

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

A bristleworm (*Spio filicornis*)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

Olwen Ager

2007-05-02

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1698]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Ager, O.E.D. 2007. *Spio filicornis* A bristleworm. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1698.2

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

Researched by	Olwen Ager	Refereed by	This information is not refereed.
Authority	(Müller, 1776)		
Other common names	-	Synonyms	-

Summary

Description

Spio filicornis is a small bristleworm up to 3 cm long. Its body is divided into between 80 and 90 segments. *Spio filicornis* has a short, stout, pointed prostomium with short palps. It is pink in colour, with a brown gut and cream flecks laterally.

Recorded distribution in Britain and Ireland *Spio filicornis* is found on most British coasts.

• Global distribution

Spio filicornis is found in the Arctic, Baltic, north-east Atlantic, Mediterranean and north Pacific.

🖬 Habitat

Spio filicornis is found in clean sand, from the low water mark into the shallow sublittoral. It inhabits

a tube made of sediment grains and detritus stuck together with mucus.

↓ Depth range

Intertidal to shallow sublittoral

Q Identifying features

- Up to 3 cm long, 0.2 cm across.
- 80-90 chaetae bearing segments.
- Short, stout pointed prostomium.
- Short palps.
- Pink in colour.

Additional information -none-

- ✓ Listed by
- **%** Further information sources

Search on:

Biology review

≣	Taxonomy		
	Phylum	Annelida	Segmented worms e.g. ragworms, tubeworms, fanworms and spoon worms
	Class	Polychaeta	Bristleworms, e.g. ragworms, scaleworms, paddleworms, fanworms, tubeworms and spoon worms
	Order	Spionida	
	Family	Spionidae	
	Genus	Spio	
	Authority	(Müller, 17	76)
	Recent Synonyms	; -	
Ş	Biology		
	Typical abundanc	e	
	Male size range		2-3cm
	Male size at matu	rity	
	Female size range	!	Small-medium(3-10cm)
	Female size at ma	turity	
	Growth form		Vermiform segmented
	Growth rate		
	Body flexibility		High (greater than 45 degrees)
	Mobility		
	Characteristic fee	ding metho	Surface deposit feeder
	Diet/food source		
	Typically feeds on	1	Detritus
	Sociability		
	Environmental po	sition	Infaunal
	Dependency		Independent.
	Supports		No information found
	Is the species harr	nful?	
盦	Biology informa	ation	
	Habitat prefere	nces	
	Physiographic pre	eferences	Open coast, Strait / sound, Enclosed coast / Embayment
	Dialaciaalaana	- f	Lower eulittoral, Lower infralittoral, Sublittoral fringe, Upper

Salinity preferences
Depth range
Other preferences
Migration Pattern

Full (30-40 psu), Variable (18-40 psu) Intertidal to shallow sublittoral No text entered Non-migratory / resident

Habitat Information

𝒫 Life history

Adult characteristics

Reproductive type	Gonochoristic (dioecious)
Reproductive frequency	Annual protracted
Fecundity (number of eggs)	100-1,000
Generation time	<1 year
Age at maturity	2-3 months
Season	January - September
Life span	<1 year

Larval characteristics

Larval/propagule type	-
Larval/juvenile development	Planktotrophic
Duration of larval stage	2-10 days
Larval dispersal potential	Greater than 10 km
Larval settlement period	Insufficient information

Life history information

Reproduction

Srikrishnadhas & Ramamoorthi (1981) investigated the life history of *Spio filicornis* in the laboratory. Their findings are summarised below:

- The spindle shaped egg mass was laid inside the worm's tube, stuck to the side of the tube with mucus produced by the female.
- Within 12 hours, the eggs metamorphosed into trochophores (larvae) which were retained inside the egg mass.
- After 36 hours three segments were faintly marked.
- After thee days the larvae broke free of the egg mass and became pelagic.
- Once the juvenile worm had 18-22 chaetigers (segments) it settled, metamorphosed, and burrowed into the sand where it built a tube of sand and detritus bound together with mucus.
- Worms were sexually mature 2 months after metamorphosis.

