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Krill faecal pellets drive hidden pulses of particulate
organic carbon in the marginal ice zone
A. Belcher 1, S.A. Henson2, C. Manno1, S.L. Hill 1, A. Atkinson 3, S.E. Thorpe 1, P. Fretwell1, L. Ireland1 &

G.A. Tarling1

The biological carbon pump drives a flux of particulate organic carbon (POC) through the

ocean and affects atmospheric levels of carbon dioxide. Short term, episodic flux events are

hard to capture with current observational techniques and may thus be underrepresented in

POC flux estimates. We model the potential hidden flux of POC originating from Antarctic

krill, whose swarming behaviour could result in a major conduit of carbon to depth through

their rapid exploitation of phytoplankton blooms and bulk egestion of rapidly sinking faecal

pellets (FPs). Our model results suggest a seasonal krill FP export flux of 0.039 GT C across

the Southern Ocean marginal ice zone, corresponding to 17–61% (mean 35%) of current

satellite-derived export estimates for this zone. The magnitude of our conservatively esti-

mated flux highlights the important role of large, swarming macrozooplankton in POC export

and, the need to incorporate such processes more mechanistically to improve model

projections.
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The flux of particulate organic carbon (POC) through the
ocean via the biological carbon pump (BCP) is tightly
coupled to atmospheric levels of carbon dioxide (CO2)1.

However, limited observations result in poorly constrained
models of POC flux, particularly in the Southern Ocean. The rate
at which the flux of sinking POC declines with depth can be
quantified and modelled by the attenuation rate. However, studies
of POC flux attenuation struggle to capture episodic, intense, or
localised export events because of limited sampling and the pat-
chy nature of such events in time and space. Hence these events
may be under-represented in flux estimates. These intense events
may be particularly efficient in transferring POC to the ocean’s
interior as they may be driven by high primary production, and
subsequent faecal pellet production by consumers, which over-
whelms the grazing capacity of the community of detrital fee-
ders2–4. In this study, we focus on the POC flux generated by the
faecal pellets of Antarctic krill.

Antarctic krill (Euphausia superba) comprise the highest
individual species biomass of any metazoan in the Southern
Ocean; swarms can extend over areas of ~100 km25. Krill are thus
an important part of Southern Ocean ecosystems, forming a key
link between primary producers and higher trophic levels6. Being
one of the largest epipelagic crustaceans, krill also produce large
faecal pellets (FPs), which sink at speeds of hundreds of metres
per day2, 4, making them important agents in carbon export. In
this way, carbon that originated in the atmosphere is transferred
to the deep sea where it can be sequestered for periods of cen-
turies or more7. Krill FPs have been found in high numbers in
sediment traps in both the upper and deep ocean8–10. Although
some carbon from krill FPs may be retained in the upper mixed
layer through coprorhexy, coprophagy, and remineralisation11, 12,
two combining factors, namely the rapid sinking speeds of krill
FPs and the occurrence of krill in large swarms, mean that aty-
pically large and episodic krill FP fluxes can occur in certain
regions at certain times of the year8, 10, 13.

Measuring the flux of POC in situ at various depths in the
water column is challenging, resulting in relatively poor spatial
and temporal coverage of measurements when compared to more
easily measureable ocean variables such as temperature or nitrate.
Empirically derived models for POC flux that utilise limited
in situ snapshot POC flux measurements may not capture epi-
sodic fluxes, such as those driven by krill swarms, and likely
underestimate the carbon flux in regions of high krill density.
This is especially true for models with a spatially and temporally
invariant attenuation rate (typically Martin’s b value14). This
means that individual krill swarms will not be resolved either in
time or space. Without mechanistic representation of the FP flux
associated with krill swarms, biogeochemical models may not
make accurate projections of the contribution of the Southern
Ocean to global carbon export.

