska-Maller & Dye, 2013)

Sensitivity assessment. Acute 5°C increases in temperature for a period of 1 month combined
with high summer temperatures may exceed the threshold temperature of 18-20°C in biotopes
within the south of the UK, which would likely cause mortality of Desmarestia spp., and severely
limit Saccorhiza polyschides recruitment & Saccharina latissima sporophyte growth. A 2°C increase
in temperature for a period of 1 year would likely result in the exceeding an 18°C temperature
threshold in the south of the UK. This temperature threshold would likely result in high mortality
of Desmarestia spp. Saccharina latissima which are not acclimated to similar temperatures may also
experience high and rapid mortality. Resistance has been assessed as ‘None’, Resilience as ‘High'.
Sensitivity has been assessed as ‘Medium’.

Temperature decrease  [Ka}l) High Low
(local) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Demarestia spp. are a cold water adapted genus with a polar distribution, which can grow
abundantly in water temperatures of ca 0.5°C (Gagnon et al., 2013). Saccharina latissima is also
widely spread throughout the Arctic, and has a lower temperature threshold for sporophyte
growth at 0°C (Llining, 1990). Subtidal red algae can survive at -2°C (LUning, 1990; Kain & Norton,
1990). These temperatures are well below that considered within this pressure benchmark.
Demarestia spp. Saccharina latissima are therefore unlikely to be adversely affected by a decrease in
temperature at the benchmark level.

Saccorhiza polyschides sporophyte growth can occur within a range from 3-24°C and gametophyte
development within a range of 5-25°C (Norton, 1977). Norton (1977) experimentally observed
that at 3-5°C gametophytes failed to develop into viable sporophytes. This temperature range also
corresponds with Saccorhiza polyschides northern range edge (ca 65° 35’N, mid Norway), above
which the average winter temperature is <4°C (U.S. Navy, 1958).

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR are distributed
throughout the UK (Connor et al., 2004). Northern to southern Sea Surface Temperature (SST)
ranges from 8-16°C in summer and 6-13°C in winter (Beszczynska-Moller & Dye, 2013)

https://www.marlin.ac.uk/habitats/detail/183
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Sensitivity assessment. Both long-term and acute temperature decrease 2-5°C combined with low
winter temperatures could negatively affect Saccorhiza polyschides recruitment in biotopes located
in the north of the UK. Resistance has been assessed as ‘Low’, resilience as ‘High’. Sensitivity has
been assessed as ‘Low’.

ey High Low
Salinity increase (local)
Q: Medium A: High C: High Q: High A: Low C: High Q: Medium A: Low C: High

Lining (1990) suggest that kelps are stenohaline, their general tolerance to salinity as a
phenotypic group covering 16-50 psu over a 24 hr period. Optimal growth probably occurring
between 30-35 psu (MNCR category-Full Salinity) and growth rates are likely to be affected by
periodic salinity stress. Birkett et al. (1998) suggested that long-term increases in salinity may
affect kelp growth and may result in loss of affected kelp, and therefore loss of the biotope.

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 & 5 day
exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34
psu (Salinity under normal marine conditions). Between 25-55 psu Saccharina latissima had high
photosynthetic ability at >80% of the control levels.

Sensitivity assessment. The evidence suggests that Saccharina latissima can tolerate exposure to
hypersaline conditions of 240%. (MNCR full salinity range=30-40%o,). Optimal salinities for other
kelps are assumed to be 30-35 psu. Hypersaline tolerances for Desmarestia spp. are unknown.
Resistance has been assessed as ‘Low’, resilience as ‘High’. The sensitivity of this biotope to an
increase in salinity has been assessed as ‘Low’.

.. Low High Low
Salinity decrease (local) g
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Saccorhiza polyschides is affected by low salinities. Norton & South (1969) observed at <9%o
zoospores often burst due to internal osmotic pressure and none developed. At <25%o only 25%
of gametophytes germinated and at <20%. sporophyte growth was often retarded. At <35%.0 76%
of gametophytes germinated. These results demonstrate that at <25%o recruitment may be
inhibited and sporophyte growth retarded.

