

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

A red seaweed (*Rhodothamniella floridula*)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

Karen Riley

2005-11-15

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1840]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Riley, K. 2005. *Rhodothamniella floridula* A red seaweed. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1840.2

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

Researched by	Karen Riley	Refereed by	This information is not refereed.
Authority	(Dillwyn) Feldmann, 1978		
Other common names	-	Synonyms	Rhodochorton floridulum (Dillwyn) Feldmann, 1978, Audouinella floridula (Dillwyn) Feldmann, 1978

Summary

Description

Rhodothamniella floridula is a perennial brownish red seaweed found on the lower shore. It usually covers large areas of rock in sandy habitats. At the base of the seaweed, filaments bind with sand to form a spongy, carpet like mass. The filaments are well-spaced and branch out up to 3 cm in length. Upright filaments of the seaweed uncovered by the ebbing tide appear as tufts of hair. When plants dry out they have a purplish tinge.

Q Recorded distribution in Britain and Ireland

Rhodothamniella floridula occurs on the coast of Scotland, the north east, south and south west coasts of England and in Wales and Northern Ireland.

9 Global distribution

Occurs in northwest Europe

Rhodothamniella floridula usually occurs on sand-covered rocks in the littoral and sublittoral to about 5 m depth (as *Rhodochorton floridulum* and *Audouinella floridula* respectively) (Dickinson, 1963; Dixon & Irvine, 1997). *Rhodothamniella floridula* (as *Audouinella floridula*) inhabits areas in shelter, partly under larger seaweeds (Hayward *et al.*, 1996).

↓ Depth range

5m

Q Identifying features

- Brownish red in colour
- The base forms a spongy, carpet like covering on rocks
- Fine branched filaments up to 3 cm in length
- Branches may be upright or creeping

1 Additional information

-none-

✓ Listed by

% Further information sources

Search on:

G 🕄 G 🛞 NBN WoRMS

Biology review

≣	Taxonomy		
	Phylum	Rhodophyta	Red seaweeds
	Class	Florideophyceae	
	Order	Palmariales	
	Family	Rhodothamniellaceae	
	Genus	Rhodothamniella	
	Authority	(Dillwyn) Feldmann, 1978	
	Recent Synonyms	Rhodochorton floridulum (Dillwyn) Feldmann, 1978 (Dillwyn) Feldmann, 1978	Audouinella floridula

f	Biology	
	Typical abundance	See additional information
	Male size range	maximum of 30mm
	Male size at maturity	
	Female size range	Small-medium(3-10cm)
	Female size at maturity	
	Growth form	Cushion
	Growth rate	
	Body flexibility	High (greater than 45 degrees)
	Mobility	
	Characteristic feeding method	Autotroph
	Diet/food source	
	Typically feeds on	
	Sociability	
	Environmental position	Epibenthic
	Dependency	Independent.
	Supports	None
	Is the species harmful?	No

<u>m</u> Biology information

Rhodothamniella floridula is perennial. The hair-like filaments are approximately 20-25µm in diameter. The species has been noted to trap sand and mud in a layer up to 5cm thick (Lobban & Wynne, 1981).

Dixon & Irvine (1977) observed that the growth of *Rhodothamniella floridula* (as *Audouinella floridula*) is much faster in winter, whilst in the summer the spongy cushion can become bleached or disrupted.

Habitat preferences

Physiographic preferences	Open coast, Strait / sound, Enclosed coast / Embayment
Biological zone preferences	Lower littoral fringe, Upper eulittoral, Upper littoral fringe
Substratum / habitat preferences	Bedrock, Large to very large boulders, Rockpools, Small boulders
Tidal strength preferences	Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences	Moderately exposed, Sheltered, Very sheltered
Salinity preferences	Full (30-40 psu)
Depth range	5m
Other preferences	
Migration Pattern	Non-migratory / resident

Habitat Information

Rhodothamniella floridula has been found on substrata other than sandy rock. For example, in St. Andrews Bay, *Rhodothamniella floridula* (as *Rhodochorton* spp.) occurred in tufts on *Halidrys siliquosa* (a brown seaweed) and in pools where *Fabricia stellaris* (a polychaete worm) was common (Laverack & Blackler, 1974). In Co. Kerry, Ireland *Rhodothamniella floridula* (as *Audouinella floridula*) was also found growing on peat masses, where it binds the peat and sand together (Murphy, 1981).

