

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

Bowerbank's halichondria (*Halichondria (Halichondria) bowerbanki*)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

Dr Keith Hiscock & Hugh Jones

2007-04-17

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1841]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Hiscock, K. & Jones, H. 2007. *Halichondria (Halichondria) bowerbanki* Bowerbank's halichondria. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1841.2

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

	<image/>		See online review for distribution map
<i>Halichondria (Halich</i> Photographer: Keith Copyright: Dr Keith	hondria) bowerbanki. n Hiscock Hiscock		Distribution data supplied by the Ocean Biogeographic Information System (OBIS). To interrogate UK data visit the NBN Atlas.
Researched by	Dr Keith Hiscock & Hugh Jones	Refereed b	by Dr Rob van Soest
Authority	Burton, 1930		
Other common names	-	Synonyms	Halichondria bowerbanki

Summary

Description

The growth form varies from thin to massively encrusting, with tassel-like irregular branches which form flattened masses. Colonies can be up to 25 cm across with branches reaching 12 cm high. It is beige to dull brown in the summer, and light grey/yellow in the winter. It typically turns a characteristic yellow-orange when spawning because of the colour of the larvae. There are no obvious large exhalent openings (oscules) present and the surface is smooth or uneven with a breadcrumb-like texture.

9 **Recorded distribution in Britain and Ireland**

Commonly found in southern England, Pembrokeshire and north-west Wales, also frequently found in western Scotland. Isolated records from the North Sea.

Global distribution 0

Present on both sides of the North Atlantic. In Europe, it has been reported south to Brittany and is found in the south-west Netherlands and in harbours of the Wadden Sea. It is a non-native species in North America.

🛃 Habitat

Present on rocky surfaces in the shallow subtidal, with occasional intertidal specimens under overhanging rocks. *Halichondria bowerbanki* occupies wave-sheltered, sediment-rich environments. It often grows intertwined with hydroids and algae and may be common in estuaries. May occur in areas sheltered from strong tidal flow through to tidal sounds.

↓ Depth range

0 to 90 m

Q Identifying features

- Characteristic stringy appearance.
- Breadcrumb-like texture.
- No apparent exhalent openings.
- Colour variable but often yellowish beige in colour.

Additional information

Microscopic examination of the spicules reveals that they are relatively long and thin, and taper to the apices. Named after James S. Bowerbank (1797-1877), a pioneering authority on sponges. Easily confused with *Halichondria panicea* but *Halichondria bowerbanki* is distinguished by the absence of the chimney-like oscules that occur in *Halichondria panicea*.

✓ Listed by

% Further information sources

Search on:

Biology review

	Taxonomy		
	Phylum	Porifera	Sponges
	Class	Demospongiae	Siliceous sponges
	Order	Suberitida	
	Family	Halichondriidae	
	Genus	Halichondria	
	Authority	Burton, 1930	
	Recent Synonyms	Halichondria bowerbanki	
-	Biology		
,	Typical abundance	Data deficient	
	Male size range	<25 cm	
	Male size at maturity	Data deficient	
	Female size range	<25 cm	
	Female size at maturity	Data deficient	
	Growth form	Crustose soft	
	Growth rate	1.1 mm / day (in summer)	
	Body flexibility	High (greater than 45 degrees)	
	Mobility	Sessile	
	Characteristic feeding method	Active suspension feeder, Passive su	spension feeder
	Diet/food source	No information	
	Typically feeds on	Fine suspended organic matter	
	Sociability	Colonial	
	Environmental position	Epifaunal, Epilithic	
	Dependency	Insufficient information.	
	Supports	No information	
	Is the species harmful?	No	

Biology information

Under optimal conditions (and with a low sample number) Vethaak *et al.* (1982) recorded a mean length increase of 1.1 mm / day in summer and no growth in winter. Vethaak *et al.* (1982) identified five distinct growth forms (plus intermediate forms) including encrusting, bush-like and massive forms. They reported a maximum colony size of 25 cm width to 12 cm high although most colonies are rarely this big.