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 & 5 day
exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34
psu (Salinity under normal marine conditions). Between 25-55 psu Saccharina latissima had high
photosynthetic ability at >80% of the control levels. Hyposaline treatment of 10-20 psu led to a
gradual decline of photosynthetic ability. After 2 days at 5 psu Saccharina latissima s
photosynthetic ability was ~30% of control. After 5 days at 5 psu Saccharina latissima specimens
became bleached and showed signs of severe damage. The experiment was conducted on
Saccharina latissima from the Arctic, and the authors suggest that at extremely low water
temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at
temperate latitudes. It is therefore possible that Saccharina latissima of the UK may be able to
acclimate to salinity changes more effectively and quicker.

Gagnon et al. (2013) observed Desmarestia spp. sporophytes degraded progressively in low salinity

https://www.marlin.ac.uk/habitats/detail/183
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treatments of 26, 23 & 20 psu (<20 psu was not tested). Desmarestia spp. accumulate sulphuric acid
throughout the growth season which is released when the sporophyte becomes stressed under
high temperatures or low salinities. Acid release causes progressive degradation of the sporophyte
and mortality. Gagnon et al. (2013) exposed Desmarestia viridis samples during 30 hour salinity and
temperature treatments, observing Desmarestia spp. degraded progressively in low salinity
treatments of 26, 23 & 20psu (<20psu was not tested).

Sensitivity assessment. A decrease in one MNCR salinity scale from “Full Salinity” (30-40psu) to
“Reduced Salinity” (18-30 psu) may result in mortality of Desmarestia spp. inhibit Saccorhiza
polyschides recruitment and inhibit Saccharina latissima photosynthesis. Resistance has been
assessed as ‘Low’ resilience as ‘High'. Sensitivity of this biotope to a decrease in salinity has been
assessed as ‘Low’.

Water flow (tidal High High
current) changes (local)  q: Medium A: High C: High Q: High A: High C: High Q: Medium A: High C: High

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites, the 1° had maximal
water velocities of 0.3 m/sec and the 2" 0.1 m/sec. At site 1 Saccharina latissima had significantly
larger biomass than at site 2 (16kg /m to 12 kg /m respectively). Peteiro & Freire (2013) suggested
that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard &
Mann (1979) measured Saccharina latissima productivity at greater water velocities and found
Saccharina latissima productivity is reduced in moderately strong tidal streams (< 1m/sec) when
compared to weak tidal streams (<0.5m/sec).

IR.HIR.KSed.SlatSac can be found from very strong (>3m/sec) tovery weak tidal streams.
IR.HIR.KSed.Sac, IR.HIR.KSed.DesFilR, IR.HIR.KSed.XKScrR can be found from moderately strong
(0.5-1.5m/sec) to weak tidal streams (0.5m/sec). An increase in tidal flow may increase local
sediment mobility and scour, potentially increasing dislodgment of kelps (Birket et al., 1998) and
Desmarestia spp.

Sensitivity assessment. Due to the range of tidal streams which these biotopes can be found a
change of 0.1m/s to 0.2m/s, is not likely to dramatically affect biotope structure. Resistance has
been assessed as ‘High’, resilience as ‘High'. Sensitivity has been assessed as ‘Not Sensitive'.

Emergence regime Low| High Low
changes Q:Low A: NR C: NR Q: High A: Low C: High Q:Low A: NR C: NR

IR.HIR.KSed.Sac and IR.HIR.KSed.XKScr can be found on sublittoral fringe rock so that the
characterizing species would be exposed during low spring tides. IR.HIR.KSed.SlatSac and
IR.HIR.KSed.DesFilR are found in the infralittoral and as such would only be exposed on extreme
low tides (Connor et al., 2004).

An increase in emergence will result in an increased risk of desiccation and mortality of the
dominant seaweeds (Desmarestia spp., Saccorhiza polyschides, Saccharina latissima). Removal of
canopy forming seaweeds has also been shown to increase desiccation and mortality of the
understory macro-algae (Hawkins & Harkin, 1985). Providing that suitable substrata are present,
the biotope is likely to re-establish further down the shore within a similar emergence regime to
that which existed previously. A decrease in emergence could, however, result in extension of the
biotope further up the shore, although its lower limit is still probably controlled by light

https://www.marlin.ac.uk/habitats/detail/183
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penetration, completion and grazing, so that entire extent of the biotope may move.

Sensitivity assessment. Resistance has been assessed as ‘Low’. Resilience as ‘High'. The sensitivity
of this biotope to a change in emergence is considered as ‘Low’.

