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Coastal waters are optically diverse; studying their optical characteristics is an important

application of satellite oceanography. In coastal ecosystems of the northern Indian

Ocean, optical diversity has been little studied, except for the global analysis by Mélin and

Vantrepotte (2015). This paper is a contribution toward identification and characterization

of optical classes in the coastal regions of the northern Indian Ocean. The study

identified eight optical classes using the monthly climatological datasets of remote

sensing reflectance for the 1998–2013 period from the Ocean Color Climate Change

Initiative (OC-CCI, www.oceancolour.org). The optical classification we adopted uses

the fuzzy logic method, based on Moore et al. (2009). The seasonal variations of the

eight resultant optical classes of the coastal waters of the northern Indian Ocean were

explored. From the mean reflectance spectral signals obtained, it appears that classes

1–6 belong to Case-1 waters and classes 7 and 8 correspond to Case-2 waters. Classes

1 to 2 appear in deeper oligotrophic waters; classes 3–6 are present in intermediate

depths; classes 7 and 8 are mostly found within inshore eutrophic regions with high

chlorophyll concentrations, sediments from river plumes and land runoffs. The optical

variability between seasons (the summer and winter monsoon and the intermonsoon

seasons) are influenced by variations in physical forcing, such as surface winds, ocean

currents, precipitation, and sediment influx from rivers and land runoff. Optical diversity

index ranged from around 0.3 to 1.36. High diversity indices ranging between 1 and

1.36 were found in areas dominated by classes 1–4, whereas low diversity indices 0.3

occurred in areas where classes 7 and 8 dominated. The variations in the dominant

optical classes are shown to be related to changes in chlorophyll concentration and

suspended sediment load, as indicated by remote sensing reflectance at 670 nm. On the

other hand, optical diversity appears to be high in zones of transition between dominant

optical classes.

Keywords: coastal ecosystems, satellite ocean color, classification, remote sensing reflectance, ecosystem

management

1. INTRODUCTION

In an ocean under rapid modification by climate change, the boundaries between marine ecological
provinces will move, but in ways that are difficult to predict (Karl et al., 1995; Platt and
Sathyendranath, 1999). However, there is a premium on knowing the large-scale structure of the
ocean ecosystem as it changes through time, in other words on developing and maintaining a
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biogeography of the ocean basin. Conventional biogeography
relies on collecting and identifying individual specimens through
samplings and survey techniques. At large geographical scales,
it is a costly and time-consuming procedure to make even
a single survey at one time point; making serial surveys to
detect possible changes may be prohibitive on the grounds of
expense. An alternative approach would be to use data streams
from sensors carried on satellites in Earth orbit. Such data have
the advantages of high-resolution at the ocean surface, high
frequency of coverage, cost-effectiveness and synoptic coverage
(Platt and Sathyendranath, 1999, 2008). Potentially, their use
could yield a different kind of biogeography, based on data
free from the limitations of coarse resolution in space and
time. Visible spectral radiometry of the ocean provides a data
stream that is particularly useful for ecosystem analysis: the
visible spectrum carries information on the pigments and size of
phytoplankton cells, as well as on the optical properties of the
other constituents (such as suspended sediments and colored or
chromophoric dissolved organic matter) in the surface waters of
the ocean (Guzman et al., 1995; Babin et al., 2003; Dowell and
Platt, 2009; Garaba and Zielinski, 2013). Mélin and Vantrepotte
(2015) have pioneered the classification of coastal waters at global
scale using annually-averaged fields of optical radiances from
satellite data.

The Northern Indian Ocean is landlocked toward the north
and bifurcates into two intra-continental seas: the Arabian Sea
and the Bay of Bengal. Seasonally reversing monsoons and
reversal of ocean currents are the major distinguishing features
of the Indian Ocean basin (Shetye, 1998; Qasim, 1999). The
monsoonal cycle, including southwest or summer monsoon and
northeast or winter monsoon, determines the climate of the
region. Southwest monsoon is the continuation of the southern
hemisphere trade winds that bring monsoon rains and floods
to the Asian landmass (Tomczak and Godfrey, 2001). Northeast
monsoon is characterized by high pressure over the Asian land
mass and northeasterly winds over the tropics and northern sub-
tropics (Shetye and Shenoi, 1988). A strong coastal upwelling
occurs along the western coast during the southwest monsoon
season, whereas during the northeast monsoon season, cold
continental winds cause convective mixing and winter cooling
along the north Indian coast (Tomczak and Godfrey, 2001).
Other oceanographic features of interest in this region include
the Indian Ocean warm pool (Vinayachandran and Shetye, 1991)
and monsoon depressions and cyclones (Schott and McCreary,
2001; Schott et al., 2009).

