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Abstract

Global climate change is affecting carbon cycling by driving changes in primary pro-

ductivity and rates of carbon fixation, release and storage within Earth’s vegetated

systems. There is, however, limited understanding of how carbon flow between

donor and recipient habitats will respond to climatic changes. Macroalgal-dominated

habitats, such as kelp forests, are gaining recognition as important carbon donors

within coastal carbon cycles, yet rates of carbon assimilation and transfer through

these habitats are poorly resolved. Here, we investigated the likely impacts of ocean

warming on coastal carbon cycling by quantifying rates of carbon assimilation and

transfer in Laminaria hyperborea kelp forests—one of the most extensive coastal

vegetated habitat types in the NE Atlantic—along a latitudinal temperature gradient.

Kelp forests within warm climatic regimes assimilated, on average, more than three

times less carbon and donated less than half the amount of particulate carbon com-

pared to those from cold regimes. These patterns were not related to variability in

other environmental parameters. Across their wider geographical distribution, plants

exhibited reduced sizes toward their warm-water equatorward range edge, further

suggesting that carbon flow is reduced under warmer climates. Overall, we esti-

mated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and

released particulate carbon at a rate of ~5.71 Tg C year�1. This estimated flow of

carbon was markedly higher than reported values for most other marine and terres-

trial vegetated habitat types in Europe. Together, our observations suggest that con-

tinued warming will diminish the amount of carbon that is assimilated and

transported through temperate kelp forests in NE Atlantic, with potential conse-

quences for the coastal carbon cycle. Our findings underline the need to consider

climate-driven changes in the capacity of ecosystems to fix and donate carbon when

assessing the impacts of climate change on carbon cycling.
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1 | INTRODUCTION

Anthropogenic climate change is disrupting the global carbon cycle,

which can further amplify warming through climate-carbon cycle

feedbacks (Friedlingstein, 2015; Raddatz et al., 2007). Climate

change can affect the carbon cycling through the biosphere by alter-

ing the stocks of carbon held within ecosystems, as well as influenc-

ing the efficiency by which it is transferred between different

compartments. Although efforts have been made to incorporate cli-

mate-carbon cycle feedbacks into climate projections (Friedlingstein,

2015), they have primarily considered climate-driven changes in the

carbon storage capacity of ecosystems in isolation. For instance,

increased tree productivity might increase above-ground carbon

storage in tropical forests (a negative climate carbon feedback; Lewis

et al., 2009), while warming might accelerate the release of carbon

stored in permafrost soils (a positive carbon feedback; Schuur et al.,

2015). Meanwhile, the influence of climate on rates of transfer

between compartments of the carbon cycle has been largely over-

looked, something that may lead to erroneous predictions of the

future carbon sequestration capacity of ecosystems (Sayer, Heard,

Grant, Marthews, & Tanner, 2011).

Coastal marine environments exhibit high rates of carbon fixa-

tion, export and burial, and in doing so constitute a key component

of the global carbon cycle (Bauer et al., 2013). Coastal vegetated

habitats (e.g. mangrove forests, seagrass meadows, kelp forests etc.)

are some of the most productive ecosystems on Earth and are gain-

ing recognition as important contributors to the oceanic carbon bud-

get (Duarte, Middelburg, & Caraco, 2005; McLeod et al., 2011;

Nellemann et al., 2009). A significant fraction of carbon fixed by

coastal vegetation flows through detrital pathways, as grazers typi-

cally consume a small fraction of total primary productivity (Mann,

1988). Accumulations of detrital material within these ecosystems

can form deep organic-rich soils that represent globally important

carbon repositories (Donato et al., 2011; Fourqurean et al., 2012). In

addition, the transport of detrital material between habitats repre-

sents an important vector of carbon transfer in the coastal marine

environment (Hyndes et al., 2014; Smale, Moore, Queiros, Higgs, &

Burrows, 2018). Indeed, due to the highly dynamic and open nature

of the marine environment, carbon may be buried within deposi-

tional habitats great distances from the source, thereby contributing

to the total amount of carbon that is buried (Duarte & Krause-Jen-

sen, 2017).

Macroalgae-dominated habitats, such as kelp forests, are among

the most extensive and productive coastal vegetated habitat types

globally (Duarte, Losada, Hendriks, Mazarrasa, & Marb�a, 2013), but

have been considered to play a secondary role in coastal carbon

cycling and storage. This is because (a) macroalgal-derived matter is

assumed to decompose too quickly to allow for long-range export

and burial (Howard et al., 2017); (b) most macroalgae grow on rocks

where in situ burial of organic carbon into sediments is precluded

(Hill et al., 2015) and; (c) reliable estimates of the amount of carbon

fixed and released by macroalgae, as well as their spatial extent, are

lacking for most species and regions (Reed & Brzezinski, 2009). A

growing body of evidence however, suggests that macroalgae-

derived carbon may be transported to habitats hundreds of kilome-

ters away from source and to depths below thousands of meters

(Hobday, 2000). This transfer of carbon constitutes a key trophic

subsidy for habitats with low autochthonous productivity, such as

offshore sedimentary habitats (Krumhansl & Scheibling, 2012). In

addition, macroalgae carbon exports can contribute to carbon stor-

age if they accumulate within habitats with long-term carbon burial

capacity, such as seagrass meadows or offshore depositional sedi-

ments (Hill et al., 2015). Furthermore, recent investigations have

shown that macroalgal tissues contain refractory carbon compounds

(Trevathan-Tackett et al., 2015), which may represent important

organic carbon reservoirs in the ocean (Wada et al., 2008). In light of

these recent advances, macroalgal-dominated habitats are emerging

as important donors of carbon within the coastal carbon cycle

(Chung, Beardall, Mehta, Sahoo, & Stojkovic, 2011; Hill et al., 2015;