Antarctic krill have a life cycle strongly tied to seasonal sea ice,
which provides nursery areas for the larvae15 and can enhance
local primary production as it melts, providing rich grazing
grounds16, 17. The role of the marginal ice zone (MIZ; 15–80% ice
cover18) as a feeding ground for high densities of krill19, and the
resulting high FP fluxes and low attenuation rates of sinking
POC, suggest that the MIZ may be an area of significant POC
export in the Southern Ocean20, 21. However, particle flux mea-
surements are even more limited in the MIZ (in part due to the
difficulties of sampling in sea ice) and, as such, the potential
contribution of krill FPs in the MIZ to Southern Ocean export
flux has yet to be fully quantified. Additionally, the patchy dis-
tribution of krill biomass22 may mean that episodic events are
poorly represented in many biogeochemical sampling campaigns.
The combination of these factors mean that there are few
observational data capturing these potentially large krill FP fluxes

(Supplementary Table 1). As empirical algorithms to estimate
global export generally rely on extrapolation of datasets of in situ
measurements23–25, these episodic, but recurrent, krill FP fluxes
are likely to be omitted, or at least under-represented, in Southern
Ocean flux estimates.

We previously measured high krill FP fluxes and low
attenuation rates in the MIZ of the South Orkney Islands2, and a
small number of other studies have also encountered large fluxes
of krill FP associated with low attenuation rates through the
upper mesopelagic8, 11, 20, 26. We hypothesise that, where krill
densities are high in the MIZ, they will drive large FP fluxes such
that the MIZ accounts for a substantial component of the total
POC export in the Southern Ocean. To assess the contribution of
krill FP to the BCP, we develop an empirical model to make first
order estimates of this flux based on spatially-discrete krill density
data over the past century (KRILLBASE27) and in situ measure-
ments of krill FP attenuation in the MIZ of the Southern Ocean.
We estimate that the seasonal flux of krill FPs at 100 m across the
MIZ of the Southern Ocean can be large, and is equivalent to
17–61% of satellite-derived estimates of total carbon flux at this
depth. These results highlight that krill FPs are an important
contributor to carbon flux and yet they are not mechanistically
represented in global biogeochemical models, which restricts our
ability to predict future changes to the BCP.

Results
Krill faecal pellet production and export. The total seasonal krill
FPP over the MIZ region is estimated to be 0.065 GT C (ranging
from 173 to 2427 mg Cm−2 over the season, with a mean of
786 mg Cm−2). FPP is highest in the Scotia-Weddell Sea area
during the period 24 December–06 January (Fig. 1). This area,
downstream of the Antarctic Peninsula, supports some of the
highest krill densities in the Southern Ocean15, 27, 28.

We conservatively estimate the export flux of krill FP carbon at
100m (FP100) based on the above predicted FPP and on a Martin
type14 attenuation curve with an attenuation coefficient of 0.32 (the
median of literature estimates of krill FP attenuation valid for our
region2, 8, 9, 11, 12, 20). Averaged over the entire MIZ area (FP100,MIZ),
highest FP export fluxes (104mg C m−2 d−1) occur during the
period 24 December–06 January. The total seasonal export of krill
FP is highest in the Scotia and Weddell seas (peaking at 80 g C m−2

in the MIZ region −35 to −40 °E). Summed over the productive
season, we estimate the total export of krill FP at 100m in the MIZ
(FP100,SEA) to be 0.039 GT C (Table 1).

Model comparisons. We compare our estimate of krill FP export
to total POC export from a number of studies23–25 that apply
empirical algorithms for carbon export to satellite-derived pri-
mary productivity data (Table 1). If we assume that these algo-
rithms correctly estimate the POC export in the MIZ, krill FP
export could make up 17–61% (mean 35%, median 32%) of total
seasonal POC export in the region south of the maximum MIZ
extent (Table 1). Additionally, we compare our FP export esti-
mates to three POC export models specific to the Southern Ocean
(Table 1), which utilise nutrient and hydrographic data to con-
strain model parameters and budgets29–31 (see methods). The
estimate of POC export south of 50 °S by Schlitzer et al. (2002)30

is much higher than other estimates, likely in part due to the
inclusion of highly productive coastal waters off South America,
and is therefore not used for further comparison. Based on the
models of Primeau et al. (2013) and MacCready et al. (2001),
which offer the best coverage of the Southern Ocean region
analysed here, krill FP fluxes are 13–18% of the total annual POC
export flux, compared to 14–43% for satellite-derived estimates
for the region south of 60 °S (Table 1). These percentage

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08847-1

2 NATURE COMMUNICATIONS |          (2019) 10:889 | https://doi.org/10.1038/s41467-019-08847-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