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High	High	Moderate	Low
<i>Spio filicornis</i> lives in the sedime Therefore, an intolerance of hig (see additional information belo	nt and a loss of h has been reco w).	substratum wou orded. Recoverat	ld cause a loss bility has been i	of population. recorded as high
Smothering	Low	Very high	Very Low	Low
<i>Spio filicornis</i> lives in the sedimen <i>Spio filicornis</i> will be able to mov been recorded as low. Recovera below). However, smothering by and have a greater impact.	nt and uses sed e up through ar bility will proba y impermeable	iment grains to n ny extra sedimen ably be very high material is likely	nake its tube. It t, therefore int (see additiona to result in and	is likely that olerance, has l information oxic conditions
Increase in suspended sediment	Tolerant*	Not relevant	Not sensitive*	Low
<i>Spio filicornis</i> lives in the sedimen sediment. There may be an incre been recorded.	nt and is unlike ease in the amo	ly to be perturbe ount of food avalia	d by an increas able therefore,	e in suspended tolerant* has
Decrease in suspended sediment	Low	Immediate	Not sensitive	Low
Spio filicornis is a surface deposit surface. A decrease in suspende available food. A reduction in fo unlikely to cause mortality. Into states the decrease in siltation v sediment increases normal feed as immediate.	t feeder and rel ed sediment is li od availability i lerance has, the would only happ ling could resur	ies on a supply of kely to lead to a may impair grow erefore, been rec pen for a month, ne, recoverability	f nutrients at th reduction in th th and reprodu orded as low. T once the level y has therefore	ne sediment e amount of Iction but is The benchmark of suspended e been recorded
Dessication	Intermediate	Very high	Low	Low
<i>Spio filicornis</i> lives infaunally so i the intertidal so may be toleran coarser sands are more likely to increased exposure to desiccati Recoverability has been recorde	s protected fro t to some emers be affected du on. Intolerance ed as very high	m desiccation sti sion of the substi e to increased po has, therefore, b (see additional ir	ress. Some indi ratum. Individu prosity of the sa peen recorded a oformation belo	viduals live in Ials living in and and as intermediate. ow).
Increase in emergence regime	Intermediate	Very high	Low	Low
Spio filicornis is found in the inter Spio filicornis lives infaunally so r stress. Individuals in coarser sar been recorded as intermediate. information below).	rtidal so may be may be able to r nds are more lik A recoverabilit	e tolerant to som retract into its tu cely to be affecte cy of very high ha	e emersion of t be to reduce d d. Intolerance l s been recorde	the substratum. esiccation has, therefore ed (see additional

Decrease in emergence regime

Not relevant

Not sensitive*

Tolerant*

recorded as high. A recoverability of very high has been recorded (see additional information below).

Decrease in wave exposure

Tolerant

Tolerant

Not relevant

Not sensitive Low

High

High

Low

Low

Spio filicornis occurs from sheltered to ultra sheltered habitats and a decrease in wave exposure is unlikely to have adverse effects. Therefore, tolerant has been recorded.

Noise

Tolerant No⁻

Not relevant Not sensitive

Low

Very Low

Moderate

Recoverability Sensitivity

Not sensitive

No information was found concerning intolerance of *Spio filicornis* to noise. However, it is unlikely to be affected by noise and vibrations at the level of the benchmark.

Visual Presence

Spio filicornis inhabits a tube and its visual range is probably very limited. Not sensitive has, therefore, been recorded.

Not relevant

Abrasion & physical disturbance Intermediate Very high

Spio filicornis is a soft bodied organism that exposes its palps at the surface while feeding. It lives infaunally in sandy sediment and any physical disturbance that penetrates the sediment, for example dredging or dragging an anchor, would lead to physical damage of *Spio filicornis*. However, adult worms can burrow up to 10 cm down and may escape the disturbance. Juveniles can only burrow up to 2 cm into the sediment and are likely to be affected. However, individuals are likely to pass through a passing scallop dredge due to their small size. Bergman & Hup (1992) reported that the total density of spionids actually increased with increased fishing disturbance., presumably due to their ability to colonize newly exposed substratum. Hall *et al.* (1990) investigated the impact of hydraulic dredging for razor clams. They reported that any effects only persist for a short time, with the community restored after approximately 40 days in stormy conditions. The population density of *Spio filicornis* was slightly reduced in the dredged site relative to the control site but its abundance had increased over that of the control site ater 40 days. However, the control site showed a similar level of variation in abundance. An intolerance of intermediate has therefore been recorded. Recoverability has been recorded as very high (see additional information below).

Displacement

If *Spio filicornis* is displaced from the substratum it is likely that it could burrow back into the sediment and rebuild it tube. It would, however, be more susceptible to predation whilst exposed and there would be significant energy expenditure rebuilding the tube. Therefore, intolerance has been recorded as low. A recoverability of very high has been recorded (see additional information below).