Krause-Jensen & Duarte, 2016). Although climate and other anthro-

pogenic stressors have been shown to alter the carbon stocks con-

tained within marine habitats (Duarte et al., 2013; Fourqurean et al.,

2012; Yando et al., 2016), how the flow of carbon between com-

partments of the coastal carbon cycle will respond to persistent cli-

matic changes remains poorly resolved. Here, we used kelp forests

dominated by Laminaria hyperborea—which constitute one of the

most extensive coastal vegetated habitat types in the NE Atlantic

Ocean—as model systems to examine the likely effects of continued

ocean warming on carbon stores and fluxes in vegetated coastal

ecosystems. Specifically, we quantified (a) the amount of carbon

assimilated and stored in living biomass, and (b) the amount of car-

bon that is donated as particulate detritus through kelp forests per-

sisting under two contrasting thermal regimes.

2 | MATERIALS AND METHODS

2.1 | Study sites

We quantified the amount of organic carbon held within, and

donated by, Laminaria hyperborea kelp forests at multiple subtidal

rocky reef sites situated along a gradient of ~9° of latitude in the NE

Atlantic. We sampled two sites within four locations (Figure 1a),

which were comparable in terms of key environmental variables (e.g.

wave fetch, salinity, nutrients, etc.), but differed with regards to

thermal regime (Supporting Information Tables S1, S2 and S3; see

also Smale et al., 2016). Sea temperatures within the “cold” locations

(hereafter location C1 and C2) were, on average, ~2°C lower com-

pared with the “warm” (W1 and W2) locations (Figure 1b, Support-

ing Information Table S3); this regional variability in seawater

temperature was most evident in summer, when the maximum

temperature variability between the coldest and warmest location

was 4°C (Figure 1b, Supporting Information Table S3). The surveyed

forests extended from the low intertidal to ~10 m depth and were

located on wave-exposed rocky reefs that were similar in terms of
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geomorphology and topography. Forests were characterized by

dense stands of L. hyperborea, which was the dominant kelp species

(see Smale & Moore, 2017 for details on kelp forest structure).

2.2 | Carbon assimilation and storage

To characterize the carbon held within kelp forests (i.e. their carbon

standing stock), SCUBA divers carried out surveys at ~3–5 m depth

(below Chart Datum) in spring (April/May) and summer (August)

yearly between 2014 and 2016 at each study site. During each sam-

pling event, the density of L. hyperborea was quantified by haphaz-

ardly placing eight replicate 1 m2 quadrats on hard bedrock and

recording the density of mature canopy-forming plants (plants

defined sensu Bolton, 2016). In 2015 and 2016, the carbon standing

stock was estimated by multiplying the density of mature L. hyper-

borea plants by their average carbon biomass. At each site, 15

mature plants (i.e. typical canopy-formers) were randomly sampled

by cutting them beneath the holdfast and returning them to the lab-

oratory to measure fresh weight (FW). By sampling kelp plants in dif-

ferent seasons and years, we captured natural variability in kelp

standing stock. Sampled plants were spatially dispersed across the

site and collected from within the kelp forest (rather than at the

canopy edge). To obtain the carbon biomass of each plant, fresh

weight (FW) was first converted to dry weight (DW) and then to car-

bon biomass using an additional conversion factor. To calculate aver-

age site-specific FW:DW ratios, the fresh weight of the 15 complete

plants was recorded in 2015, and individual sections of stipe

(~10 cm length) and lamina (5 cm strips of both basal and distal

material) were removed and dried at ~60°C for at least 48 hr to

determine FW:DW ratios for each section. The stipe and basal and

distal parts of the lamina were dried separately as the relationship

can vary between different parts of the plant (Smale et al., 2016).

The FW:DW ratios varied between sites and between parts of the

plant (Supporting Information Table S4).

Dry weights were subsequently converted to carbon content

using a conversion factor of 0.3125 � 0.005 (mean � standard

error; Supporting Information Table S5). This factor was a yearly

average obtained from routinely sampling two independent kelp

populations within the W2 location (50°21045″N, 4°08032″W;

50°21028″N, 4°07042″W). Sampling was conducted approximately

every 2 months to account for seasonal variability in carbon content.

During each sampling event, three individual mature L. hyperborea

plants from each population were collected; kelp tissue from each

collected plant was then obtained by sectioning a strip of each kelp

lamina along its length (~4 cm width). The samples were freeze-dried

and ground to a fine powder, before quantifying carbon content with

a standard elemental analyser (CHN Analyser, EA1110, CE Instru-

ments Ltd, Wigan). The same carbon conversion factor was used to

convert all the dry weights from this study (see below).

