

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

Gravel sea cucumber (Neopentadactyla mixta)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

Angus Jackson

2008-04-17

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1317]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Jackson, A. 2008. *Neopentadactyla mixta* Gravel sea cucumber. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1317.1

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

Feeding tentacles of Neopentadactyla mixta protruding from gravel. Photographer: Sue Scott Copyright: Sue Scott

See online review for distribution map

Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.

Researched by	Angus Jackson	Refereed by	Dr Andrew C. Campbell
Authority	(Östergren, 1898) Deichmann	, 1944	
Other common		Synonyms	Pseudocucumis mixta (Östergren, 1898) Deichmann, 1944

Summary

Description

Neopentadactyla mixta is a cylindrical sea cucumber up to about 20 cm long and creamy yellow in colour. The body tapers towards either end and there are a bunch of profusely branching tentacles around the mouth. The tentacles are usually light grey but may be darker, appearing almost transparent when fully extended. The gravel sea cucumber lives within the substratum so the only parts visible are the tentacles, when extended.

0 **Recorded distribution in Britain and Ireland**

All up the west coast of Scotland to Orkney and Shetland. A few isolated records from the east coast. Also from SW England, SW and NW Wales. In Ireland, particularly Kilkieran Bay, round the north and north-east, also the SE and SW corners.

0 **Global distribution**

South, west and north coasts of the British Isles, the Faeroe Islands, the west coast of Norway (Molde) and the Atlantic coasts of France.

🐱 Habitat

The gravel sea cucumber lives within coarse, typically mobile shell sand, gravel or maerl where water flow is quite strong.

\downarrow Depth range

15-70

Q Identifying features

- Found in coarse gravel or maerl with only the buccal tentacles showing above the surface.
- There are 20 tentacles, 10 large, 5 intermediate and 5 small.
- The tentacles are thicker at the base than the tip and branch in a highly arborescent fashion.
- There are numerous calcareous deposits in the skin.

Additional information

Various descriptions of the tentacles have been made regarding the layout and size of the rings. One of the most recent states that there are twenty in total arranged pentaradially around the mouth. There are ten large outer tentacles arranged as five pairs, then within these, five single intermediate tentacles and then the inside ring is of five small tentacles. Tube feet are usually confined to the radii and may be crowded in the middle of the body.

✓ Listed by

𝗞 Further information sources

Search on:

Biology review

E Taxonomy

Phylum	Echinodermata	Starfish, brittlestars, sea urchins & sea cucumbers	
Class	Holothuroidea	Sea cucumbers	
Order	Dendrochirotida		
Family	Phyllophoridae		
Genus	Neopentadactyla		
Authority	(Östergren, 1898) Deichmann, 1944		
Recent Synonyms	Pseudocucumis m	nixta (Östergren, 1898) Deichmann, 1944	

ê	Biology	
	Typical abundance	High density
	Male size range	Up to 25cm
	Male size at maturity	
	Female size range	Medium-large(21-50cm)
	Female size at maturity	
	Growth form	Cylindrical
	Growth rate	No information found
	Body flexibility	
	Mobility	Burrower
	Characteristic feeding method	Passive suspension feeder
	Diet/food source	Omnivore
	Typically feeds on	Seston
	Sociability	Solitary
	Environmental position	Infaunal
	Dependency	No text entered.
	Supports	Host Melanella alba.
	Is the species harmful?	Data deficient

Biology information

- In suitable habitat, densities have been recorded as high as 400 per square metre. In 1973, the population in Kilkieran Bay appeared to be increasing.
- Most sea cucumbers are gonochoristic although some species are hermaphrodite.
- The values for length apply to body length excluding the tentacular crown. When extended, the tentacular crown can be up to a quarter of the body length and have a spread of 140 square cm. The gravel sea cucumber is an infaunal burrower and is only visible when the tentacles are projected above the surface. The body is generally held in a u-shape within the sediment with the tentacles held in the water column and the terminal anus just at the surface.
- Food particles are trapped using special adhesive areas at the tips of the tentacles. To ingest food, a tentacle is inserted into the mouth, the buccal membrane constricts and the

tentacle withdrawn, scraping off any adherent food particles.

• *Melanella alba*, a eulimid gastropod is a temporary ectoparasite on *Neopentadactyla mixta*, piercing the skin and feeding on the internal organs.