FPP (mg C m–2 d–1)

No data

Oct 15-28 Oct 29-Nov 11 Nov 12-25

Nov 26-Dec 09 Dec 10-23 Dec 24-Jan 06

Jan 07-20 Jan 21-Feb 03 Feb 04-17

Feb 18-Mar 03

80S

150 W 180 150 E

70S
60S

0.0 – 5.0

5.1 – 10.0

10.1 – 35.0

35.1 – 85.0

85.1 – 150.0

150.1 – 325.0

325.1 – 3350.0

Fig. 1 Estimated krill faecal pellet production (FPP) in the marginal ice zone, Antarctica. The marginal ice zone, from fortnightly sea ice concentration data
(15–80% ice cover), is divided into 5 ° zonal cells, and is coloured by FPP (mg C m−2 d−1) based on krill density measurements from KRILLBASE (black
dots) and literature krill FP production rates. Regions of the marginal ice zone where no KRILLBASE records occurred are coloured in grey. The Antarctic
coastline was obtained from the SCAR Antarctic Digital Database
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contributions are conservative as our krill FP export flux is
summed over the seasonal MIZ area, rather than south of 60 °S.

Energy budget calculations. We make independent estimates of
krill FP flux at 100 m based on energy budget considerations.
Taking estimates of circumpolar total gross krill production for
krill of 20–50 mm in length (0.342–0.536 Gt yr−132), gross
growth efficiencies of 20–30%33, and absorption efficiencies (AE)
of 0.42–0.944, we estimate FPP rates of 0.01–0.25 Gt C during our
productive season (October–March), resulting in FP fluxes at 100
m of 0.007–0.150 Gt C yr−1. This range is large, reflecting in
particular the high range in AE, related to feeding rates and food
type. Constraining this range in AE to 0.75–0.85 to reflect the
more typical range of values reported3, we estimate FP fluxes at
100 m of 0.016–0.065 Gt C yr−1.

Discussion
Taking available data in the literature, we have made first order
estimates of the flux of krill FP in the MIZ of the Southern Ocean.
Our model highlights that the seasonal export of krill FP is highest
in the Scotia and Weddell Seas, a reflection of both high krill
densities and the large extent of the MIZ in this region in austral
summer. According to the KRILLBASE statistical model27, 28,
peak krill densities occur during 24 December–06 January and
consequently, highest FP export fluxes (104 mg C m−2 d−1 aver-
aged over the entire MIZ area, FP100,MIZ) are predicted to occur
during this period. For comparison, maximum fluxes of cylind-
rical FPs of 125.5 mg Cm−2 d−1 were observed in sediment traps
at 170m depth on the Western Antarctic Peninsula10 in February.
This agrees well with our calculated maximum krill FP flux of 121
mg Cm−2 d−1 at 170m in December in the region encompassing
the Antarctic Peninsula (−80 to −60 °E), providing confidence in
our model calculations.

We estimate that, over the productive season
(October–March), the total export flux of krill FPs at 100 m in the
MIZ (FP100,SEA) is 0.039 GT C (Table 1). This represents 17–61%
of satellite-based estimates of total carbon export, highlighting
that krill FP export may represent a significant proportion of
estimated total POC export flux for the MIZ. The incorporation

of POC export data collected via time-integrating methods, such
as thorium (a radioactive tracer) as in the algorithms of Henson23

and Dunne25 (see methods), increases the chance that any carbon
fluxes associated with ephemeral krill swarms are included in
these satellite-based empirical algorithms. However, in situ POC
export data are spatially limited and coverage in the MIZ is poor
(Supplementary Figure 1); hence, these empirically derived esti-
mates likely underrepresent the role of krill FP fluxes. If we
assume that satellite-derived POC export estimates miss the
contribution from krill FP in the MIZ modelled here, satellite-
derived POC export estimates represent only 62–85% of the total
POC export in these regions.

We estimate that krill FP fluxes represent 12.5–17.7% of total
carbon export (Table 1) based on the models of MacCready et al.
(2001) and Primeau et al. (2013). Krill FP fluxes could therefore
represent a significant fraction of Southern Ocean POC export
flux and their mechanistic inclusion in global models could
improve projections of future ocean carbon uptake. The relatively
sparse data availability of POC flux estimates in the Southern
Ocean, and the lack of the mechanistic inclusion of krill FP export
may lead to underestimations of the contribution of the Southern
Ocean to global export fluxes.