2.3 | Carbon donation via particulate detritus

To examine rates of carbon donation to potential receiver habitats,

we quantified the release of organic matter as particulate detritus. In

L. hyperborea, detritus is produced through two main mechanisms:

the dislodgment of whole kelp plants from underlying substrata and

the loss of lamina tissue. To determine how much detritus is pro-

duced via loss of entire kelp plants, we quantified dislodgement rates
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F IGURE 1 Sampling design and climatic conditions. (a) Positions of the two sampling locations within each climatic regime (C1 = Cold 1,
C2 = Cold 2, W1 = Warm 1, W2 = Warm 2), with two sites surveyed within each location (labelled A–H). The approximate distribution of
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of mature canopy-formers. At each study site, three circular plots

(~2 m diameter) were established; each plot was ~3 m apart and sit-

uated subtidally (again at 3–5 m depth) within the main canopy,

rather than on the edge of kelp forest habitat. Within each plot, 15

adult kelps with distinct holdfasts (no fused holdfasts) were tagged

by fastening a cable tie sheathed in fluorescent latex surgical tubing

around the base of the stipe. Plots were marked with a labeled metal

weight and GPS fixed from the surface to aid relocation and to iden-

tify specific plots and tagged plants. Dislodgment was quantified

over a year; plots were first established in autumn (September 2014)

and were revisited the following spring (April 2015; after the winter

storms), some 7 months later. Densities of canopy-forming plants

were recorded during each visit using the method previously

described. The number of remaining tagged plants was recorded and

plots were re-established (using 15 different plants) and then revis-

ited the following autumn, 5 months later (September 2015; total

duration of the study 1 year). Tag loss using this method has been

observed to be negligible (de Bettignies, Wernberg, Lavery, Vanderk-

lift, & Mohring, 2013) (authors’ pers. obs.). To calculate the detrital

production resulting from dislodgment of whole plants at each of

the sampling periods, we used the following formula as per de Bet-

tignies et al. (2013):

L� �D� �w
T

Where T is the number of tagged kelps (i.e. 15), L is the number of

lost kelps at each plot, �D is the mean L. hyperborea density at each

site and �w is the mean dry weight per plant at each site obtained

from our yearly surveys. The results from each plot from the two

sampling periods were combined to obtain an annual estimate and

then converted to carbon using the conversion factors mentioned

above.

In Laminaria hyperborea, loss of lamina tissue occurs through two

discrete processes: “May cast” and “chronic erosion” (L€uning, 1969;

Kain, 1971; Supporting Information Figure S1). May cast is the popu-

lar name given to the major detrital pulse arising from the shedding

of the previous-season’s lamina growth, which remains attached to

newly growing lamina until it is lost entirely as a “growth collar”

between March and May (similar to how deciduous trees shed their

leaves in autumn). Chronic erosion refers to continuous, gradual ero-

sion of the distal lamina tips that occurs throughout the rest of the

year. To estimate the detrital input resulting from the May cast, we

randomly selected previous-season’s growth collars attached to

canopy-forming L. hyperborea plants and carefully removed and

weighed them. At each site, 12–22 growth collars were collected in

spring (April–May) 2015 during the shedding period. Fresh weight

values were later converted to dry weight and carbon biomass as

described above. These values were then standardized per area

(g C m�2) by multiplying them by the average canopy-forming plant

density at each site obtained from our surveys (2014–2016).

Chronic erosion relates to gradual lamina loss throughout the

year and, as it requires more frequent monitoring (i.e. at least

monthly surveys), it is far more difficult to quantify across large

spatial gradients. Logistical constraints prevented us from conducting

monthly sampling at our eight sites simultaneously. To address this

issue, we quantified lamina loss rates (through both May cast and

chronic erosion) and the relative contribution of each mechanism at

two independent, regularly sampled populations; this information

was then used to model the annual chronic erosion rates along the

latitudinal gradient, based on May cast measurements obtained at

the principal study sites. The two independent study populations

were located within W2 (50°21045″N, 4°08032″W; 50°21028″N,

4°07042″W), where Laminaria hyperborea dominates the local kelp

assemblage. The studied populations extend from the low intertidal

into the shallow subtidal zone. We calculated lamina tissue loss

monthly from March 2016 to February 2017 using a modified hole-

punch method after Krumhansl and Scheibling (2011). This technique

involves punching a series of holes at set distances from the stipe/

lamina transition zone, where the primary meristem occurs, to cap-

ture growth and loss rates of lamina tissue, and then using biomass-

per-unit-of-length relationships to estimate biomass loss. At each

study site, 10 mature canopy-forming plants were tagged and

uniquely labeled every month during spring low tides. A total of

three holes were punched in every individual: two at 10 cm and

15 cm above the stipe/lamina transition zone on the central digit,

and another one at 15 cm above the aforementioned zone on an

outer digit. The two holes punched on the central digit captured the

maximal growth in length, which occurs between 2.5 and 15 cm

from the central transition zone depending on the month (Kain,

1976), while the hole on the outer digit attempted to capture vari-

ability in growth between different digits. The initial length (Li) of

each punched digit was also measured. After a month, tagged kelps

were collected by cutting the stipe immediately above the holdfast

and returned to the laboratory for analysis.