In some sheltered locations, the branches grow over other species and loop like bramble stolons attaching to any suitable object they encounter. Found to house a large community of associated amphipod species which show seasonal variation (Biernbaum, 1981). The green filamentous algae *Microspora ficulinae* lives in association with the tissues of *Halichondria bowerbanki*.

4

Habitat preferences	
Physiographic preferences	Estuary, Isolated saline water (Lagoon), Ria / Voe, Strait / sound
Biological zone preferences	Circalittoral, Infralittoral, Sublittoral fringe
Substratum / habitat preferences	Overhangs
Tidal strength preferences	Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences	Sheltered
Salinity preferences	Full (30-40 psu), Reduced (18-30 psu)
Depth range	0 to 90 m
Other preferences	
Migration Pattern	Non-migratory / resident

Habitat Information

Occurs in muddy environments where the similar sponge Halichondria panicea cannot survive. It reaches its best development in harbours. In the Oosterschelde, Halichondria bowerbanki was found growing on tunicates (especially *Styela clava*), molluscs and, in a brackish lagoon, on small reefs of *Electra crustulenta* (Vethaak *et al.*, 1982). In the United Kingdom, Halichondria bowerbanki (studied as Halichondria coalita) was recorded to depths of 90 m (Bowerbank, 1874, cited in Vethaak *et al.*, 1982).

\mathcal{P} Life history

Adult characteristics

Reproductive type	See additional information
Reproductive frequency	No information
Fecundity (number of eggs)	Data deficient
Generation time	Insufficient information
Age at maturity	No information
Season	No information
Life span	Insufficient information
Larval characteristics	
Larval/propagule type	Parenchymella
Larval/juvenile development	Viviparous (Parental Care)
Duration of larval stage	No information
Larval dispersal potential	No information
Larval settlement period	Insufficient information

<u><u></u> Life history information</u>

In the Oosterschelde, large oocytes and embryos found from early August until mid-October which coincided with a drop in water temperature from maximal summer values to about 14°C (Vethaak *et al.*, 1982). Wapstra & van Soest (1987) recorded that *Halichondria bowerbanki* from the same area contained oocytes from April through to November although embryos were only observed from June to November. Newly settled colonies were seen within just over a year, i.e. the following September and October (Vethaak *et al.*, 1982). Wapstra & van Soest (1982) noted that it was possible that *Halichondria bowerbanki* could be protandrous or protogynous hermaphrodites.

No information was found concerning the lifespan of *Halichondria bowerbanki*, although a lifespan of about 3 years was suggested for the closely related *Halichondria panicea* in Fish & Fish (1996). *Halichondria bowerbanki* survives over the winter months as a dormant form with no growth and a disintegration of tissue. In the Oosterschelde, this species experienced a drastic reduction in biomass during the severe winter of 1978/9, especially in the intertidal (Vethaak *et al.*, 1982).

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High	High	Moderate	Moderate

Intermediate

The sponge is attached to the substratum and is unlikely to survive substratum loss. However, settlement of new colonies is likely within one year and growth rate is almost certainly rapid. Therefore, intolerance and recoverability have been recorded as high.

High

Smothering

Halichondria bowerbanki has extensive erect tasselated growths that will most likely extend above settled silt. In the Oosterschelde, Halichondria bowerbanki has been found growing covered in silt and debris (Vethaak et al., 1982), therefore the colony will most likely survive smothering by silt at the level of the benchmark. However, there may be significant inhibition of feeding and respiration and small colonies may suffer mortality if deoxygenation below the silt occurs. On balance, therefore, an intolerance of intermediate has been suggested. However, settlement of new colonies is likely within one year and growth rate is most likely rapid. Hence, a recoverability of high has been recorded.

Increase in suspended sediment

Immediate

Not sensitive High

Low

Low

Low

Halichondria bowerbanki lives in situations such as the entrance to estuaries and in harbours where suspended sediment levels and settlement of silt is often high. The similar sponge Halichondria panicea has a mechanism for sloughing off their complete outer tissue layer together with any debris (Bartel & Wolfrath, 1989). It is expected that the sponge can, therefore, cope with increased siltation rates and suspended sediment. However, there is probably an energetic cost in clearing sediment from tissues and an intolerance of low has been recorded.