Habitat preferences

Physiographic preferences	Open coast, Strait / sound, Sea loch / Sea lough, Ria / Voe		
Biological zone preferences	Lower infralittoral, Upper circalittoral		
Substratum / habitat preferences	Gravel / shingle, Maerl		
Tidal strength preferences	Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Weak < 1 knot (<0.5 m/sec.)		
Wave exposure preferences	Exposed, Moderately exposed, Sheltered, Very sheltered		
Salinity preferences	Full (30-40 psu)		
Depth range	15-70		
Other preferences	No text entered		
Migration Pattern	Diel, Seasonal (feeding)		

Habitat Information

Although not necessarily representative of all populations, *Neopentadactyla mixta* exhibits regular daily and seasonal movements within the substratum. In the Kilkieran Bay population, individuals withdraw further into the sediment between 1 or 4 hours after sunrise and remain in the substratum for 1 or 2 hours, re-emerging over a period of up to four hours. In September/October the entire population withdraws into the substratum and re-emerges in March/April. They remain buried in aerobic conditions at depths of up to 60 cm with tentacles retracted and not feeding. Considerable loss of condition occurs during this time. Direct absorption of dissolved organic matter may be important for nutrition. This state of torpor is not complete, respiration and activity is greatly reduced but some movement within the substratum still occurs. Depth of burial is maintained despite surface changes in gravel with water movement.

𝒫 Life history

Adult characteristics

Reproductive type	No information		
Reproductive frequency	No information		
Fecundity (number of eggs)	No information		
Generation time	Insufficient information		
Age at maturity	No information found.		
Season	Insufficient information		
Life span	Insufficient information		
Larval characteristics			
Larval/propagule type	-		
Larval/juvenile development	No information		

Duration of larval stage Larval dispersal potential Larval settlement period No information No information Insufficient information

<u><u></u> Life history information</u>

No information has been found in relation to longevity or reproduction. Breeding is presumed to occur between April and September when the population is at the substratum surface. Most holothurians are gonochoristic and are broadcast spawners (although some species brood their larvae). The larvae of some species show planktotrophy, others lecithotrophy, some direct development, others indirect.

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High		High	Low
Neopentadactyla mixta lives with	nin gravel or ma	erl substrata I o	ss of this sub	strata would

Neopentadactyla mixta lives within gravel or maeri substrata. Loss of this substrata result in the loss of the population.

Smothering

Although not a fast mover, Neopentadactyla mixta is a quite large active burrower. Smothering by five cm of sediment should not cause too many problems and the sea cucumber will probably be able to burrow back up to the surface. Individuals of this species spend much of the winter buried up to 60 cm deep in aerobic sediment. During this winter period, a torpid stage is entered with respiration and activity greatly reduced. Given sufficient aeration, this species can tolerate long periods without feeding. This may indicate that even if the surface cannot be regained immediately then the species could tolerate a period of smothering. There will be an energetic cost and feeding will be curtailed. Smothering for a month will be less problematic if it occurs during the period when the sea cucumbers are buried within the substratum.

Increase in suspended sediment

A slight increase in siltation may benefit this species through greater availability of food particles. Larger increases in siltation will cause feeding to stop, the tentacles to be retracted and withdrawal into the substratum. Although the species can tolerate long periods (up to 8 months) without feeding within the substratum, considerable loss of condition occurs during this time. Prevention of feeding for a whole year through increased siltation will probably cause death.

Decrease in suspended sediment

Dessication

The species only occurs subtidally (below 15 m). The tube feet and tentacles provide surfaces through which water could easily be lost. Exposure to desiccating influences for an hour will probably cause death.

Increase in emergence regime

The species only occurs subtidally (below 15 m) and is not subject to emergence. Emergence for an hour will probably cause death.

Decrease in emergence regime

Increase in water flow rate

The gravel sea cucumber is a passive suspension feeder and requires a reasonable flow of water to provide sufficient food particles. The tentacular crown is held up in the water column

Moderate

High

High

High

High

High

Moderate

High

High

High

Moderate

Low

Low

Low

in order to feed. Strong water flow causes the tentacles to be displaced and bent. This can only be tolerated up to a point and beyond that sea cucumber retracts its tentacles and withdraws into substratum. This would prevent feeding. Although the species can tolerate long periods (up to 8 months) without feeding within the substratum, considerable loss of condition occurs during this time. Prevention of feeding for a whole year will probably cause death.

Decrease in water flow rate

Increase in temperature

The British Isles falls in the middle of the geographic range of this species. Small chronic changes in temperature will probably have little effect. Short acute changes in temperature may cause death. Temperature changes will have less effect when the population is buried within the substratum and respiration and metabolism are greatly reduced.

Intermediate

Tolerant

High

Decrease in temperature

Increase in turbidity

The species has no requirement for photosynthesis and probably only has very limited facility for visual perception. Changes in turbidity will probably have no effect.

Decrease in turbidity

Increase in wave exposure

The gravel sea cucumber is a passive suspension feeder and requires a reasonable water movement to provide sufficient food particles. The tentacular crown is held up in the water column in order to feed. Strong wave action causes the tentacles to be displaced and bent. This can only be tolerated up to a point and beyond that sea cucumber retracts its tentacles and withdraws into substratum. This would prevent feeding. Although the species can tolerate long periods (up to 8 months) without feeding within the substratum, considerable loss of condition occurs during this time. Prevention of feeding for a whole year will probably cause death. One large storm on the west coast of Ireland was noted to cause *Neopentadactyla mixta* to withdraw into the sediment and remain there for ten days (Smith and Keegan, 1984).