Wave exposure changes High High Not sensitive
(local) Q: Low A:NR C: NR Q: High A: Low C: High Q: Low A: NR C: NR

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR are recorded
from extremely exposed to wave sheltered sites and characterized by rapidly colinizing macro-
algae (Connor et al., 2004). As a result of rapid recovery the community is relatively resistant to
disturbance, when compared to other kelp biotopes (e.g. IR.HIR.Kfar.LhypR). Birkett et al., (1998)
suggest that Saccharina latissima and Saccorhiza polyschides are rarely present in areas of wave
exposure, where they may be spatially out-competed by Laminaria hyperborea. However, the
seasonal unstable nature of the substrata or periodic sediment scour within theses biotopes is
likely to inhibit growth of long lived species, such as Laminaria hyperborea and allow opportunistic
species such as Demarestia spp., Saccharina latissima and Saccorhiza polyschides to proliferate. An
increase in local wave height may increase local sediment mobility and scour, potentially
increasing dislodgment of kelps (Birket et al., 1998) and Desmarestia spp.. The biotopes may appear
sparse after winter storms but the biotope recovers again due to rapid colonization and growth by
the dominant kelps and Desmatrestia spp.

Sensitivity assessment. The biotope is dominated by rapid colonizing species that tolerate or
rapidly recover from scour, siltation and burial. They occur across a broad wave exposure range,
and therefore a change in nearshore significant wave height of 3-5% is not likely to have a
significant effect on biotope structure. Resistance has been assessed as 'High'’, resilience as ‘High'.
Therefore, sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.

& Chemical Pressures

Resistance Resilience Sensitivity
Transition elements &  Njot Assessed (NA) Not assessed (NA) Not assessed (NA)
organo-metal
contamination Q:NRA:NR C: NR Q:NRA:NR C: NR Q:NRA: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg
> inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole et al., (1999) reported that Hg was very toxic to
macrophytes. Similarly, Hopkin & Kain (1978) demonstrated sub-lethal effects of heavy metals on
kelp gametophytes and sporophytes, including reduced growth and respiration. Sheppard et al.
(1980) noted that increasing levels of heavy metal contamination along the west coast of Britain
reduced species number and richness in holdfast fauna, except for suspension feeders which
became increasingly dominant. Gastropods may be relatively tolerant of heavy metal pollution
(Bryan, 1984). Although macroalgae species may not be killed, except by high levels of
contamination, reduced growth rates may impair the ability of the biotope to recover from other
environmental disturbances. Thompson & Burrows (1984) observed the growth of Saccharina
latissima sporophyte growth was significantly inhibited at 50 pg Cu /I, 1000 pg Zn/l and 50 pg Hg/I.
Zoospores were found to be more intolerant and significant reductions in survival rates were
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observed at 25 pg Cu/l, 1000 pg Zn/l and 5 pg/I.

Hydrocarbon & PAH Not Assessed (NA) Not assessed (NA) Not assessed (NA)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

This pressure is Not assessed but evidence is presented where available.

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR, are
predominantly recorded in the sub-tidal (<O m). These habitats are therefore not likely come into
contact with freshly released oil but only to sinking emulsified oil and oil adsorbed onto particles
(Birket et al., 1998). The mucilaginous slime layer coating of laminarians may protect them from
smothering by oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However,
Holt et al. (1995) reported that oil spills in the USA and from the Torrey Canyon had little effect on
kelp forests. Similarly, surveys of subtidal communities at a number sites between 1-22.5m below
chart datum showed no noticeable impacts of the Sea Empress oil spill and clean up (Rostron &
Bunker, 1997). Laboratory studies of the effects of oil and dispersants on several red algae species,
including Delesseria sanguinea (Grandy 1984; cited in Holt et al., 1995) concluded that they were all
sensitive to oil/ dispersant mixtures, with little differences between adults, sporelings, diploid or
haploid life stages.

Synthetic compound Not Assessed (NA) Not assessed (NA) Not assessed (NA)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

This pressure is Not assessed but evidence is presented where available.