𝒫 Life history

Adult characteristics

Reproductive type	Oogamous
Reproductive frequency	Annual protracted
Fecundity (number of eggs)	No information
Generation time	Insufficient information
Age at maturity	Insufficient information
Season	See additional information
Life span	See additional information
Larval characteristics	
Larval/propagule type	-
Larval/juvenile development	Spores (sexual / asexual)
Duration of larval stage	No information
Larval dispersal potential	No information

1 Life history information

Larval settlement period

Lifespan

No information was found concerning the longevity of *Rhodothamniella floridula*. However, it is likely to have a lifespan of 5-10 years, similar to other red seaweeds, such as *Furcellaria lumbricalis*.

Insufficient information

Reproductive type

Dickinson (1963) and Dixon & Irvine (1977) found that asexual Rhodothamniella floridula (as Rhodochorton floridulum and Audouinella floridula respectively) plants bear cruciate tetrasporangia. The tetrasporangia are ovoid and are arranged on the upper parts of the erect axes, occurring singly or in clusters (Dixon & Irvine, 1977). Stegenga (1978) found that tetraspores of cultured Rhodothamniella floridula (as Rhodochorton floridulum) measured up to 35 x 30 µm. He also noted that these were formed under all combinations of temperatures from 4 °C to 16 °C at any length of daylight. A tetrasporophyte, rather than a carposporophyte, of Rhodothamniella floridula (as Rhodochorton floridulum) develops directly from the fertilised carpogonium with only one erect filament and one rhizoid (Lobban & Wynne, 1981, Cole & Sheath, 1990). Stegenga (1978) observed that gametophytes of Rhodothamniella floridula (as Rhodochorton floridulum) were unisexual and possessed a unicellular base from which only one filament arose. It is also known that the subclass Florideophyceae specialise in oogamous reproduction in which the zygote is returned on the female gametophyte, giving rise to complex post-fertilisation development, known as the carposporophyte. Observations on Rhodothamniella floridula (as Rhodochorton floridulum) showed that the tetraspores germinate to give gametangial plants which were small compared with the tetrasporangial phase (Knaggs & Conway, 1964)

Fecundity

Red algae are typically high fecund, but their spores are non-motile (Norton, 1992) and therefore highly reliant on the hydrodynamic regime for dispersal. Stegenga (1978) noted that tetrasporangia germinated in 'rather low numbers', but most abundantly at high temperatures and long days.

Timing of reproduction

Dixon & Irvine (1977) noted that the greatest abundance of tetrasporangia occurred between November and March. Furthermore, *Rhodothamniella floridula* (as *Rhodochorton* spp.) are present throughout the year (Laverack & Blackler, 1974). However, Stegenga (1978) found that there were no tetrasporangia present during the winter.

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High	High	Moderate	Moderate
Removal of the substratum wo Intolerance has therefore been additional information below).				
Smothering	High	High	Moderate	<mark>High</mark>
The plant would be completely survive. Intolerance has been a additional information below).				
Increase in suspended sediment	Intermediate	Very high	Low	Low
Rhodothamniella floridula binds slight increase in suspended se and will probably have little adv increase in suspended sedimen sediment concentration above 'turbidity') and siltation. Furthe sand-tolerant, where sand scou absent and ephemeral algae su Therefore intolerance has been high.	diment may mea verse effect on i t concentration this threshold w ermore, Connor ir is more severe ch as <i>Ulva</i> spp. a	an that there is m t. However, it is r could be withsto /ill increase light <i>et al</i> . (1997b) not e, Rhodothamniel nd Porphyra spp.	nore sand to bin not known how ood. An increase attenuation (co ted that, althou la floridula may dominate the s	nd with the plant much of an e in suspended onsidered in ligh the species is be rare or substratum.
Decrease in suspended sediment	Low	Very high	Very Low	Moderate
<i>Rhodothamniella floridula</i> is unli However, the species needs see do so. Intolerance has therefor	diment to bind t	o and will theref	ore need enoug	gh available to