In the Northern Indian Ocean, biogeographical analysis has
so far been restricted to what can be found using conventional
methods (Krishnamurthy et al., 1978; Schills and Wilson, 2006;
Obura, 2012, 2016; Jeffries et al., 2015). Few notable studies
on global ocean biogeographic partitions using satellite datasets
include: Longhurst province classification (Longhurst, 1998),
based on regional oceanography of major oceanic basins, and a
global database of chlorophyll profiles; and the 56 biogeochemical
provinces proposed by Reygondeau et al. (2013) using the
datasets of Sea Surface Temperature (SST), Chlorophyll and
Sea Surface Salinity (SSS). The current study region includes at
least parts of four provinces proposed by Longhurst (1998): the

Red Sea and Persian gulf province (REDS), Northwest Arabian
Sea upwelling province (ARAB), Western India coastal province
(INDW), and Eastern India coastal province (INDE). Studies
on biogeographic partitioning of the Indian Ocean region using
remotely-sensed datasets are relatively few. Here, we follow
the lead of Mélin and Vantrepotte (2015) through a detailed
implementation of their optical remote-sensing method to the
Indian Ocean region. We extend the temporal resolution to
reveal seasonal changes in the optical classification of the coastal
waters of the region. We interpret the results in the context of the
seasonally-reversing wind and ocean current system that is the
unique oceanographic characteristic of the region.

2. DATA AND METHODS

2.1. Study Area
Northern Indian Ocean is subdivided by landmasses into the
Arabian Sea in the west and the Bay of Bengal in the east and
it opens into the equatorial Indian Ocean to the south. The Bay
of Bengal coast is shared among India, Bangladesh, Myanmar, Sri
Lanka, and the western part of Thailand. The Arabian Sea coast
is shared among India, Yemen, Oman, Iran, Pakistan, Sri Lanka,
Maldives, and Somalia. The area of interest is the coastal waters of
the northern Indian Ocean within the 2,000 m isobath (Figure 1)
(extending from 0 to 30◦ N latitude and 50 to 100◦ E longitude).
Rather than using a more shallow depth (100–200m) as the outer
limit of the coastal zone, we have opted to use the 2,000 m isobath
for the outer limit. This was to explore whether optical signatures
of offshore waters appeared close to shore, and vice versa. In this
choice, we were guided by Antony et al. (2002) who suggested
that the offshore influence of coastal waters could extend as far
out as 400 km from the shore. This region is well-known for the
alternate upwelling and downwelling processes occurring during
the contrasting seasons of southwest and northeast monsoons.

Here, we use satellite remote-sensing reflectances (Rrs) at six
wavelengths (412, 443, 490, 510, 555, and 670 nm) to identify
optically-distinct regions of the coast. Figure S1 provides a
schematic diagram of the methods used in the current study.

2.2. Satellite Dataset
Remote sensing reflectance (Rrs) of six wavelengths and
Chlorophyll datasets were obtained from Version 2 of
the Ocean Color Climate Change Initiative (OC-CCI, see
www.oceancolour.org) (Sathyendranath et al., 2016, 2017)
with spatial resolution of 4 km. Chlorophyll concentration
was calculated from the remote-sensing reflectance, using
the National Aeronautics and Space Administration (NASA)
Ocean Color Chlorophyll Version 4 (OC4) algorithm (O’Reilly
et al., 1998). This algorithm performed best in an algorithm
comparison carried out as part of OC-CCI activities (Brewin
et al., 2015). The OC-CCI satellite datasets affords superior
coverage for the area of interest, compared with previously
available data. These data products are band-shifted, bias-
corrected and merged data archives obtained from three sensors:
Sea-WIFS (Sea-Viewing Wide Field-of-View Sensor), MODIS-
Aqua (Moderate Resolution Imaging Spectro-radiometer of the
Aqua earth Observing System), and MERIS (Medium Resolution
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FIGURE 1 | Northern Indian Ocean region showing 2,000 m and shallower isobaths.