Low

Intolerance

Very high

A Chemical Pressures

Synthetic compound contamination High

No information was found directly relating to the effects of synthetic chemicals on *Spio filicornis*. However, there is evidence from other polychaete species. Collier & Pinn (1998) investigated the effect on the benthos of Ivermectin, treatment for infestations of sea-lice on farmed salmonids. The ragworm *Hediste diversicolor* exhibited 100% mortality after 14 days when exposed to 8mg/m² of invermectin in a microcosm. The blow lug, *Arenicola marina*, was also intolerant of invermectin through ingestion of contaminated sediment (Thain *et al.*, 1998; cited in Collier & Pinn 1998) and it was suggested that deposit feeding was an important route for exposure to toxins. Beaumont *et al.* (1989) investigated the effects of tri-butyl tin (TBT) on

High

Confidence

Low

benthic organisms. At concentrations of 1-3µg/l there was no significant effect on the abundance of Hediste diversicolor or Cirratulus cirratus after 9 weeks in a microcosm. However, no juvenile polychaetes were retrieved from the substratum so TBT may have had an effect on the larval and/or juvenile stages of these polychaetes. The high mortality rate of polychaetes due to exposure to invermectin suggests a high intolerance to synthetic chemicals. An intolerance of high has been inferred, but with a very low confidence level. Recoverability has been recorded as high (see additional information below).

Heavy metal contamination Low Very high Very Low Moderate

Diaz-Castaneda et al. (1989) looked at colonization of defaunated and polluted sediments in Dunkerque harbour. The sediment was polluted with both heavy metals and oil. Capitella capitata was generally the first polychaete to colonize the polluted sediment. Spio filicornis took between 7 weeks and 3 months to appear in the sediment suggesting that it is tolerant of heavy metal pollution. Intolerance has therefore been recorded as low. A recoverability of very high has been recorded (see additional information below).

Hydrocarbon contamination

Diaz-Castaneda et al. (1989) looked at colonization of defaunated and polluted sediments in Dunkergue harbour. The sediment was polluted with both heavy metals and oil. Capitella capitata was generally the first polychaete to colonize the polluted sediment. Spio filicornis took between 7 weeks and 3 months to appear in the sediment suggesting it is tolerant of oil pollution. Intolerance has therefore been recorded as low. A recoverability of very high has been recorded (see additional information below).

Radionuclide contamination

No evidence was found regarding the intolerance of Spio filicornis to radionuclide contamination.

Low

Low

Low

Changes in nutrient levels

Spio filicornis is often found in environments subject to high levels of nutrients, for example, it was found in areas of the Firth of Forth exposed to high levels of sewage pollution (Read et al. 1983). Spio filicornis is also found in nutrient poor areas (Diaz-Castaneda, et al., 1989). Therefore, an intolerance of low has been recorded. A recoverability of very high has been recorded (see additional information below).

Increase in salinity

Not relevant Not relevant Not relevant Not relevant

Spio filicornis lives in fully saline conditions, an increase in salinity would be to hypersaline conditions. No information was found concerning the reaction of Spio filicornis to hypersaline conditions (>40 psu). It is unlikely that Spio filicornis would experience hypersaline conditions, therefore, not relevant has been recorded.

Very high

Decrease in salinity

Spio filicornis is a euryhaline species (Gosner, 1971), inhabiting fully saline and estuarine habitats. However, populations in estuaries would be intolerant of further reductions in salinity. Intolerance has, therefore, been recorded low at the benchmark level.

Changes in oxygenation

Intermediate Very high

No information was found on the tolerance of Spio filicornis to changes in oxygenation. Cole et al. (1999) suggest adverse effects on marine species at oxygen concentrations below 4 mg/l and probable adverse effects occur below 2 mg/l. Capitella capitata survived for 13 days at 0.8-0.9 ml/l and more than 24 days at oxygen levels of 1.5 ml/l. In hypoxic conditions it

Moderate

Low

Not relevant

Very high

Very high

Very Low

Very Low

Low

Very Low

Moderate

Not relevant

Moderate

stopped burrowing and feeding so mortality is likely indirectly through starvation (Pearson & Rosenberg, 1978). Intolerance has, therefore, been recorded as intermediate. A recoverability of very high has been recorded (see additional information below).

Biological Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Introduction of microbial pathogens/parasites		Not relevant		Not relevant
No information was found on dis	eases of Spio fil	icornis.		
Introduction of non-native species		Not relevant		Not relevant
No information was found on no	n-native specie	s that may com	pete with Spio fi	licornis.
Extraction of this species	Not relevant	Not relevant	Not relevant	Not relevant
No information was found that <i>S</i> has been recorded.	pio filicornis is e	xtracted delibe	rately therefore	e not relevant
Extraction of other species	Low	Very high	Very Low	Moderate
Hall <i>et al</i> . (1990) investigated the community. They found that any restored after approximately 40 of spionids actually increased wi	e impact of hydr effects only pe days. Bergman th increased fis	raulic dredging f rsist for a short & Hup (1992) r hing disturbanc	for razor clams time, with the c eported that th e. Intolerance h	on an infaunal community e total density as therefore

been recorded as low. A recoverability of very high has been recorded (see additional

information below).