Final digit lengths (Lf) and final hole positions (Hf), were then

recorded for each plant. The mean lamina loss (M; cm) for each plant

was obtained by averaging the tissue loss from the central and outer

digits (denoted by a subscripted 1 and 2, respectively). Digit loss was

obtained by subtracting the final length (Lf) from each digit from the

sum of the initial length (Li) and their respective growth (G, cm) as

follows:

M ¼ ½ðL1i þ G1Þ � L1f� þ ½ðL2i þ G2Þ � L2f�
2

The growth of each digit was in turn calculated as

G1 ¼ ðHf1 � 10Þ þ ðHf2 � 15Þ andG2 ¼ ðHf3 � 15Þ

where Hf denotes the final position of the holes punched at the cen-

tral (holes 1 and 2) and outer (hole 3) digits. To convert the loss of

distal tissue (cm) to biomass (g), three 5 cm segments from the most

distal part of each retrieved lamina were cut, and then weighed

(FW). We determined the relationship between fresh and dry weight

by drying the outermost segment at 60°C for 48 hr. All FW:DW

relationships were highly significant and had an R2 ≥ 0.89 (Support-

ing Information Table S6). We then estimated the dry weight of the

rest of the 5 cm segments for each plant using the stated
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relationship. Finally, the measured and estimated dry biomass per

unit length was averaged between all three segments to give the dry

biomass per unit length (g/cm) of the distal part of the lamina

(Bdistal). The daily erosion rate (E, g d�1 plant�1) of lamina tissue from

each plant was calculated as:

E ¼ M� Bdistal=t

Where M is the mean lamina loss and t denotes the days between

the initial and final measurements. The monthly erosion rates were

then determined by multiplying the mean daily erosion rates by the

total days within a given month. Finally, the relative contribution of

the May cast to the total annual production was estimated by divid-

ing the mean detrital production recorded in March and April by the

total annual loss of lamina tissue.

Applying our observations of lamina loss from the independent

year-long study, we estimated chronic erosion at each of the sam-

pling sites along the gradient using Monte Carlo simulations. For

each sampling site, 1,000 values of May cast production (g DW m�2)

were generated by sampling randomly from a normal distribution

with the obtained mean and standard deviation. Each May cast pro-

duction value was then randomly assigned to a percentage contribu-

tion to the total detritus production (1,000 randomly generated

percentages, p), which ranged from 56% to 70%, as per our observa-

tions from the two independent populations. These values agree

with the observations of L€uning (1969), who observed that May cast

usually surpasses 50% of the total lamina loss. Chronic lamina

erosion (g DW m�2) at each site was then calculated as follows:

Erosion ¼ ð1� pÞ
p

�MC

where p is the randomly generated percentage contribution and MC

denotes the randomly generated May cast production obtained from

randomly sampling the normal distribution. We then retrieved the

mean, standard deviation and standard error from the 1,000 erosion

estimates.

Annual estimates of carbon transfer via each mechanism of detri-

tus production (i.e. dislodgement, May cast and chronic erosion;

g C m�2 year�1) were summed for each site to obtain an estimate

of total annual carbon flux. We used simple linear regression to

examine the relationships between mean sea temperature and site-

level values of carbon standing stock and carbon transfer via particu-

late detritus production.

2.4 | Carbon storage and donation across the
geographical extent of Laminaria hyperborea forests

To assess whether the patterns observed across our study were rep-

resentative of the wider geographical extent of Laminaria hyperborea

forests, we compiled kelp biometrics data from study locations

across a gradient of 28° of latitude. We used the largest average

stipe length recorded for a given age class as a proxy for the maxi-

mum biomass (and carbon) accumulation attainable within a given

location, as carbon assimilation and storage rates have not yet been

measured across the geographical range of L. hyperborea. While stipe

length is not a direct measure of biomass or carbon assimilation, it is

a robust proxy for biomass accumulation for this species, given that:

(a) there is a positive relationship between stipe length and plant

biomass production (Kain, 1963), (b) stipes are perennial and long-

lived, reaching a maximum length at ~6 years of age (Kain, 1963); (c)

mature stipes exhibit minimal seasonal or annual variability in length

or biomass (Sjøtun & Fredriksen, 1995); and (d) while stipe length is

influenced by a range of factors such as wave exposure and compe-

tition for light at local scales (Smale et al., 2016), maximum attain-

able length is strongly influenced by environmental conditions at

regional scales, of which light and temperature are critically impor-

tant (Rinde & Sjøtun, 2005). As we compared populations only on

open coastlines and at similar depths across a broad latitudinal gradi-

ent (Supporting Information Table S7), temperature was likely to be

a principal driver of variability in maximum attainable stipe length. A

similar approach has been used for trees in terrestrial systems

(Marks, Muller-Landau, & Tilman, 2016). Stipe length values were

mostly obtained from peer-reviewed journal publications and pub-

lished reports, with the exception of unpublished data from Spain

(Franco, Tuya and Wernberg unpublished data). Where populations

were explicitly stated to be primarily controlled by non-climatic fac-

tors (e.g. sea urchin grazing, light availability), data were excluded

from the synthesis. If two or more kelp populations were sampled

within a given locality, the highest value was chosen. For references

and study details see Supporting Information Table S7.