Decrease in wave exposure

Noise

Slight vibrations within the immediate substratum will provoke total withdrawal. This will prevent feeding. If the vibration is continuous, habituation may occur. If the noise occurs during the period of torpor then the species will be tolerant.

Visual Presence

The species probably only has very limited facility for visual perception.

Tolerant

Intermediate

Low

Abrasion & physical disturbance

The gravel sea cucumber is highly flexible and has a tough skin but the tentacles are more likely to be damaged by abrasion. *Neopentadactyla mixta* lives infaunally and hence may avoid physical disturbance caused by a passing dredge, particularly when deeply buried in a state of torpor. Echinoderms are well known for their regenerative abilities. However, no information regarding recruitment or recovery was found.

Displacement

Tolerant

Not relevant

Not relevant

Not sensitive Low

The species is an active burrower within the substratum. Displacement will probably have

High

Moderate

Not sensitive

High

Not sensitive

High

Moderate

High

Low

Low

Low

little effect and individuals would be able to re-burrow.

A Chemical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Synthetic compound contamination				Not relevant
Insufficient information				
Heavy metal contamination				Not relevant
Insufficient information				
Hydrocarbon contamination				Not relevant
Insufficient information				
Radionuclide contamination				Not relevant
Insufficient information				
Changes in nutrient levels				Not relevant
Insufficient information				
Increase in salinity	High		High	Moderate

Hypo and hypersaline water causes tentacle retraction (Smith, 1983). *Neopentadactyla mixta* lives in fully saline conditions. Reductions in salinity would cause the sea cucumber to stop feeding. A short term reduction in salinity will probably not be serious, particularly if it occurs during a period of torpor within the substratum. Long term reductions in salinity are more problematic Although the species can tolerate long periods (up to 8 months) without feeding within the substratum, considerable loss of condition occurs during this time. Prevention of feeding for a whole year will probably cause death.

Decrease in salinity

Changes in oxygenation The species can survive with ver during periods of torpor	Low Ty low oxygen co	onsumption whe	Moderate en buried in the	Moderate substratum
Biological Pressures	Intolerance	Recoverability	Sensitivity	Confidence
Introduction of microbial pathogens/parasites Insufficient information				Not relevant
Introduction of non-native species Insufficient information				Not relevant
Extraction of this species It is highly unlikely that this spec	Not relevant cies would be ex	Not relevant tracted for any	Not relevant reason.	Low
Extraction of other species	Intermediate		High	<mark>Moderate</mark>

Neopentadactyla mixta frequently lives in maerl beds. The algal nodules form a ideal, coarse, mobile substratum that the sea cucumber can burrow through. Maerl beds are exploited

commercially. The effects of maerl removal may be less when the sea cucumber is in a state of torpor buried deep within the substratum.

Additional information

Importance review

Policy/legislation

- no data -

★	Status		
	National (GB) importance	-	Global red list (IUCN) category
NIS	Non-native Native	_	

Origin - Date Arrived

1 Importance information

In suitable coarse, mobile gravel substrata the gravel sea cucumber can reach such high densities that it virtually excludes all other macrofauna. It is possible that *Neopentadactyla mixta* provides the only food source for the temporarily ectoparasitic gastropod *Melanella alba*.

-

Bibliography

Hansen, B. & McKenzie, J.D., 1991. A taxonomic review of northern Atlantic species Thyonidiinae and Semperiellinae (Echinodermata: Holothuroidea: Dendrochirotida). *Zoological Journal of the Linnean Society*, **103**, 101-127.

Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

Keegan, B.F., 1974. The macro fauna of maerl substrates on the west coast of Ireland. Cahiers de Biologie Marine, XV, 513-530.

Konnecker, G. & Keegan, B.F., 1973. In situ behavioural studies on echinoderm aggregations. *Helgolander Wissenschaftliche Meeresuntersuchungen*, **24**, 157-162.

Mortensen, T.H., 1927. Handbook of the echinoderms of the British Isles. London: Humphrey Milford, Oxford University Press.

Smith T.B. & Keegan, B.F., 1985. Seasonal torpor in *Neopentadactyla mixta* (Ostergren) (Holothuroidea: Dendrochirotida). In *Echinodermata. Proceedings of the Fifth International Echinoderm Conference. Galway*, 24-29 September 1984. (B.F. Keegan & B.D.S O'Connor, pp. 459-464. Rotterdam: A.A. Balkema.

Smith, T.B., 1983. Tentacular ultrastructure and feeding behaviour of *Neopentadactyla mixta* (Holothuroidea: Dendrochirota). *Journal of the Marine Biological Association of the United Kingdom*, **63**, 301-311.

Smith, T.B., 1984. Ultrastructure and function of the proboscis in Melanella alba (Gastropoda: Eulimidae). Journal of the Marine Biological Association of the United Kingdom, **64**, 503-512.

Datasets

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset:https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21