Additional information

Recoverability

Spio filicornis is a highly opportunistic polychaete with a short life span (Diaz-Castaneda *et al.*, 1989). It reproduces throughout the year and reportedly thrives in regularly disturbed environments (Kröncke, 1990; Niermann *et al.*, 1990). It reaches maturity quickly, and has good local recruitment since eggs and larve are retained witin the egg mass. Therefore, recoverability has been recorded as very high. There is no pelagic larval stage, suggesting that where the population is removed, recovery may take longer. However, adults and juveniles may recruit to an area due to bedload transport and recoverability is likely to be high.

Importance review

Policy/legislation

- no data -

National (GB) importance Global red list (IUCN) category

Non-native

Native -Origin - Date

Date Arrived

1 Importance information

Structure

Tube building worms, including *Spio filicornis*, modify the sediment making it suitable for later colonization and succession (Gallagher *et al.*, 1983).

Bibliography

Beaumont, A.R., Newman, P.B., Mills, D.K., Waldock, M.J., Miller, D. & Waite, M.E., 1989. Sandy-substrate microcosm studies on tributyl tin (TBT) toxicity to marine organisms. *Scientia Marina*, **53**, 737-743.

Bergman, M.J.N. & Hup, M., 1992. Direct effects of beam trawling on macro-fauna in a sandy sediment in the southern North Sea. *ICES Journal of Marine Science*, **49**, 5-11.

Collier, L.M. & Pinn, E.H., 1998. An assessment of the acute impact of the sea lice treatment Ivermectin on a benthic community. *Journal of Experimental Marine Biology and Ecology*, **230**, 131-147.

Diaz-Castaneda, V., Richard, A. & Frontier, S., 1989. Preliminary results on colonization, recovery and succession in a polluted areas of the southern North Sea (Dunkerque's Harbour, France). *Scientia Marina*, **53**, 705-716.

Fauchald, J. & Jumars, P.A., 1979. The diet of worms: a study of polychaete feeding guilds. *Oceanography and Marine Biology: an Annual Review*, **17**, 193-284.

Fauchald, K., 1977. The polychaete worms. Definitions and keys to the orders, families and genera. USA: Natural History Museum of Los Angeles County.

Gallagher, E.D., Jumars, P.A. & Trueblood, D.D., 1983. Facilitation of soft-bottom benthic succession by tube builders. *Ecology*, **64**, 1200-1216.

Gosner, K.L., 1971. Guide to identification of marine and estuarine invertebrates. Cape Hatteras to the Bay of Fundy. New York: John Wiley & Sons, Inc.

Hall, S.J., Basford, D.J. & Robertson, M.R., 1990. The impact of hydraulic dredging for razor clams *Ensis* spp. on an infaunal community. *Netherlands Journal of Sea Research*, **27**, 119-125.

Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.

Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

Kröncke, I., 1990. Macrofauna standing stock of the Dogger Bank. A comparison: II. 1951 - 1952 versus 1985 - 1987. Are changes in the community of the northeastern part of the Dogger Bank due to environmental changes? *Netherlands Journal of Sea Research*, **25**, 189-198.

Niermann, U., Bauerfeind, E., Hickel, W. & Westernhagen, H.V., 1990. The recovery of benthos following the impact of low oxygen content in the German Bight. *Netherlands Journal of Sea Research*, **25**, 215-226.

Pearson, T.H. & Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. *Oceanography and Marine Biology: an Annual Review*, **16**, 229-311.

Picton, B.E. & Costello, M.J., 1998. *BioMar* biotope viewer: a guide to marine habitats, fauna and flora of Britain and Ireland. [CD-ROM] *Environmental Sciences Unit*, *Trinity College*, *Dublin*.

Read, P.A., Anderson, K.J., Matthews, J.E., Watson, P.G., Halliday, M.C. & Shiells, G.M., 1983. Effects of pollution on the benthos of the Firth of Forth. *Marine Pollution Bulletin*, **14**, 12-16.

Sriknshnadhas, B. & Ramoorthi, K., 1981. Studies on the life-history of *Spio filicornis* (Müller 1776). *Mahasagar-Bulletin of the National Institute of Oceanography*, **14**, 303-307.

Tamaki, A., 1987. Comparison of resistivity to transport by wave action in several polychaete species on an intertidal sand flat. *Marine Ecology Progress Series*, **37**, 181-189.

Datasets

Environmental Records Information Centre North East, 2018. ERIC NE Combined dataset to 2017. Occurrence dataset: http://www.ericnortheast.org.uk/home.html accessed via NBNAtlas.org on 2018-09-38

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

South East Wales Biodiversity Records Centre, 2018. SEWBReC Worms (South East Wales). Occurrence dataset: https://doi.org/10.15468/5vh0w8 accessed via GBIF.org on 2018-10-02.