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to
oil and dispersant contamination (see Smith, 1968). Saccharina latissima has also been found to be
sensitive to antifouling compounds. Johansson (2009) exposed samples of Saccharina latissima to
several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid
inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue
inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Smith (1968) observed that epiphytic and benthic red algae were intolerant of dispersant or oil
contamination during the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and
Spermothamnion repens and some tufts of Jania rubens survived together with Osmundea pinnatifida,
Gigartina pistillata and Phyllophora crispa from the sublittoral fringe. Delesseria sanguinea was
probably the most intolerant since it was damaged at depths of 6m (Smith, 1968). Holt et al.(1995)
suggested that Delesseria sanguinea is probably generally sensitive of chemical contamination.

Radionuclide Not relevant (NR) Not relevant (NR) No evidence (NEv)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

No evidence
Introduction of other Not Assessed (NA) Not assessed (NA) Not assessed (NA)
substances Q:NRA:NR C:NR Q:NRA:NR C:NR Q:NRA:NR C:NR

This pressure is Not assessed.
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b . High High
e-oxygenation
Q: Medium A: High C: High Q: Medium A: High C: High Q: Medium A: High C: High

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae
(Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low
oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the
oxygen depletion is short-term (Frieder et al., 2012).If levels do drop below 4 mg/| negative effects
on these organisms can be expected with adverse effects occurring below 2mg/I (Cole et al., 1999).
However, in wave exposed, highly mixed, areas, the hypoxic conditions are likely to be transient.

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration
but not cause a loss of the macroalgae population directly. Resistance has been assessed as ‘High’,
Resilience as ‘High'. Sensitivity has been assessed as ‘Not sensitive’ at the benchmark level.

Medium High Low
Q: Medium A: High C: High Q: High A: Medium C: High Q: Medium A: Medium C: High

Nutrient enrichment

Conolly & Drew (1985) found that Saccharina latissima sporophytes plants at the most eutrophic
site in a study on the east coast of Scotland where nutrient levels were 25% higher than ambient
levels exhibited a high growth rate. However, Read et al. (1983) reported after removal of a major
sewage pollution in the Firth of Forth, Saccharina latissima became abundant where previously it
had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids.
Within 3 years of the experiment no significant effect was observed in the communities, however
4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred.
Although Bokn et al. (2003) focussed on fucoids the results could indicate that long-term (>4 years)
nutrient loading can result in community shift to ephemeral algae species, and explain the disparity
between the findings of Conolly & Drew (1985) & Read et al. (1983).

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a
variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats
(including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from
all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also
highlighted that macro-algal communities are relative tolerant to contamination, but that
contaminated communities can have low diversity assemblages which are dominated by
opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).
Nutrient enrichment may also result in phytoplankton blooms that increase turbidity and
therefore may negatively impact photosynthesis.

Sensitivity assessment. However, the biotope is assessed as ‘Not sensitive’ at the pressure
benchmark that assumes compliance with good status as defined by the WFD.

. . Medium High Low
Organic enrichment
Q: Medium A: High C: High Q: High A: Medium C: High Q: Medium A: Medium C: High
Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates
close to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of
Scotland. At St Andrews nitrate levels were 20.22uM, which represents an approx 25% increase
when compared to other comparable sites (approx 15.87 uM). Handa et al. (2013) also reported
Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to
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Norwegian Salmon farms, where elevated ammonium can be readily absorbed. Read et al. (1983)
reported after the installation of a new sewage treatment works, which reduced the suspended
solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant
where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment
on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the
communities, however 4-5 years into the experiment a shift occurred from perennials to
ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could
indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral
algae species. Differences between the findings of the aforementioned studies are likely to be
related to the level of organic enrichment however could also be time dependent.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a
variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats
(including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from
all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also
highlighted that macroalgal communities are relatively tolerant to contamination, but that
contaminated communities can have low diversity assemblages which are dominated by
opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).
Organic enrichment may also result in phytoplankton blooms that increase turbidity and therefore
may negatively impact photosynthesis.

Sensitivity assessment. Although short-term exposure (<4 years) to organic enrichment may not

affect seaweeds directly, indirect effects such as turbidity may significantly affect photosynthesis.
Therefore, resistance has been assessed as ‘Medium’, resilience as ‘High’ and sensitivity as 'Low’.