Imaging Spectrometer). OC-CCI datasets were validated using
the in-situ datasets from Teledyne/Webb APEX-Argo floats
deployed in the Arabian Sea (Roxy et al., 2016). The OC-CCI
dataset are limited to the six SeaWiFS wavebands in the visible.
We recognize the limitations of the bandset that were identified
by Mélin and Vantrepotte (2015) for coastal optical classification.
Therefore, the analyses and interpretation are restricted to the
optical differences that are amenable to identification by the
available dataset. All grid points of the selected region (depth
range of 0–2,000 m) were used in the classification: grid points
outside the 2,000 m depth range were excluded. Isobaths of the
region were taken from the General Bathymetric Chart of the
Oceans (GEBCO) 1-min gridded data set (Figure 1).

2.3. Normalization of Dataset
The remote-sensing reflectances (Rrs) at six wavelengths (412,
443, 490, 510, 555, and 670 nm) for the years 1998–2013 were
used for the study. The remote-sensing reflectance values were
skewed in their distribution and to minimize skewness, each Rrs
spectrum was transformed to its log10 values. They were then
normalized by its integral from λ1 (412 nm) to λ2 (670 nm),
where λ is the wavelength.

Ex = log10Rrs(λ)/

∫ λ2

λ1

log10Rrs(λ)dλ, (1)

where (Ex) (in units of nm−1) indicates the normalized spectrum.
The denominator was computed by trapezoidal integration.
The normalization allows analysis of changes in the shape of
the Rrs spectra, rather than in their magnitudes. Typically,
changes in the shape of the spectra would be more affected by
the composition of the materials present in the water, whereas
the magnitude of the spectra is likely to be more indicative of the

concentration of the substances, especially of highly-scattering
substances. In this work, the vector Exj of six log-transformed
and normalized reflectance values from a particular location
and time (pixel, here indexed by subscript j) is referred to as
an object. The total number of objects in a classification is N.
Notation and Definitions used in this study are presented in
Table 1.

2.4. Fuzzy C Mean Algorithm
Fuzzy classification evolved from classical set theory. The
classical clustering approach determines whether an object is
a member or non-member of a given set of any system. Only
these two options are possible. In contrast, fuzzy logic allows
that an object may have partial memberships in more than
one set. The classification algorithms based on fuzzy logic
are often used in classifying data from natural systems. The
method allows for overlap between boundaries of particular
classes or sets, and recognizes that more than one class
may be represented at a particular location at any given
time.

The membership Fij of a cluster i in the object j is given

by (1 − Q(EZ2
ij)) where

EZij is the Mahalanobis distance given by

(Exj − EMi)/ESi where EMi is the mean, ESi is the standard deviation
and Q is a cumulative χ2 distribution (Zadeh, 1965).

In this study, the log-transformed, normalized reflectance
spectra (Ex) were analyzed using the Fuzzy C-mean (FCM)
algorithm. Our implementation of fuzzy C mean classification
follows Moore et al. (2001). It calculates the centres of each class
or cluster and the percentage membership of each class in the
data at each pixel. The FCM algorithm also uses several validity
functions to assess the optimal number of clusters to be chosen
for the classification (Bezdek, 1973; Rezaee, 2010).
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TABLE 1 | Definition and Notations used in this study.

Notations Definitions

Ci ith cluster

ci Center of cluster Ci

d(ci , ck ) Distance between center of clusters i and k (i 6= k)

d(Exj , ci ) Distance between object Exj and center of cluster Ci

Fi,j Membership of object j in cluster i

F∗
i,j Membership of object j in cluster i, normalized by the total

membership in all clusters

Hj Shannon diversity of the object j

i Cluster index, i = {1„nc}

j Index for object Ex, j = {1, ....,N}

EMi Mean of cluster Ci

N Total number of objects, Ex

nc Number of clusters

ni No. of objects in cluster Ci

P Partition Coefficient

Q Cumulative χ2 square distribution

Rrs Remote-sensing reflectance

ESi Standard deviation of Cluster Ci

X Xie-Beni Index

Exj An object, defined as the vector consisting of six remote

sensing reflectances Rrs after log transformation and

normalization (equation 1) for a given pixel j

EZij Mahalanobis distance between the object Exj and the center Ci
of cluster i

2.5. Optimal Cluster Validity Functions
Cluster validity function is a statistical measure used to select
the optimal number of clusters in the classification (too many
clusters would imply that individual clusters resemble each other;
too few would imply that all possible cases are not covered).
We have used two methods: 1. Xie-beni index and 2. Partition
co-efficient. These two methods are used only for selecting the
optimal cluster number to run the fuzzy C-means classification.
Cluster validity methods are statistical functions that determine
the performance of a clustering procedure. Criteria of merit
for a clustering method include the distance between clusters
(separation) and the distribution of points around a cluster
(compactness) (Deborah et al., 2010). We can rely on multiple
validity functions to aid selection of the optimal cluster number.
The principal strategy used is to cluster the data over a range of
cluster numbers (nc) and evaluate each clustering result with each
validity function (Moore et al., 2009).