There are a number of uncertainties associated with our esti-
mates due to necessary assumptions and the degree to which
input parameters are constrained by available data. Firstly, we
take the FPP rate from literature for a standard krill of 600 mg
fresh weight3. This is equivalent to a krill of length 34 mm based
on the mass-to-length relationships calculated for the Scotia Sea
in 200034. Larger krill will produce larger FPs, which sink more
rapidly and thus have a lower attenuation rate, where-as the
opposite is true for smaller krill. The krill length of 34 mm sits at
the low end of values reported in the field28, 32, 35, 36, therefore our
FPP rate is very conservative based on size.

Additionally, we assume a constant FPP rate throughout the
day. It is likely that feeding rates, and thus egestion rates will
change with food availability and season4, 17, but this process is
not yet sufficiently constrained to be incorporated into our model.
If krill were only egesting for 12 h a day then we would over-
estimate the flux of FPs by a factor of two. However, as the range
in FP production estimates in the literature vary by over an order

Table 1 Comparison of krill faecal pellet (FP) POC export at 100m (this study) with literature estimates of total POC export

Data source/model
algorithm

POC export flux in the
MIZa (GT C yr−1)

Krill FP contribution to POC
exportb (%)

POC export flux south of
60 °Sc (GT C yr−1)

Krill FP contribution to POC
exportb (%)

This study -krill FPs only 0.039
Satellite-based estimatesd

Carr, Henson 0.076 51.5 0.101 38.5
Carr, Dunne 0.122 32.0 0.152 25.6
Carr, Laws 0.209 18.6 0.281 13.8
Marra, Henson 0.082 47.2 0.104 37.4
Marra, Dunne 0.137 28.4 0.160 24.3
Marra, Laws 0.227 17.1 0.289 13.5
VGPM, Henson 0.064 60.6 0.090 43.3
VGPM, Dunne 0.103 37.6 0.135 28.8
VGPM, Laws 0.177 21.9 0.250 15.5
POC export models
Primeau et al. 2013e,f 0.22 17.7
Schlitzer et al. 2002e 1.00 3.9
MacCready et al. 2001e 0.31 12.5

aEstimates are for the productive season, October–March. For satellite-based estimates these are for the region south of the maximum ice extent during the productive period defined here (i.e. location of
15% sea ice concentration for period 1–13 October 1994–2014)
bPercentage contribution of our estimate of krill FP export flux (0.039 GT C yr −1) to various total POC export estimates
cAnnual export for the region south of 60 °S, with the exception of Schlitzer et al. (2002) and Primeau et al. (2013) which are for the regions south of 50 °S and 55–60 °S, respectively.
dNamed according to the input primary production and export (see methods)
eAnnual export
fExport at base of euphotic zone (73.4 m)
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of magnitude,2–4, 37, 38, any diel variation is small in comparison.
We recalculate total krill FP100 fluxes based on maximum (6.29
mg C ind.−1 d−1) and minimum (0.67 mg C ind.−1 d−1) FP
production rates in the literature3, 4, 37, 38. This results in sea-
sonally integrated FP production (FP100,SEA) ranging between
0.008 and 0.079 GT C (sensitivity runs B and C, Table 2) high-
lighting the need for further studies on krill FPP rates to constrain
this parameter or accurately model its variability (perhaps based
on factors such as food availability). However, even with mini-
mum rates of FPP, krill FP fluxes could still account for 4–13% of
the total POC export flux based on satellite-derived estimates.

We also test the sensitivity of our model to the attenuation rate.
The range in krill FP attenuation rates applicable to the Southern
Ocean MIZ is 0.10–0.622, 8, 9, 11, 12, 20. Using the upper and lower
bounds of this range, we calculate FP100,SEA of 0.024 and 0.055
GT C respectively (sensitivity run D and E, Table 2). Even at the
high end of literature derived attenuation rates, krill FP fluxes are
11–37% of the total POC export flux based on satellite-derived
estimates, highlighting the potential magnitude of the missed
POC flux. Additionally, the fact that our energy budget estimates
of krill FP flux at 100 m (0.016–0.065 Gt C yr−1) encompass our
best model estimate (0.039 GT C yr−1), gives additional con-
fidence in our results. Therefore, although data are limited, the
available literature supports the notion that krill FPs make an
important contribution to the POC export flux in marginal ice
zones, particularly those with high krill abundances.