To provide a first-order estimate of the overall contribution of

L. hyperborea forests to coastal carbon cycling, we upscaled the aver-

age rates of carbon stock and transfer of kelps from across our study

to the approximate global extent of this species, which is endemic to

the NE Atlantic region. To the best of our knowledge, there were no

other published rates of total particulate carbon release (i.e. all

mechanisms of detritus production) for this species that could also

be incorporated. Data on the spatial extent of L. hyperborea forests

were obtained from published papers, government reports and

unpublished surveys conducted at a regional-to-national scale across

Europe (Supporting Information Table S8).

Finally, to contextualize the values of carbon standing stock

and carbon donation obtained in this study, we compared L. hyper-

borea forests to other dominant vegetation types in Europe.

Coastal vegetation included seagrass (Posidonia oceanica) and tidal

marshes (Elytrigia atherica syn. Elymus athericus), while terrestrial

vegetation included Norway spruce (Picea abies), Scots pine (Pinus

sylvestris), beech (Fagus sylvatica) and temperate and Mediterranean

oak (Quercus robur and Q. ilex). The total carbon standing stock of

these systems included the carbon stored in living biomass (above

and below ground, i.e. including root systems) and stored in the

soils. The particulate detrital carbon flow included all types of lit-

terfall and detritus (e.g. leaves, branches and twigs, reproductive

structures). Studies, reviews and meta-analysis containing data

from several sites along latitudinal gradients (as in this study) were

preferred. When such studies were not available, those containing

the maximum number of different sites were selected. For
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references and study descriptions see Supporting Information

Tables S9 and S10.

3 | RESULTS

3.1 | Carbon assimilation and storage

The structure of kelp forests was spatially variable along the latitudi-

nal gradient. The density of canopy-forming plants varied consider-

ably between study sites, although there were no clear differences

in plant density between climatic regimes (Supporting Information

Figures S2, S3). However, average plant biomass did vary with lati-

tude, as plants tended to be higher in biomass at sites within cold

locations (Supporting Information Figures S2, S3). Across the study,

the average standing stock of carbon (a product of both plant den-

sity and size) ranged from 137.4 � 13.3 g C m�2 (mean � standard

error, SE) at a warm site (within W1) to 1198.7 � 72.8 g C m�2 at

a cold site (within C2). We recorded a significant negative relation-

ship between carbon standing stock and mean temperature, with

sites in the warmer locations generally supporting markedly lower

carbon values (Figure 2a). On average, populations in the warm cli-

matic regime stored 68% less carbon than in the cold regime (Fig-

ure 3a).

3.2 | Carbon donation via particulate detritus

Dislodgment of entire plants was the principal mechanism of carbon

donation by kelp forests, contributing around half of the total detri-

tal production (Figure 3a). Loss rates of kelp plants through dislodg-

ment ranged between 8.8% and 26.6% during the winter period

(September–April) and 4.4%–22.2% during the summer period (April–

September). However, because of the high biomass of kelp holdfasts

and stipes, which were also exported via the dislodgement of whole

plants, these relatively modest rates of plant loss translated to rela-

tively high rates of carbon transfer. The magnitude of carbon flux via

dislodgement was highly variable between sites and locations (Sup-

porting Information Figure S3). We did not detect a significant rela-

tionship between mean temperature and carbon transfer via

dislodgment (Figure 2b), although the highest values were recorded

at a cold site (within C1) and the lowest values at a warm site

(within W1). The May cast was the second most important mecha-

nism of carbon donation, accounting for 30%–33% of the total detri-

tal production (Figure 3a). In May, when the measurements were

obtained, the old growth collar constituted ~40%–60% of the total

lamina weight across the study sites. The amount of particulate car-

bon released during the May cast event declined significantly at

higher temperatures (Figure 2c; Supporting Information Table S11),

despite marked site-level variability, particularly across the colder

northern locations (Supporting Information Figure S3). Our simulated

values of detritus generated through chronic erosion of laminae tis-

sue again showed marked variability between sites, although the

three mean highest values were all recorded within the cold regime

(Supporting Information Table S12). The three mechanisms of detri-

tus production were combined to quantify the total annual flux of

carbon via kelp detritus production. Although between-site variability

was high, the greatest estimated values of carbon transfer were

recorded at a site within the C1 location and the lowest a site within

the W1 location, with a sixfold difference in total detritus production

(Supporting Information Figure S3). Overall, the annual amount of

carbon donated via particulate detritus was negatively related to
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F IGURE 2 Relationships between mean
temperature and mean carbon assimilation
and carbon donation via particulate
detritus across the eight study sites. Plots
indicate the relationship between
temperature and carbon standing stock (a),
annual carbon release via whole plant
dislodgment (b), May cast lamina loss (c),
and total annual donation of carbon as
detritus (d; i.e. sum of dislodgment, May
cast and chronic erosion). Sites within the
cold locations are shown in blue and those
within warm locations in orange. Dotted
lines represent significant relationships
(p < 0.05) [Colour figure can be viewed at
wileyonlinelibrary.com]
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temperature (Figure 2d), with the forests in the warmer locations

releasing 54% less particulate carbon than those in colder waters, on

average (Figure 3a).