A Physical Pressures

Resistance Resilience Sensitivity
Physical loss (toland or [Nl High
freshwater habitat) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’. Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to None High
another seabed type)  q:High A: High C: High Q: High A: High C: High Q: High A: High C: High

If rock substrata were replaced with sedimentary substrata this would represent a fundamental
change in habitat type, which Saccharina latissima, Saccorhiza polyschides and Desmarestia spp. would
not be able to tolerate. The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very Low’.
The sensitivity of this biotope to change from sedimentary or soft rock substrata to hard rock or
artificial substrata or vice-versa s assessed as ‘High'.
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Physical change (to Not relevant (NR) Not relevant (NR) Not relevant (NR)
another sediment type) q:NRA:NRC:NR Q:NRA:NRC: NR Q:NRA:NRC:NR

Not relevant

Habitat structure Not relevant (NR) Not relevant (NR) Not relevant (NR)
changes - removal of
substratum (extraction) QNRA:NRC:NR Q: NRA:NR C: NR Q: NRA:NR C: NR

Not relevant

Abrasion/disturbance of High Medium
the surface of the
substratum or seabed ~ QLowA:NRC:NR Q: dlgil A: kiigh C: kligh A

Abrasion of the substratum e.g. from bottom or pot fishing gear, cable laying etc. may cause
localised mobility of the substrata and mortality of the resident community. The effect would be
situation dependent however if bottom fishing gear were towed over a site it may mobilise a high
proportion of the rock substrata and cause high mortality in the resident community.

However, the characteristic species within IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac,
IR.HIR.KSed.DesFilR, IR.HIR.KSed.XKScrR have rapid growth rates and are distinctive of
“disturbed areas. Information on from experimental clearances is summarised under resilience
above.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High'. Sensitivity
has been assessed as ‘Medium’.

Penetration or Not relevant (NR) Not relevant (NR) Not relevant (NR)
disturbance of the
substratum subsurface Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

Not relevant, please refer to pressure “Abrasion/disturbance of the substratum on the surface of

the seabed”.
Changesinsuspended  |\[o]sfs High Low
solids (water ClaritY) Q: Medium A: Medium C: Medium  Q: High A: High C: High Q: Medium A: Medium C: Medium

Suspended Particle Matter (SPM) concentration has a linear relationship with subsurface light
attenuation (Kd) (Devlin et al., 1998). Light penetration influences the maximum depth at which
kelp species can grow and it has been reported that laminarians grow at depths at which the light
levels are reduced to 1 percent of incident light at the surface. Maximal depth distribution of
laminarians, therefore, varies from 100 m in the Mediterranean to only 6-7m in the silt laden
German Bight. In Atlantic European waters, the depth limit is typically 35 m. In very turbid waters
the depth at which kelp is found may be reduced, or in some cases excluded completely (e.g. Severn
Estuary), because of the alteration in light attenuation by suspended sediment (Liining, 1990;
Birkett et al., 1998b). Limited information is available on which to assess the effect of a decrease in

https://www.marlin.ac.uk/habitats/detail/183



Date: 2015-12-16 Mixed kelps with scour-tolerant and opportunistic foliose red seaweeds on scoured or sand-covered infralittoral rock

- Marine Life Information Network

water clarity on Laminariales show a decrease of 50% photosynthetic activity when turbidity
increases by 0.1/m (light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg,

2009). Demarestia spp. recruitment has also been found highly affected by light attenuation and
frequency, typically rare (ca <10% coverage (Edwards, 1998) beneath kelp canopies where light
levels can be 1-5% of surface irradiance (Kitching, 1941).

A decrease in water clarity as a result of mobilised sediments may also increase sediment scour of
biotopes within close proximity. However, the characterizing species within IR.HIR.KSed.Sac,
IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed.XKScrR have rapid growth and
colonisation rates are as such relatively resilient to sediment scouring.

Sensitivity assessment. An increase in water clarity from clear to intermediate (10-100 mg/l)
represent a change in light attenuation of ca 0.67-6.7 Kd/m and is likely to result in a greater than
50% reduction in photosynthesis of Laminaria spp. Resistance to this pressure is defined as ‘Low’ as
the biotope is typical of sediment affected habitats. Resilience to this pressure is defined as ‘High’
and this biotope is regarded as having a sensitivity of ‘Low’.