Krill density values have been derived from KRILLBASE27, in
which net haul data have been standardised to a common sampling
strategy to take into account varying levels of catch efficiency.
However, as krill are able to escape nets, even with the most effi-
cient net sampling strategy39, our estimates of krill density are likely
conservative. To assess the impact of the use of standardised
KRILLBASE densities (for the subset of KRILLBASE data used in
our study), we recalculate the seasonal FP flux at 100m based on
krill densities of 1.1 and 29.8 ind. m−2 (sensitivity runs F and G,
Table 2). These are the median and 90th percentile values for the
unstandardised data, where densities are >0 ind. m−2, which we
believe to be a fair representation of the possible range of the mean
Southern Ocean krill density, whilst not being heavily biased by
zero values or rare extreme values. This results in FP100,SEA of 0.002
and 0.053 GT C (Table 2) based on median and 90th percentile
values respectively, with the lower estimate likely to be at the
extreme end. Taking the mean of all unstandardised krill density
data (17.8 ind. m−2) results in FP100,SEA of 0.031 GT C (sensitivity
run H) which is close to our estimate of 0.039 GT C for standar-
dised data. The use of standardised KRILLBASE data does therefore

not overly influence the conclusions drawn here. Since the marginal
ice zone is harder to access and less well sampled than open waters,
the KRILLBASE data are skewed towards regions of lower density,
again increasing the likelihood that our estimates of krill FP flux are
conservative.

Although our model results show that the estimated FP export
flux in the MIZ is dominated by high krill density areas, this does
not consider the effects of differences in zooplankton community
structure, particularly in the abundance of microcopepods, many
of which are coprorhexic or coprophagic. A number of studies
have measured high retention of FPs in the euphotic zone, due
most likely to copepod retention filters40, 41, and currents gen-
erated by the swimming activities of both krill42 and copepods43

that could cause FP fragmentation, slow sinking rates and
increased availability to smaller grazers such as dinoflagellates
and ciliates44. Zooplankton community structure is therefore a
key consideration when examining the degree to which sinking
FPs are exported from the euphotic zone21, 45–47. Nevertheless,
the importance of krill FPs in sediment traps (Supplementary
Table 1)2, 8, 9, 11, 12, 20, combined with evidence presented here,
suggest that this retention filter could be short-circuited through a
rain of large, fast sinking FPs4, 9, 47, when krill densities (com-
pared to microzooplankton grazers) are sufficiently high.

Our model of krill FP export flux represents a first-order
estimation of the importance of krill for the export of carbon out
of the euphotic zone of the MIZ of the Southern Ocean. We find
krill FP export fluxes in the MIZ to be large which, if missed by
current satellite-derived estimates of POC export (due to poor
data availability in the MIZ), would add an additional 17–61% to
POC export estimates for the Southern Ocean (Table 1), i.e. these
empirical algorithms could underestimate POC export by
15–38%. There is a need for increased spatial and temporal
coverage of export data in MIZ regions to allow better repre-
sentation of these important regions in empirically derived global
estimates of POC export. Additionally, our work highlights that
krill FP fluxes need to be mechanistically represented in global
biogeochemical models to enable more accurate projections of the
future Southern Ocean contribution to carbon export. As a site of
deep water formation and also a region where deep nutrient-rich
waters are exposed to the atmosphere48, the Southern Ocean is a
key part of global biogeochemical cycles and contributes sig-
nificantly to global export production30. It is therefore vital to
quantify the efficiency of carbon transfer in the Southern Ocean
as accurately as possible. Additionally our conclusions can be
extended more globally, as the contribution to POC flux of FPs
produced by other abundant swarming species, such as salps49, 50,

Table 2 Estimated FP export flux at 100m for various sensitivity runs for the period October–March

Run KRILLBASE data MIZ data period FPP rate (mg C
ind−1 d−1)

Attenuation rate (Martin’s b
value)