3.3 | Carbon storage and donation across the
geographical extent of Laminaria hyperborea forests

Across our study region, site-averaged maximum stipe length was

strongly related to total detritus production (Supporting Information

Figure S4), providing support for the use of stipe length as a proxy

for detritus production over larger spatial scales. Our synthesis of

existing morphological data for L. hyperborea populations across its

wider range indicated that maximum attainable stipe length is

reduced in the warmer lower-latitude portion of this species’ geo-

graphical distribution (Figure 3b). In general, the lowest values were

recorded for populations situated south of 52°N and the highest val-

ues were recorded in the cooler waters around Scotland and Norway

(Figure 3b). The maximum attainable stipe length recorded towards

the range-centre, in southern Norway, was 3.5 times greater than

the maximum length recorded at the warm, trailing range edge of

L. hyperborea, on the Iberian Peninsula. The majority of examined

studies (83%) had measured multiple individuals within a given size

class (Supporting Information Table S7). In most instances, maximum

stipe lengths were attained in the older cohorts (>6 years old; Sup-

porting Information Table S7).

A compilation of national-level assessments indicated that L. hy-

perborea forests extend over an area of at least 18,000 km2 in the

NE Atlantic region (Supporting Information Table S8). Together with

our study-wide average values (which include both “warm” and

“cold” water populations) of carbon standing stock and transfer of

carbon via detritus (i.e. 638.2 g C m�2 and 317.2 g C m�2 year�1,

respectively), these yield a first-order estimate of about 11.49 Tg C

being held in L. hyperborea forests’ living biomass and a particulate

carbon release rate of about 5.71 Tg C year�1.

4 | DISCUSSION

The role of macroalgae in the coastal carbon cycle has recently

attracted considerable attention (Chung et al., 2011; Duarte et al.,

F IGURE 3 Carbon stock and transfer through Laminaria hyperborea forests within our study area and the wider-scale population structure
of L. hyperborea in Europe. (a) Standing stock of carbon and annual transfer of carbon as particulate organic matter under cold and warm
temperature regimes (means � SE). Kelp icons representing carbon standing stock are scaled to represent mean values for cold (blue) and
warm (orange) locations. Kelp icons within the boxes illustrate the different mechanisms of detrital production: dislodgment of whole plants;
May cast resulting from the springtime shedding of the previous-season’s growth collar; and chronic erosion, resulting from the gradual loss of
distal lamina tissue. The area of the box comprising each mechanism is scaled to represent study-wide averages for cold (blue) and warm
(orange) locations. (b) Mean maximum stipe length for L. hyperborea populations distributed across the species’ approximate geographical range
(purple line) in the NE Atlantic, collated from various sources (see Supporting Information Table S7 for references and study details). The
orange (warm) and blue (cold) arrows indicate sites sampled in the present study; font size increases with stipe length [Colour figure can be
viewed at wileyonlinelibrary.com]
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2013; Hill et al., 2015; Howard et al., 2017; Krause-Jensen &

Duarte, 2016; Reed & Brzezinski, 2009). So far, reliable estimates of

macroalgal carbon fluxes in the coastal ocean have been hampered

by a scarcity of accurate data of the extent of macroalgal forests

and the spatial variability of the amount of carbon they assimilate

and release (Reed & Brzezinski, 2009). Using surveys along a

large-scale latitudinal gradient, we have shown that the standing

stock of carbon contained within L. hyperborea kelp forests is minor

when compared with other dominant vegetation types across Europe

(Figure 4a). However, the high productivity rates of macroalgae—

and kelps in particular—underpin a considerable flux of particulate

detrital carbon, which surpasses that of many other vegetated habi-

tats (Figure 4b). It is important to note that our study did not take

into account the exudation of dissolved organic carbon, which may

represent up to a quarter of the total carbon assimilated and

released by L. hyperborea (Abdullah & Fredriksen, 2004). Given that

L. hyperborea forests represent the dominant vegetation type along

much of the NE Atlantic coastline, we suggest that changes in the

carbon stored and donated by this ecosystem are likely to have

important implications for coastal carbon cycling.