Dessication

Rhodothamniella floridula is subject to some desiccation on the lower shore where Dickinson (1963) observed that plants may dry out and develop a purplish tinge. It seems likely that at the benchmark level that the upper parts of plants may be adversely affected. However, the habit of the alga living in sponge-like masses suggests that lower parts may be kept moist and regrowth would be expected. Therefore, intolerance has been assessed as intermediate and recoverability is likely to be very high.

Increase in emergence regime

The benchmark increase in emergence would result in the individuals furthest up the shore experiencing greater risk of desiccation and greater fluctuations in temperature and salinity. Some mortality is likely and therefore intolerance has been assessed as intermediate. Recoverability has been recorded as high (see additional information below).

High

Intermediate

Moderate

Moderate

Intermediate Very high

Low

Low

Decrease in emergence regime

Rhodothamniella floridula occurs predominantly in the littoral and sublittoral to about 5m depth (Dickinson, 1963; Dixon & Irvine, 1997) (as Rhodochorton floridulum and Audouinella floridula respectively) and is often found in rockpools. It is therefore the species would probably tolerate a decrease in emergence.

Increase in water flow rate

Tolerant

Low

Low

Low

Tolerant

Not relevant

Not relevant

Not sensitive

Not sensitive

High

High

High

High

Moderate water movement is beneficial to seaweeds as it carries a supply of nutrients and gases to the plants and removes waste products. However, if flow becomes too strong, plants may become displaced. Additionally, an increase to stronger flows may inhibit settlement of spores and remove adults or germlings. Rhodothamniella floridula has a compact solid 'mat' or 'cushion'. Whilst the biotope with which it is associated occurs in 'moderately strong' or 'weak' tidal flows, the compact nature of the mat probably makes it resistant to displacement by an increase in water flow. The species has been assessed as tolerant of an increase in water flow.

Decrease in water flow rate

The biotope with which Rhodothamniella floridula is associated occurs in areas where the water flow rate is either 'moderately strong' or 'weak' (Connor et al., 1997b). If a decrease in water flow rate to 'weak' or 'very weak (negligible)' may mean that the supply of nutrients to the seaweed would be depleted. However, adverse effects would probably only be seen in plants inhabiting the 'very weak' water flow areas. Intolerance has therefore been assessed as low. Recoverability is likely to be very high.

Increase in temperature

Maximum sea surface temperatures around the British Isles rarely exceed 20 °C (Hiscock, 1998) and, as Rhodothamniella floridula occurs throughout north west Europe it will therefore be subject to a wider range of temperatures than experienced in the British Isles. It is therefore expected that an increase in temperature will not result in mortality of the species.

However, high temperatures may cause photosynthesis and growth to be impaired. For instance, Dixon & Irvine (1977) observed that the growth of Rhodothamniella floridula (as Audouinella floridula) is much faster in winter, whilst in the summer the spongy cushion can become bleached or disrupted. Stegenga (1978) found that tetraspores of cultured Rhodothamniella floridula (as Rhodochorton floridulum) were formed under all combinations of temperatures from 4 °C to 16 °C at any length of daylight, although they were most abundant at high temperatures and long days.

Rockpool temperatures could also rise significantly and some mortality may occur in exceptional conditions. Intolerance has been assessed as low. Physiological processes should quickly return to normal when temperatures return to their original levels so recoverability has been assessed as very high.

Decrease in temperature

Very high

Very Low

Minimum surface sea water temperatures rarely fall below 5 °C around the British Isles (Hiscock, 1998) and, as Rhodothamniella floridula occurs throughout north west Europe it will therefore be subject to a wider range of temperatures than experienced in the British Isles. It is therefore expected that a decrease in temperature will not result in mortality of the species.