Total FP100 export
flux (GT C)

% of satellite
exporta

A All 1994–2014 3.2 0.32 0.039 17.1–60.6
B All 1994–2014 0.67 0.32 0.008 3.7–13.1
C All 1994–2014 6.29 0.32 0.079 34.6–122.8
D All 1994–2014 3.2 0.10b 0.055 24.3–86.3
E All 1994–2014 3.2 0.62b 0.024 10.5–37.3
F Unstandardised—medianc 1994–2014 3.2 0.32 0.002 0.9–3.1
G Unstandardised—90%d 1994–2014 3.2 0.32 0.053 23.9–82.1
H Unstandardised—meane 1994–2014 3.2 0.32 0.031 13.9–49.0

A is the standard model run; the remaining runs are as for run A but with the following adjustments, B: minimum FPP rates, C: maximum FPP rates, D: minimum FP attenuation rates, E: maximum FP
attenuation rates, F: Unstandardised KRILLBASE data –median density, G: Unstandardised KRILLBASE data –90th percentile density, H: Unstandardised KRILLBASE data –mean density
aTotal krill FP export flux at 100m (FP100) as percentage of a range of satellite-derived estimates of total POC export (Table 1)
bLiterature derived FP attenuation rates8, 11
cCalculated assuming a spatially and temporally constant krill density equal to the median of unstandardised krill density data >0 ind. m−2

dCalculated assuming a spatially and temporally constant krill density equal to the ninetieth percentile value of unstandardised krill density data >0 ind. m−2

eCalculated assuming a spatially and temporally constant krill density equal to the mean of all unstandardised krill density data
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may also be under-represented in particle flux studies depending
on the decomposition state of FPs51.

Methods
Krill faecal pellet production. Fortnightly climatologies of the extent of the
marginal ice zone (MIZ) in Antarctica were calculated from daily long-term passive
microwave sea ice concentration data from 1994–2014 from the National Snow and
Ice Data Center (NSIDC)52. Median sea ice concentrations were calculated over the
productive season (October–March53), and the MIZ region defined as 15–80% ice
cover18. The location and size of the MIZ can change rapidly52 and therefore using
fortnightly MIZ data reduces uncertainties associated with short timescale varia-
bility in MIZ areal extent. Each fortnightly MIZ region was further divided into 5°
zonal cells (k). For each fortnightly MIZ region, average krill densities in each cell
were estimated using data from KRILLBASE; a database compiling 15,194 net hauls
taken in the Southern Ocean between 1926–201627. Although KRILLBASE is the
most comprehensive spatially-resolved dataset of Antarctic krill density, there are
not sufficient data to cover each MIZ cell for every fortnight in the austral summer.
Therefore, we take each spatially specific krill density data point from KRILLBASE
and model the krill density at this location for each fortnightly period using an
established model of krill density dynamics during the austral summer27, 28. In this
way, we obtain better coverage over the MIZ for each fortnight (Supplementary
Figure 2). This model, in which krill density increases from October to a maximum
in early January, before decreasing again until March, has been used to standardise
KRILLBASE density estimates to a relatively efficient sampling strategy (to a night-
time RMT-8 net haul to 200 m on 1 January)27, 28. We use the other elements of
this standardisation, i.e. to a night-time RMT-8 haul to 200 m, to control for
differences in net size, sampling depth, and time of day27, 28, each of which may
affect the degree of undersampling due to net avoidance or vertical distribution
patterns. Despite standardisation to an efficient net sampling strategy, net avoid-
ance39 means that even these standardised krill densities are likely an under-
estimate of true krill density. We used the haul and pooled stratified haul data, and
excluded records representing survey means due to the potential for these survey
means to cover more than one zonal cell. We also excluded data collected outside
the austral spring and summer (October–March), or exclusively in deep strata. We
converted each standardised krill density data point in KRILLBASE (with afore-
mentioned exclusions) to a set of equivalent estimates for the mid-date of each
fortnight using the standardisation model. We calculated �Nk;t , the average krill
density in cell k at time (fortnight) t, as the mean of all date-specific density
estimates contained within the time-specific boundaries of cell k.