Smothering and siltation High High
rate changes (light) Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Saccharina
latissima, Saccorhiza polyschides and Desmarestia spp. sporophytes but may provide a physical
barrier to zoospore settlement and therefore negatively impact on recruitment processes (Moy &
Christie, 2012). Laboratory studies showed that kelp and gametophytes can survive in darkness
for between 6-16 months at 8°C and would probably survive smothering by a discrete event and
once returned to normal conditions gametophytes resumed growth or maturation within 1 month
(Dieck, 1993). Saccorhiza polyschides zoospores successfully developed after 180 days of darkness
(Norton, 1977). Intolerance to this factor is likely to be higher during the peak periods of
sporulation and/or spore settlement.

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR are found from
extreme wave exposed-sheltered sites (Connor et al., 2004). In wave exposed biotopes deposited
sediment is unlikely to remain for more than a few tidal cycles (due to water flow or wave action).
In sheltered biotopes deposited sediment could remain and the effects of deposition could be
longer lasting.

Sensitivity assessment. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity
as ‘Not Sensitive'.

Smothering and siltation Medium High Low
rate changes (heavy) Q:Low A:NRC: NR Q: High A: High C: High Q: Low A: Low C: Low

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage
Saccharina latissima, Saccorhiza polyschides and Desmarestia spp. sporophytes but may provide a
physical barrier to zoospore settlement and therefore negatively impact on recruitment processes
(Moy & Christie, 2012). The volume of sediment may also inundate juvenile sporophytes. Given the
short life expectancy of Saccharina latissima (2-4 years;Parke, 1948), self sustaining populations are
likely to be dependent on annual recruitment (Moy & Christie, 2012). Given the microscopic size of
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the gametophyte, 30 cm of sediment could be expected to significantly inhibit growth. Laboratory
studies showed that kelp and gametophytes can survive in darkness for between 6-16 months at
8°C and would probably survive smothering by a discrete event and once returned to normal
conditions gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Saccorhiza
polyschides zoospores, specifically, successfully developed after 180 days of darkness (Norton,
1977). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or
spore settlement.

IR.HIR.KSed.XKScrR is subject to periodic burial from surrounding sediments, however
IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR are recorded
from extreme wave exposed-sheltered sites (Connor et al., 2004) and therefore the effects of
burial are likely to be mediated. In highly wave exposed biotopes deposited sediment is unlikely to
remain for more than a few tidal cycles (due to water flow or wave action). In sheltered biotopes
the high volume of deposited sediment could remain and the effects could be longer lasting.
However, these biotopes are periodically disturbed by winter storms or sediment scour therefore
deposited sediments are unlikely to remain for a full season.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘High'’. Sensitivity
has been assessed as ‘Low’.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q:NRA: NR C: NR Q:NRA: NR C:NR Q:NRA:NR C:NR
Not assessed.
. Not relevant (NR) Not relevant (NR) No evidence (NEv)
Electromagnetic changes
Q:NRA:NR C: NR Q:NRA: NR C: NR Q:NRA: NR C: NR
No evidence
Underwater noise Not relevant (NR) Not relevant (NR) Not relevant (NR)
changes Q:NRA:NRC:NR Q:NRA:NR C: NR Q:NRA: NR C: NR
Not relevant
Introduction of light or  [Ke}lJ] Medium Medium
shading Q:Low A:NRC: NR Q:Low A: NR C: NR Q:Low A: NR C: NR

There is no evidence to suggest that anthropogenic light sources would affect Saccharina latissima,
Saccorhiza polyschides and Desmarestia spp. Shading of the biotope (e.g. by construction of a
pontoon, pier etc) could adversely affect the biotope in areas where the water clarity is also low,
and tip the balance to shade tolerant species, resulting in the loss of the biotope directly within the
shaded area, or a reduction in seaweed abundance.

Sensitivity assessment. Resistance is probably 'Low’, with a 'Medium' resilience and a sensitivity
of 'Medium’, albeit with 'low' confidence due to the lack of direct evidence.
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Barrier to species Not relevant (NR) Not relevant (NR) Not relevant (NR)
movement Q:NRA:NR C:NR Q:NRA: NR C:NR Q:NRA:NR C:NR

Not relevant. This pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal
of spores. But spore dispersal is not considered under the pressure definition and benchmark.