Our findings indicate that previous assessments have greatly

underestimated the global standing stock of carbon held within kelp

forests. For example, based on the best-available information at the

time, Reed and Brzezinski (2009) estimated that the global kelp

standing crop was ~7.50 Tg C, which is lower than the ~11.49 Tg C

reported here for the range of L. hyperborea alone. Given that kelp

genera are widely distributed around the world (Teagle, Hawkins,

Moore, & Smale, 2017), the total global standing stock could feasibly

be an order of magnitude greater than these values. More impor-

tantly, by quantifying total detritus production from all mechanisms,

we have shown that kelp forests release a considerable amount of

particulate organic carbon via detritus (about 5.71 Tg C year�1),

exceeding per unit area estimates for tree and seagrass species in

Europe (Figure 4, right panel). This flow of carbon is likely to be a

significant resource subsidy, enhancing the secondary production at

receiver habitats (Filbee-Dexter, Wernberg, Ramirez-Llodra, Norder-

haug, & Pedersen, 2018; Krumhansl & Scheibling, 2012). The

transfer of detritus can also alter local species composition and

abundance within recipient communities. For example, L. hyperborea

detritus deposited in fjords has been shown to attract a range of

fauna from deep-sea habitats (Ramirez-Llodra et al., 2016). The flow

of particulate detritus reported here could also be an important

source of allochthonous carbon contained within marine carbon

sinks such as seagrass meadows or offshore sedimentary habitats

(Hill et al., 2015). Even if a minor proportion (e.g. 10%; lower than

the average 15% estimated by Krause-Jensen & Duarte, 2016) of

the annual carbon flux estimated here (i.e. ~0.57 Tg C year�1) were

to reach carbon sink habitats, then L. hyperborea forests would make

a sizeable contribution to biogenic carbon sequestration, comparable

to the 0.72 Tg C � 0.12 year�1 accumulated within European salt-

marshes for example (Ouyang & Lee, 2014).

Although the proportion of kelp detritus that reaches carbon

sinks is currently unknown, detrital mats comprising L. hyperborea-

derived material have been reported at depths in excess of 100s of

meters (Freiwald, 1998). In a recent study investigating detritus

transport from kelp forests to deep fjords using video cameras, Fil-

bee-Dexter et al. (2018) recorded the presence of kelp laminae

between 400 and 450 m, and estimated its biomass at 22.1 g of

fresh weight per m�2 of seafloor. In an analysis of benthic sediment

cores collected at depths of 70–262 m along the Norwegian coast,

Abdullah, Fredriksen, and Christie (2017) suggested that most of

the organic matter deposited in the sediments originated from

distant L. hyperborea forests, as its carbohydrate and phenolic con-

tent closely resembled that of the organic fraction. Given their local

estimates of organic matter deposition (~0.46 kg C m�2 year�1)

and L. hyperborea production (3 kg C m�2 year�1), they concluded

that a substantial proportion of annual kelp production may deposit

in the sediments. Still, it is important to note that a dearth of

information regarding realized kelp transport pathways, residence

times and burial rates of kelp-derived matter hinders our under-

standing of the relative contribution of kelp donation to carbon

sinks.

Across the latitudinal gradient examined here, populations in the

warm locations stored an average of 68% less carbon and released

53% less particulate carbon than those from colder northernmost

populations. The markedly lower carbon standing stock and rates of

particulate carbon release observed under the warm climate regime

was principally the result of the smaller size of L. hyperborea plants

in those areas (Supporting Information Figure S3). Although multiple

environmental variables such as nutrient availability, irradiance and

wave exposure influence the size, morphology and productivity of

kelp plants (Pedersen, Nejrup, Fredriksen, Christie, & Norderhaug,

2012; Smale et al., 2016), they did not co-vary with temperature or

differ between the climate regimes (Supporting Information

Table S2). Biological factors such as grazing pressure are also known

to affect kelp standing biomass (Estes & Palmisano, 1974). However,

the principal kelp-grazers in our study area (an omnivorous sea

urchin and several species of gastropod mollusc) are not considered

to exert strong top-down control on kelp populations, as they are

small and do not form dense grazing aggregations (Hargrave, Foggo,

Pessarrodona, & Smale, 2017; Smale et al., 2013). Reduced plant

productivity (and therefore lower potential for carbon assimilation

and potential storage and release) is frequently observed in tempera-

ture-stressed populations, such as those living at the warm edge of

their distribution (Hatcher, Kirkman, & Wood, 1987), or those experi-

encing frequent heat and drought stress (Allen, Breshears, &

McDowell, 2015). Our findings agree with previous historical (John,

1968; Whittock, 1969) and more recent (Smale et al., 2016) latitudi-

nal surveys across the study region, which also found reduced kelp

sizes and productivity in southern Great Britain compared to north-

ern sites. We found a similar pattern across the geographical range

of L. hyperborea when examining maximum stipe size, a reliable

proxy for plant productivity and detritus production (Kain, 1971).

Although the quantity of morphological data from marginal popula-

tions at the trailing range edge is limited, Pereira, Engelen, Pearson,

Valero, and Serr~ao (2017) recently showed that L. hyperborea
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individuals in Portuguese tidal pools rarely surpass 70 cm in total

length, while unpublished data from subtidal populations in northern

Spain indicate that mean maximum stipe length does not exceed

60 cm at the warm rear-edge (Franco et al., unpublished; Supporting

Information Table S7). In contrast, mature plants from Norway, Ice-

land or northern Great Britain often surpassed 120 cm in stipe

length, with the greatest stipe lengths documented at the central

portion of the species range (Supporting Information Table S7). This

strongly suggests that biomass accumulation, primary productivity

and carbon transfer associated with L. hyperborea forests is reduced

under warmer conditions.