There are some caveats with our use of these data. Firstly, even though
standardised to a single, relatively efficient sampling method, some have argued
that issues of net mesh selection and avoidance will lead to underestimates of post-
larval krill density39. This would lead to our estimates of krill faecal pellet
production (FPP) being conservative. Secondly, we calculate krill densities in each
MIZ zone by averaging all KRILLBASE data in that zone, creating a long-term
average climatology of abundance. Therefore actual values in any given year will
vary considerably about this mean28. Thirdly, our approach is sensitive to spatial
differences in data availability (Supplementary Figure 2) with less reliable krill
density estimates for sparsely sampled cells. Our use of the standardisation model
to augment density estimates with data collected at other times of year was
designed to reduce the impact of such spatial differences in data availability.
However, this standardisation model does not represent any longitudinal
differences in intra-annual krill dynamics, which could cause spatial differences in
the accuracy of modelled dynamics. We also tested the sensitivity of our results to
FPP rate and FP attenuation rate which demonstrate that our broad conclusions
are robust (Table 2).

Fortnightly values of krill faecal pellet production (fpp) in each cell were
calculated by multiplying mean krill densities (ind. m−2) by a krill FPP rate (E) of
3.2 mg C ind.−1 d−1 from the literature2, 3. The average FPP for the circumpolar
MIZ area (FPPMIZ, mg C m−2 d−1) was calculated for each fortnightly period (t)
using the following equation:

fppMIZ;t ¼
X

MIZ

�Nk;t ´ E ´Ak;t

� �
=AMIZ;t : ð1Þ

Here, Ak,t is the area of the 5° cell bounded by the MIZ (m2), AMIZ,t the total
Southern Ocean MIZ area (m2) for that fortnightly period excluding cells with no
data, and �Nk;t the mean krill density in that cell. Similarly, the total flux of FPs
produced in the MIZ in each fortnightly period (fppTOT, mg C) was calculated
using the following equation:

fppTOT;t ¼
X

MIZ

�Nk;t ´E ´Ak;t

� �
´ 14 days: ð2Þ

Krill faecal pellet fluxes. We model the export flux of FPs at depth z
(FPz, mg C m−2 d−1) in each cell based on literature estimates of krill FP
attenuation2, 8, 9, 11, 12, 20 appropriate to our study region. We apply the median
attenuation rate (b= 0.32) to the FPP data in each cell, using the Martin curve14.

We calculate for z= 100 m (FP100, mg C m−2 d−1) and, for comparison with a
previous study10, for z= 170 m.

FPz ¼ fpp ´ z=z0ð Þ�b ð3Þ

Here z0 is the depth at which krill FPs are produced (taken as 20 m, based on
mean swarm depths of 18.9 m measured in the southern Scotia Sea in spring36).
We model the flux of FPs over the MIZ region (FP100,MIZ, mg C m−2 d−1) and the
total flux of FPs at 100 m in the MIZ for each fortnightly period (FP100,TOT, mg C),

FP100;MIZ;t ¼
X

MIZ

FP100;t ´Ak;t

� �
=AMIZ;t ; ð4Þ

FP100;TOT;t ¼
X

MIZ

FP100;t ´Ak;t

� �
´ 14 days: ð5Þ

The total seasonal (October–March) FP100 flux (FP100,SEA, mg C) was calculated
by summing the fluxes from each fortnightly period.