Dixon & Irvine (1977) observed that the growth of Rhodothamniella floridula (as Audouinella floridula) is much faster in winter, whilst in the summer the spongy cushion can become

High

Very high

Very high

Very Low

Very Low

bleached or disrupted. It is therefore likely that a reduction in temperature will increase the growth rate of the species.

However, low temperatures may delay or slow reproduction. Stegenga (1978) found that tetraspores of cultured *Rhodothamniella floridula* (as *Rhodochorton floridulum*) were formed under all combinations of temperatures from 4 °C to 16 °C at any length of daylight, although they were most abundant at high temperatures and long days. intolerance has therefore been assessed as low. The reproductive rate should quickly return to normal when temperatures return to their original levels so recoverability has been recorded as very high.

Increase in turbidity

Intermediate High

Moderate

High

High

High

Low

Not sensitive

Low

In general, subtidal red algae are able to exist at relatively low light levels (Gantt, 1990). *Rhodothamniella floridula* (as *Audouinella floridula*) inhabits areas in shelter, partly under larger seaweeds (Hayward *et al.*, 1996) and is probably adapted to growth in low light conditions. Stegenga (1978) found that tetraspores of cultured *Rhodothamniella floridula* (as *Rhodochorton floridulum*) were formed at any length of daylight, although they were most abundant at high temperatures and long days. This suggests that a decrease in the amount of light reaching the plant will result in a decrease in the reproductive potential of the species. No information is available concerning mortality associated with an increase in turbidity, but is likely that at high levels of turbidity some mortality will occur. Therefore, intolerance has been assessed as intermediate. Recoverability is likely to be high (see additional information below).

Decrease in turbidity

Stegenga (1978) found that tetraspores of cultured *Rhodothamniella floridula* (as *Rhodochorton floridulum*) were formed at any length of daylight, although they were most abundant at high temperatures and long days. This suggests that an increase in the amount of light reaching the plant will result in an increase in the reproductive potential of the species, if there is no overriding temperature effect. Therefore, *Rhodothamniella floridula* is recorded as being 'tolerant' to a decrease in turbidity, with the potential to benefit from the factor.

Not relevant

Tolerant

Increase in wave exposure

Intermediate High

The biotope with which *Rhodothamniella floridula* is mostly associated occurs in 'Moderately exposed', 'Sheltered' and 'Very sheltered' conditions (Connor *et al.*, 1997b). Stronger wave action is likely to cause damage to filaments, resulting in reduced photosynthesis and compromised growth, but more likely dislodgement by the force of wave action and by scouring from sand and gravel mobilised by increased wave action (Hiscock, 1983). The deepest living individuals are likely to avoid the worst impact of wave exposure, but some mortality in the total population is likely. Therefore, intolerance has been assessed as intermediate. Recoverability is likely to be high (see additional information below).

Decrease in wave exposure

As the biotope with which *Rhodothamniella floridula* is mostly associated occurs in 'Moderately exposed', 'Sheltered' and 'Very sheltered' conditions (Connor *et al.*, 1997b) the species is unlikely to be affected by a decrease in wave exposure. It is therefore recorded as 'tolerant'.

Noise

Tolerant

Tolerant

Tolerant

Not relevant

Not relevant

Not relevant

ant <mark>Not sensitive</mark> High

Not sensitive

Not sensitive

Algae have no mechanisms for detection of sound and, therefore would be not sensitive to disturbance by noise.

Visual Presence

Algae have no visual acuity and, therefore would not be affected by visual disturbance.

High

Intermediate

Abrasion & physical disturbance

No information was found concerning the effects of abrasion on *Rhodothamniella floridula*. However, this species is characteristic of sand scoured habitats and is probably tolerant. But an anchor, or similar impact, is likely to rip through the mat and remove a proportion of population. Intolerance has been assessed to be intermediate. Recoverability is likely to be high (see additional information below).