Death or injury by Not relevant (NR) Not relevant (NR) Not relevant (NR)
collision Q:NRA: NR C: NR Q:NRA: NR C: NR Q:NR A: NR C: NR

Not relevant. Collision from grounding vessels is addressed under abrasion above.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q:NRA:NRC: NR Q:NRA: NRC: NR Q:NRA:NRC: NR

Visual disturbance

Not relevant

% Biological Pressures

Resistance Resilience Sensitivity
Genetic modification & Nt relevant (NR) Not relevant (NR) No evidence (NEv)
translocation of
indigenous species Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

At the time of writing no evidence regarding the genetic modification or effects of translocation of
native kelp populations was found.

!ntro?luctlon or s.pread of erv Lo High
invasive non-indigenous
species Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non
Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher,
2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was
first recorded in the UK, Hamble Estuary, in June 1994 (Fletcher & Manfredi, 1995) and has since
spread to a number of British ports. Undaria pinnatifida is an annual species, sporophytes appear in
Autumn and grow rapidly throughout winter and spring during which they can reach a length of
1.65m (Birket et al., 1998). Farrell & Fletcher (2006) suggested that native short lived species that
occupy similar ecological niches to Undaria pinnatifida, such as Saccharina latissima, Saccorhiza
polyschides or Desmarestia spp., are likely to be worst affected and out-competed by Undaria
pinnatifida. Where present an abundance of Undaria pinnatifida has corresponded to a decline in
Saccharina latissima (Farrel & Fletcher, 2006) and Laminaria hyperborea (Hieser et al., 2014).
Furthermore disturbance has been found a significant pathway for the establishment of Undaria
pinnatifida (Valentine & Johnson, 2003). Therefore, periodic disturbance within this biotope could
facilitate the establishment of Undaria pinnatifida.

In new Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete
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U.pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the
fucoid recovery was partially due to an annual Undaria pinnatifida die back, which as noted by
Heiser et al., (2014) does not occur in Plymouth sound, UK. Undaria pinnatifida was successfully
eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of
70°C (Wotton et al., 2004) however numerous other eradication attempts have failed, and as noted
by Fletcher & Farrell, (1999) once established Undaria pinnatifida resists most attempts of long-
term removal. The biotope is unlikely to fully recover until Undaria pinnatifida is fully removed from
the habitat, which as stated above is unlikely to occur.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Very low’.
The sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘High'.

Introduction of microbial No evidence (NEv) No evidence (NEv) No evidence (NEv)
pathogens Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA: NR C: NR

Laminarians may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae
show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark
spots to heavy deformations and completely crippled thalli Infection can reduce growth rates of
host algae (Peters & Scaffelke, 1996). The marine fungi Eurychasma spp can also infect early life
stages of laminarians and Desmatrestia viridis, however the effects of infection are unknown (Mller
etal., 1999).

Sensitivity assessment. Due to a lack of conclusive evidence the sensitivity of this biotope cannot
be assessed against this pressure.

Removal of target None High Medium
species Q:Low A: NR C: NR Q: High A: High C: High Q: Low A: NR C: NR

There has been recent commercial interest in Saccharina latissima as a consumable called “sea
vegetables” (Birket et al., 1998). However, Saccharina latissima sporophytes are typically matured
on ropes (Handa et al. 2013) and not directly extracted from the seabed, as with Laminaria
hyperborea (Christie et al., 1998). No evidence has been found for commercial extraction of
Saccorhiza polyschides or Desmarestia spp.. However, if the biotopes were subject to harvest, then a
large propostion of the resisdent kelp population could be removed.. Thus evidence to assess the
resistance of IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR to
direct harvesting is limited. It has been assumed that if targeted harvesting were in operation it
would remove >75% of sporophytes.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High'. Sensitivity
has been assessed as ‘Medium’.

Removal of non-target  [N[eJ§ls High Medium
species Q:Low A: NR C: NR Q: High A: High C: High Q: Low A: NR C: NR

IR.HIR.KSed.Sac, IR.HIR.KSed.SlatSac, IR.HIR.KSed.DesFilR, IR.HIR.KSed. XKScrR Are
characterised by a canopy of Saccorhiza polyschides, Saccharina latissima and Desmarestia spp. If the
canopy were removed the red seaweeds understory community may become bleached, and/or
perish (Hawkins & Harkin, 1985), leading to further reductions in biodiversity. The biotope is
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however naturally periodically disturbed and as such would recover rapidly.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resiliance as ‘High'. Sensitivity
has been assessed as ‘Medium’.
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