Together with the available evidence from the literature, our

findings indicate that continued ocean warming is likely to diminish

the donor capacity of kelp forests in the NE Atlantic Ocean. Sea

temperatures in this region have increased significantly in recent

decades (Belkin, 2009), with a further 1.5–5°C of warming predicted

for this century (Philippart et al., 2011). L. hyperborea has already

undergone a range contraction of ~250 km at its warm, trailing range

edge over the past 40 years (Assis, Lucas, B�arbara, & Serr~ao, 2016),

and further losses are expected as the water continues to warm

(Assis et al., 2016; M€uller, Laepple, Bartsch, & Wiencke, 2009). The

loss of L. hyperborea forests at the warmer portions of its range is

no exception, as several other Atlantic kelp species have exhibited

climate-related declines in abundance and spatial extent in recent

years (Fern�andez, 2016; Filbee-Dexter, Feehan, & Scheibling, 2016;

Raybaud et al., 2013). Such losses of marginal kelp populations at

trailing range edges have likely led to reductions in the magnitude of

carbon assimilation and donation through kelp forests in the North

Atlantic region.

Warming can extend the growing season and lead to increases

in overall vegetation productivity at boreal latitudes (Sturm et al.,

2001), which could in principle compensate for reductions in tem-

perate regions. For instance, reductions in sea ice cover in the Arc-

tic are expected to promote growth and facilitate the poleward

range expansions of kelp and seagrasses, with consequent increases

in benthic primary production and alterations to inshore carbon

cycling (Krause-Jensen & Duarte, 2014). However, reductions in

sea ice extent may in fact negatively affect primary productivity

and carbon assimilation as they allow for wind-driven resuspension

of sediments (Bonsell & Dunton, 2018). In addition, benthic produc-

tivity in the Arctic will still nonetheless be greatly restricted by

long periods of darkness (Dunton, 1985). Finally, many cold-tempe-

rate macroalgae species are expected to make only moderate gains

in the Arctic (M€uller et al., 2009), which may not compensate for

the projected losses at the trailing range edge. For instance, despite

expected range expansion into the Arctic, L. hyperborea is still pre-

dicted to lose between 8.41% and 39.44% of its global suitable

habitat by the end of the century, depending on the emissions sce-

nario (Assis et al., 2016). Although the extent to which the pole-

ward migration of warm-water species will offset for the trailing-

edge decline of cold-affinity species remains unclear, the majority

of highly productive kelp species in the NE Atlantic have cold

northerly distributions (M€uller et al., 2009; Raybaud et al., 2013).

Projected increases in CO2 levels could, theoretically, have a
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positive effect on future kelp productivity and carbon assimilation

(Brodie et al., 2014), which may compensate for temperature-medi-

tated declines. In many kelp species however, photosynthesis is

already carbon saturated under present conditions, and elevated

CO2 levels do not lead to increased primary production and growth

rates (I~niguez et al., 2016). In reality, elevated CO2 levels may facil-

itate kelp competitors such as mat (turf)-forming algae (Connell,

Kroeker, Fabricius, Kline, & Russell, 2013), which can displace kelp

populations under stressful conditions, such as extreme ocean

warming or reduced water quality (Filbee-Dexter & Wernberg,

2018).

The observed decline of kelp forests in the Atlantic reflects pat-

terns in other temperate regions of the global ocean. Recent warm-

ing has been linked with loss of kelp forests and other large canopy-

forming macroalgae in several systems (e.g. Filbee-Dexter et al.,

2016; Johnson et al., 2011; Verg�es et al., 2014; Wernberg et al.,

2016), leading to declines in detrital production (Krumhansl et al.,

2014) and, intuitively, carbon fluxes. In a recent meta-analysis of

kelp forest change over the past half-century, Krumhansl et al.

(2016) reported significant declines in kelp abundances in 38% of

the global ecoregions analyzed, while 28% of regions registered

increases. Nevertheless, some of the regions where populations were

found to be stable, or even increasing, have experienced massive

declines and even extirpations of kelp populations in recent years

(e.g. the South European Atlantic shelf; Fern�andez, 2011; Raybaud

et al., 2013; Assis et al., 2016, 2017). Continued declines in kelp for-

est extent, together with declines in productivity and shifts in spe-

cies composition, could presumably diminish carbon assimilation and

transfer through vegetated temperate marine ecosystems globally,

with potential consequences for carbon cycling in the coastal ocean.

Evidence to-date suggests that kelp losses may only be partly com-

pensated by moderate range expansion into polar regions, with pro-

ductivity still being severely restricted by sea ice dynamics (Bonsell

& Dunton, 2018).

Until now, most efforts have been focused on understanding

how climate change might affect the carbon sequestration and

storage capacity within ecosystems. It is becoming evident, how-

ever, that climate-driven alterations in the fluxes between different

compartments can also alter processes within the carbon cycle. For

instance, climate change is predicted to increase riverine carbon

exports (Larsen, Andersen, & Hessen, 2011), a significant compo-

nent of the global carbon cycle which connects terrestrial and

oceanic carbon reservoirs. Our work suggests that such alterations

may also be important in the coastal ocean, where populations,

habitats and trophic resources are highly interconnected because of

the open and dynamic nature of the marine environment. More-

over, our results indicate that the magnitude of carbon transfer via

detritus in coastal vegetated habitats is greater than previously

reported, highlighting the need to incorporate this process into

coastal biogeochemical models. Considering climate-driven changes

in the carbon donor capacity of ecosystems will improve our

understanding of how carbon cycle pathways will change in a

future warmer ocean.
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