Tolerant Not relevant Not sensitive Decrease in suspended sediment Moderate

Intermediate

Low

The sponge may derive some benefit from organic matter as food in the suspended sediment but there is probably an energetic cost in clearing sediment from tissues. On balance, tolerant is suggested.

High

Dessication

Halichondria bowerbanki may occur under overhangs and in damp places on the lower shore but does not live in such open conditions as Halichondria panicea. Desiccation would be likely to have a significant adverse effect on the sponge with bleaching and tissue death likely at the edges of the colony. Regrowth will most likely occur rapidly as growth is likely from remaining tissue or settlement. However, for the level of the benchmark, an intolerance of intermediate

Low

The sponge is attached to the substratum and is unlikely to survive abrasion and physical disturbance. However, where merely damaged, repair is likely to occur very rapidly as in the

related *Halichondria panicea* (Bowerbank, 1857) whilst settlement of new colonies is likely within one year and growth rate is rapid. Sponges may also regrow from tissue remaining in crevices or other irregularities and that were not affected by the abrasion. Therefore, an intolerance of intermediate is suggested with a recoverability of high.

Displacement High	High	Moderate	Moderate
-------------------	------	----------	----------

The sponge is attached to the substratum and is unlikely to survive being detached and displaced even though it remains in the area unless the location is very sheltered from disturbing conditions such as wave action. It is possible that detached colonies that become trapped under boulders or in fissures may re-attach. Settlement of new colonies is likely within one year and the growth rate is rapid. Sponges may also regrow from tissue remaining in crevices or other irregularities and that were not affected by the displacement.

A Chemical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Synthetic compound contamination		Not relevant		Not relevant
Insufficient information.				
Heavy metal contamination		Not relevant		Not relevant
Insufficient information.				
Hydrocarbon contamination	Low	High	Low	Low

Very little information has been found. It appears that the similar species *Halichondria panicea* survived in areas affected by the *Torrey Canyon* oil spill (Smith, 1968), although few observations were made. If mortality occurred, settlement of new colonies is likely within one year and growth rate is rapid.

Radionuclide contamination		Not relevant		Not relevant
Insufficient information.				
Changes in nutrient levels	Not relevant	Not relevant		Not relevant
Insufficient information.				
Increase in salinity	Tolerant	Not relevant	Not sensitive	Low

Halichondria bowerbanki is euryhaline (Vethaak et al., 1982) and occurs in areas subject to full and low salinity and tolerant has been suggested.

Decrease in salinity

Not relevant

Not sensitive

Low

Tolerant

	Halichondria bowerbanki is euryh Oosterschelde (Vethaak et al., 19 days because the sponge grows river flow and, overall, tolerant h	aline and has be 982). It seems li in areas subject nas been sugges	een recorded in kely that it wills to high freshwa sted.	polyhaline lago survive acute ch ater outflow in p	ons in the hanges for a few periods of heavy
	Changes in oxygenation	Intermediate	High	Low	Low
	Halichondria bowerbanki lives in a good supply of oxygen for surviv marine species below 4 mg/l and information was found concerni oxygenation. Settlement of new	areas of flowing val. Cole <i>et al</i> . (1 I probable adve ng the toleranc colonies is likel	g water, which su 999) suggest po rse effects belo e of <i>Halichondrid</i> y within one yea	uggests that it is ossible adverse w 2mg/l. Howe a bowerbanki to ar and the grow	s likely to need a effects on ever, no changes in th rate is rapid.
۲	Biological Pressures		5		
		Intolerance	Recoverability	Sensitivity	Confidence
	Introduction of microbial pathogens/parasites		Not relevant		Not relevant
	No literature was found concerr similar sponge <i>Halichondria panie</i> (Bartel & Wolfrath, 1989) which	ning diseases an cea has a mecha may also be a r	d parasites in H nism for slough neans of removi	alichondria bow ing off the oute ing pathogens o	erbanki. The r tissue layer r epizooites.
	Introduction of non-native species	Tolerant	Not relevant	Not sensitive	Low
	There are no alien species curre bowerbanki.	ntly known to c	ompete with or	adversely affec	t Halichondria
	Extraction of this species	Not relevant	Not relevant	Not relevant	Moderate
	No targeted extraction of this sp tissue would be left behind and v recorded for the similar <i>Halichor</i>	pecies is known. would regrow. (ndria panicea (Ba	. Were it to be e Growth rates of arthel, 1988).	xtracted, it is ex about 5% per w	pected that week are
	Extraction of other species	Not relevant	Not relevant	Not relevant	Not relevant
	The species is not known to be a	ssociated with	other species th	at might be ext	racted.
	Additional information				