FP100;SEA ¼
XOct

Mar

FP100;TOT

� �
ð6Þ

Model comparisons. We compare our modelled krill FP export fluxes to a number
of different modelled POC export fluxes at 100 m based on satellite-derived pri-
mary productivity estimates54–56 and algorithms for export production23–25 for the
region south of the maximum ice extent during the productive period defined here
(15% sea ice concentration during period 1–13 October 1994–2014) (Table 1).
These export estimates use primary productivity (PP) estimates derived from
satellite chlorophyll-a via three main algorithms, referred to here as Carr56,
Marra55, and VGPM54. Satellite-based PP estimates have been shown to disagree
with each other57 and likely underestimate PP in the Southern Ocean30, 58. PP data
are then used to calculate export production via three different algorithms, herein
referred to as Laws24, Dunne25, and Henson23. The Laws algorithm utilises nitrate
uptake data and f-ratio (the ratio of new production to total production); however,
the validity of f-ratio derived export estimates was recently questioned59 as they do
not account for nitrification and therefore may overestimate export. In addition,
only one of 11 samples used to derive the Laws algorithm is in the MIZ of the
Antarctic. The Dunne algorithm uses estimates of export based on thorium,
sediment traps, oxygen, and nitrate uptake data with 11 samples out of 122 in the
MIZ. The Henson algorithm utilises solely thorium-derived particle export esti-
mates, which represents time-integrated export estimated over the half life of
thorium (24.1 days); 15 records out of 306 are in the MIZ. Because of its integration
timescale, thorium-derived POC export estimates may better capture the passing of
krill swarms and the associated high fluxes than sediment trap data. However, even
if these high fluxes are captured by these time-integrated methods, or if in some
MIZ regions large FP fluxes from krill swarms occur regularly enough to be cap-
tured by more short term particle flux methods, the limited number of data points
in the MIZ used in the aforementioned algorithms (Supplementary Figure 1)
means that the low attenuation rates occurring here will not be well represented.
Only 5, 9, and 9% of data in the Henson, Laws, and Dunne algorithms, respectively,
are from the MIZ of the Antarctic. This highlights the need for more observations
in the MIZ to support regionally derived estimates of particle flux attenuation, and
the incorporation of these into global export flux estimates.

In addition we compare our values of krill FP export to three biogeochemical
models estimating POC export in the Southern Ocean (Table 1)29–31. Estimates of
Primeau et al. (2013) are based on a data-assimilating (temperature, salinity, and
radiocarbon distributions) model (horizontal resolution of 2 x 2°) of ocean
phosphate, calculated for their Antarctic zone (~south of 55–60 °S) as defined by
latitude of maximum Ekman divergence31. MacCready et al. (2001) use a
diagnostic model (with zonally averaged 5° bins) to calculate the physical fluxes in
the surface nitrate budget, using a climatology of nitrate concentration (from
historical CTD and bottle data primarily from WOCE and US JGOFS) to constrain
nitrogen export29. Schlitzer et al. (2002) estimate carbon export south of 50 °S from
an inverse model based on hydrographic, nutrient (accounting for nitrification),
oxygen, and carbon data, with horizontal resolution ranging from 5 × 4° longitude
by latitude in open ocean areas to 2.5° to 1° in regions with narrow currents30.
These regional models are not reliant on snapshot style POC flux measurements
and provide better spatial coverage of the MIZ than satellite-based estimates.

Energy budget calculations. To obtain an independent estimate of krill FP fluxes,
we take estimates of krill production and apply energy budget considerations. We
take the estimate of circumpolar krill production of 0.342–0.536 Gt yr−1 for krill
20–50 mm in length32, which is based on KRILLBASE krill densities and an
empirical model35 based on krill length, food concentration (from SeaWiFS satellite
chlorophyll) and sea surface temperature (MODIS satellite). This is the production
during a 4-month summer from 01 December to 31 March32. Converting this wet
mass production to units of carbon, we assume dry mass is 25% of wet mass32 and
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carbon content is 43% of dry mass4. Total carbon ingestion (Cing) was then esti-
mated based on gross growth efficiencies of 20–30%33, and FP production (fpp)
calculated using absorption efficiencies (a) of 0.42–0.944 and the following rela-
tionship.

Cing ¼ fpp= 1� að Þ ð7Þ

We also estimate fpp using a more constrained range in a of 0.75–0.853. As
before, we use equation 3 (above) to estimate the krill FP flux at 100 m, and sum
over our productive season of (October–March).

Data availability
The KRILLBASE dataset analysed for this study is available online: A. Atkinson, S. L.
Hill, E.A. Pakhomov, V. Siegel et al. (2016). KRILLBASE: A database of Antarctic krill
and salp densities in the Southern Ocean, 1926 to 2016. [http://doi.org/brg8]. The
marginal ice zone data were extracted from the National Snow and Ice Data Center,
available here: Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & H. J. Zwally. Sea Ice
Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave
Data. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed
Active Archive Center (1996) [https://doi.org/10.5067/8GQ8LZQVL0VL]. The final data
generated in this study are contained within Tables 1 and 2 in this manuscript, with
supplementary data and figures as a Supplementary Information file.
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