High

Low

Moderate

Displacement High High Moderate Moderate

It is unlikely that the holdfast would survive removal from the substratum and be able to attach to a new substratum. Intolerance has therefore been assessed as high. Recoverability is likely to be high (see additional information below).

A Chemical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Synthetic compound contamination	High	High	Moderate	Moderate

No information was found relating to the effects of synthetic chemicals on *Rhodothamniella floridula*. However, inferences may be drawn from the sensitivities of red algal species generally. O'Brien & Dixon (1976) suggested that red algae were the most sensitive group of algae to oil or dispersant contamination, possibly due to the susceptibility of phycoerythrins to destruction. They also reported that red algae are effective indicators of detergent damage since they undergo colour changes when exposed to a relatively low concentration of detergent. Laboratory studies of the effects of oil and dispersants on several red algal species concluded that they were all sensitive to oil/dispersant mixtures, with little difference between adults, sporelings, diploid or haploid stages (Grandy, 1984, cited in Holt *et al.*, 1995). Cole *et al.* (1999) suggested that herbicides, such as simazine and atrazine were very toxic to macrophytes. The evidence suggests that in general red algae are very intolerant of synthetic chemicals. Intolerance has therefore been recorded as high. Recoverability has been assessed as high (see additional information below).

Heavy metal contamination

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg > inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole *et al.* (1999) reported that Hg was very toxic to macrophytes. The sub-lethal effects of Hg (organic and inorganic) on the sporelings of an intertidal red algae, *Plumaria elegans*, were reported by Boney (1971). 100% growth inhibition was caused by 1 ppm Hg. No information was found concerning the effects of heavy metals on *Rhodothamniella floridula* specifically, and therefore an intolerance assessment has not been attempted.

High

Hydrocarbon contamination

No evidence was found specifically relating to the intolerance of *Rhodothamniella floridula* to hydrocarbon contamination. However, inferences may be drawn from the sensitivities of red algal species generally. O'Brien & Dixon (1976) suggested that red algae were the most sensitive group of algae to oil or dispersant contamination, possibly due to the susceptibility of phycoerythrins to destruction. Laboratory studies of the effects of oil and dispersants on several red algal species concluded that they were all sensitive to oil/dispersant mixtures, with little difference between adults, sporelings, diploid or haploid life stages (Grandy, 1984, cited in Holt *et al.*, 1995). Intolerance has been assessed as high. Recoverability has been recorded as high (see additional information below).

High

Moderate

Not relevant

Not relevant

Moderate

Radionuclide contamination		Not relevant		Not relevant
No evidence was found concern contamination.	ing the intolera	nce of Rhodotha	mniella floridula	to radionuclide
Changes in nutrient levels	Intermediate	<mark>High</mark>	Low	Low
A moderate increase in nutrient However, excessive eutrophica by ephemeral species with rapic Therefore intolerance has been high (see additional information	tion would prob I growth rates, s assessed as inte	ably result in th such as filament	e species being ous green and l	out-competed prown algae.
Increase in salinity	Not relevant	Not relevant	Not relevant	High
<i>Rhodothamniella floridula</i> occurs found on survival in hypersaline may occasionally lead to higher full salinity leads to an intoleran	conditions, the than normal sal	species occurs inities. Howeve	in rockpools wł r, occurrence o	nere evaporation
Decrease in salinity	High	High	Moderate	Moderate
No information was found on th However, as this species occurs of the population would die in lo high. Recoverability is likely to b	only in full salir ower salinities. T	ity conditions it herefore, intole	is probable tha erance has beer	at a proportion
Changes in oxygenation		Not relevant		Not relevant
The effects of reduced oxygena respiration, but this may be pro- photosynthesis. Lack of oxygen by Vidaver, 1972). A study of th revealed that specimens died af 1972). Insufficient information	vided by produc may impair bot e effects of ano ter 24 hours at	tion of oxygen of h respiration an xia on another r 15°C but that so	during periods of d photosynthes ed alga, <i>Delesse</i> ome survived at	of sis (see review ria sanguinea, 5°C (Hammer,
Rhodothamniella floridula.				
Biological Pressures				
Biological Pressures	Intolerance	Recoverability	Sensitivity	Confidence
Biological Pressures Introduction of microbial pathogens/parasites		Recoverability Not relevant	Sensitivity	Confidence Not relevant
Biological Pressures			Sensitivity	
Biological Pressures Introduction of microbial pathogens/parasites			Sensitivity	
Biological Pressures Introduction of microbial pathogens/parasites No information has been found.		Not relevant Not relevant	·	Not relevant Not relevant