Importance review

Policy/legislation

\star Status

National (GB) importance Global red list (IUCN) category

Non-native

Native	Non-native
Origin	Northwestern Pacific

-

Date Arrived

2008

Importance information

None.

Bibliography

Barthel, D. & Wolfrath, B., 1989. Tissue sloughing in the sponge *Halichondria panicea*: a fouling organism prevents being fouled. *Oecologia*, **78**, 357-360.

Barthel, D., 1988. On the ecophysiology of the sponge *Halichondria panicea* in Kiel Bight. II. Biomass, production, energy budget and integration in environmental processes. *Marine Ecology Progress Series*, **43**, 87-93.

Biernbaum, C. K., 1981. Seasonal changes in the Amphipod fauna of *Microciona prolifera* (Ellis and Solander) (Porifera: Demospongia) and associated Sponges in a shallow Salt-Marsh Creek. *Estuaries*, **4**, 85-96.

Bowerbank, J.S., 1874. A monograph of the British Spongiadae, vol. III. London: Hardwicke.

Cole, S., Codling, I.D., Parr, W. & Zabel, T., 1999. Guidelines for managing water quality impacts within UK European Marine sites. *Natura 2000 report prepared for the UK Marine SACs Project.* 441 pp., Swindon: Water Research Council on behalf of EN, SNH, CCW, JNCC, SAMS and EHS. [UK Marine SACs Project.], http://www.ukmarinesac.org.uk/

Franham, W. F., Blunden, G., Gordon, S.M. 1985. Occurrence and pigment analysis of the sponge endobiont *Microspora ficulinae* (Chlorophyceae). *Botanica Marina*, **28**, 79-81.

Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

Moss, D., & Ackers, G. (eds.), 1982. The UCS Sponge Guide. Produced by R. Earll. Ross-on-Wye: The Underwater Conservation Society.

Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

Van Soest, R.W.M., Picton, B. & Morrow, C., 2000. Sponges of the North East Atlantic. [CD-ROM] Windows version 1.0. Amsterdam: Biodiversity Center of ETI, Multimedia Interactive Software. [World Biodiversity Database CD-ROM Series.]

Vethaak, A.D., Cronie, R.J.A. & van Soest, R.W.M., 1982. Ecology and distribution of two sympatric, closely related sponge species, *Halichondria panicea* (Pallas, 1766) and *H. bowerbanki* Burton, 1930 (Porifera, Demospongiae), with remarks on their speciation. *Bijdragen tot de Dierkunde*, **52**, 82-102.

Wapstra, M. & van Soest, R.W.M., 1987. Sexual reproduction, larval morphology and behaviour in demosponges from the southwest of the Netherlands. Berlin: Springer-Verlag.

Datasets

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset:https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.

Merseyside BioBank., 2018. Merseyside BioBank (unverified). Occurrence dataset: https://doi.org/10.15468/iou2ld accessed via GBIF.org on 2018-10-01.

National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

South East Wales Biodiversity Records Centre, 2018. SEWBReC Marine and other Aquatic Invertebrates (South East Wales). Occurrence dataset:https://doi.org/10.15468/zxy1n6 accessed via GBIF.org on 2018-10-02.