There is no extraction of Rhodothamniella floridula known to occur.

Extraction of other species

No information was found concerning effects of harvesting other species on *Rhodothamniella floridula*.

Additional information

É

Not relevant

No information was found relating to colonization or recolonization rates of *Rhodothamniella floridula*. Red algae are typically high fecund, but their spores are non-motile (Norton, 1992) and therefore highly reliant on the hydrodynamic regime for dispersal. Kain (1975) reported that after displacement some Rhodophyceae were present after 11 weeks, and after 41 weeks, in June, Rhodophyceae species predominated. However, Stegenga (1978) noted that tetrasporangia of *Rhodothamniella floridula* (as *Rhodochorton floridulum*) germinated in 'rather low numbers'. The species is therefore probably going to recover within the 'high' category, although recovery of remote populations will be more protracted and dependent upon favourable currents bringing spores.

Importance review

Policy/legislation

- no data -

National (GB) importance

Global red list (IUCN) category

Non-native

Native Origin -

_

Date Arrived

-

1 Importance information

-none-

Bibliography

Boney, A.D., 1971. Sub-lethal effects of mercury on marine algae. *Marine Pollution Bulletin*, 2, 69-71.

Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In *Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters*, vol. 5. *Ocean Management*, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

Cole, K.M. & Sheath, R.G., 1990. Biology of the Red Algae. Cambridge University Press

Cole, S., Codling, I.D., Parr, W. & Zabel, T., 1999. Guidelines for managing water quality impacts within UK European Marine sites. *Natura 2000 report prepared for the UK Marine SACs Project*. 441 pp., Swindon: Water Research Council on behalf of EN, SNH, CCW, JNCC, SAMS and EHS. [UK Marine SACs Project.], http://www.ukmarinesac.org.uk/

Connor, D.W., Brazier, D.P., Hill, T.O., & Northen, K.O., 1997b. Marine biotope classification for Britain and Ireland. Vol. 1. Littoral biotopes. *Joint Nature Conservation Committee, Peterborough, JNCC Report* no. 229, Version 97.06., *Joint Nature Conservation Committee, Peterborough, JNCC Report* no. 230, Version 97.06.

Dickinson, C.I., 1963. British seaweeds. London & Frome: Butler & Tanner Ltd.

Dixon, P.S. & Irvine, L.M., 1977. Seaweeds of the British Isles. Volume 1 Rhodophyta. Part 1 Introduction, Nemaliales, Gigartinales. London: British Museum (Natural History) London.

Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

Gantt, E., 1990. Pigmentation and photoacclimation. In *Biology of the Red Algae* (ed. K.M. Cole and R.G. Sheath), 203-219. Cambridge University Press.

Hammer, L., 1972. Anaerobiosis in marine algae and marine phanerograms. In *Proceedings of the Seventh International Seaweed Symposium, Sapporo, Japan, August 8-12, 1971* (ed. K. Nisizawa, S. Arasaki, Chihara, M., Hirose, H., Nakamura V., Tsuchiya, Y.), pp. 414-419. Tokyo: Tokyo University Press.

Hardy, F.G. & Guiry, M.D., 2003. A check-list and atlas of the seaweeds of Britain and Ireland. London: British Phycological Society

Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

Hiscock, K., 1983. Water movement. In Sublittoral ecology. The ecology of shallow sublittoral benthos (ed. R. Earll & D.G. Erwin), pp. 58-96. Oxford: Clarendon Press.

Hiscock, K., ed. 1998. Marine Nature Conservation Review. Benthic marine ecosystems of Great Britain and the north-east Atlantic. Peterborough, Joint Nature Conservation Committee.

Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. *Countryside Council for Wales, Bangor, Contract Science Report*, no. 65.

Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

Kain, J.M., 1975a. Algal recolonization of some cleared subtidal areas. *Journal of Ecology*, **63**, 739-765.

Knaggs, F.W. & Conway, E., 1964. The life history of *Rhodochorton floridulum* (Dillwyn) Näg.I. Spore germination and the form of the sporelings. *British Phycological Bulletin*, **2**, 339-341.

Laverack, M.S. & Blackler, D.M., 1974. Fauna & Flora of St. Andrews Bay. Scottish Academic Press (Edinburgh & London).

Lobban, C.S. & Wynne, M.J. (ed.), 1981. The biology of seaweeds. Botanical monographs, vol. 17. Blackwell Scientific Publications

Murphy, J.P., 1981. Marine Algae on Peat. Irish Naturalists' Journal, 20, 254.

Norton, T.A., 1992. Dispersal by macroalgae. British Phycological Journal, 27, 293-301.

O'Brien, P.J. & Dixon, P.S., 1976. Effects of oils and oil components on algae: a review. British Phycological Journal, 11, 115-142.

Stegenga, H., 1978. The life histories of *Rhodochorton purpureum* and *Rhodochorton floridulum* (Rhodophyta, Nemiales) in culture. *British Phycological Journal*, **13**, 279-289.

Vidaver, W., 1972. Dissolved gases - plants. In *Marine Ecology*. *Volume 1. Environmental factors (3)*, (ed. O. Kinne), 1471-1490. Wiley-Interscience, London.

Datasets

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

Environmental Records Information Centre North East, 2018. ERIC NE Combined dataset to 2017. Occurrence dataset: http://www.ericnortheast.org.uk/home.html accessed via NBNAtlas.org on 2018-09-38

Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2014. Occurrence dataset: https://doi.org/10.15468/erweal accessed via GBIF.org on 2018-09-27.

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2015. Occurrence dataset: https://doi.org/10.15468/xtrbvy accessed via GBIF.org on 2018-09-27.

Fife Nature Records Centre, 2018. St Andrews BioBlitz 2016. Occurrence dataset: https://doi.org/10.15468/146yiz accessed via GBIF.org on 2018-09-27.

Kent Wildlife Trust, 2018. Biological survey of the intertidal chalk reefs between Folkestone Warren and Kingsdown, Kent 2009-2011. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Manx Biological Recording Partnership, 2017. Isle of Man wildlife records from 01/01/2000 to 13/02/2017. Occurrence dataset: https://doi.org/10.15468/mopwow accessed via GBIF.org on 2018-10-01.

Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1995 to 1999. Occurrence dataset: https://doi.org/10.15468/lo2tge accessed via GBIF.org on 2018-10-01.

National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

Outer Hebrides Biological Recording, 2018. Non-vascular Plants, Outer Hebrides. Occurrence dataset: https://doi.org/10.15468/goidos accessed via GBIF.org on 2018-10-01.

Royal Botanic Garden Edinburgh, 2018. Royal Botanic Garden Edinburgh Herbarium (E). Occurrence dataset: https://doi.org/10.15468/ypoair accessed via GBIF.org on 2018-10-02.

South East Wales Biodiversity Records Centre, 2018. SEWBReC Algae and allied species (South East Wales). Occurrence dataset: https://doi.org/10.15468/55albd accessed via GBIF.org on 2018-10-02.

Yorkshire Wildlife Trust, 2018. Yorkshire Wildlife Trust Shoresearch. Occurrence dataset: https://doi.org/10.15468/1nw3ch accessed via GBIF.org on 2018-10-02.