The Partition Coefficient and the Xie-Beni index are cluster
validity methods designed specifically for use with fuzzy
algorithms. These two methods are preferred to aid selection of
the optimal number of clusters in fuzzy classification (Halkidi
et al., 2001).

2.6. Xie-Beni Index
The Xie-Beni index X is one of the measures used to determine
the best cluster number for the fuzzy classification of a particular
dataset. This index depends on the geometric properties of the

dataset and the membership matrix. To calculate X, we need to
calculate two quantities: the sum over all clusters of the mean
squared distance of each data object from the centre ci of cluster
Ci; and the square of the minimum distance between two cluster
centers (Xie and Beni, 1991). The ratio of these two quantities is
the Xie-Beni index:

X =
[

∑

i

∑

Ex∈Ci

d2(Ex, ci)
]/[

N. min
i,j 6=i

{d2(ci, ck)}
]

. (2)

The smallest value of the index indicates the best cluster number
(Halkidi et al., 2001; Zhao et al., 2009).

2.7. Partition Coefficient
The Partition Coefficient P is a validity function that uses the
membership values (Fij) to provide the optimal cluster number.
It measures the amount of overlap between clusters. It is defined
as the ratio of the sum of squares of the membership matrix
elements of all the clusters to the total number of objects.

P =
1

N

N
∑

j=1

nc
∑

i=1

(F2ij). (3)

The index values lie in the range [1/nc, 1], where nc is the number
of clusters. The closer the value is to one the better the data
are classified. The cluster number with a maximum partition
coefficient is said to be the best cluster number to choose for
classification (Bezdek, 1973; Bezdek et al., 1984).

2.8. Optical Diversity
Optical diversity is an indicator of the overall variability in optical
constituents at a given space and time. Optical diversity, (Hj) is
defined here, followingMélin and Vantrepotte (2015), by analogy
with the Shannon Diversity Index (Shannon, 2001),

Hj = −

nc
∑

i=n

(F∗i,j) ln(F
∗
i,j), (4)

where F∗i,j is the normalized membership of the optical classes

and nc is the number of classes represented. The membership Fi,j
was normalized by the integral of Fi,j over all optical classes to
obtain F∗i,j :

F∗i,j = (Fi,j)/
(

nc
∑

i=1

Fi,j

)

. (5)

3. RESULTS AND DISCUSSION

3.1. Selection of the Optimal Class Number
The Xie-Beni Index and the Partition Coefficient were calculated
for monthly climatologies of Ex for the study area, computed
from the OC-CCI monthly Rrs climatologies, which are based
on years 1998–2013. Monthly values allowed study of seasonal
variations in the distribution of optical classes in this region,
which is known for its pronounced seasonality. Climatologies
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were selected tominimize the effect of outliers through averaging,
and also to improve the coverage and reduce gaps in data.
Climatological data also provide a baseline against which trends
in anomalies can be studied at a future date. Both indices varied
between months, and the Xie-Beni index often showed a broad
minimum, whereas the Partition Coefficient often showed a
broad maximum, such that selection of the optical class number
was not straightforward. Nevertheless, eight emerged as the
optimal number. To aid the selection of optimal class number
further, we also studied the maps of cumulative membership
(sum of the memberships of all the classes) calculated using class
numbers nc from 5 to 15. The maps were studied for evidence of
over-classification (large areas where the cumulative membership
was >1) and under-classification (large areas where cumulative
membership was <1). This study also showed that nc = 8 gave
the best compromise, with low numbers of both under-classified
and over-classified pixels. Therefore, finally, eight classes were
selected as the optimal cluster number for all the analyses
presented here.

3.2. Identification of the Optical Classes
The mean spectra EMj of the eight selected optical classes are
shown in Figure 2. Optical class 1 is characterized by a maximum
in the blue, with the signal decreasing progressively toward the
red, indicative of clear oceanic waters. With increasing class
number, the signal decreased steadily at the shortest wavelength
(412 nm), and the maximum shifted toward longer wavelengths:
the maximum is at 490 nm for class 6 and 555 nm for class 8.
Conversely, class 1 has the minimum value in the red at 670 nm,
whereas classes 7 and 8 have the highest values in the red. The
values of the mean spectra at the six SeaWiFs wavelengths for
each of the classes and their corresponding covariance matrix are
provided in Tables S1, S2. It is useful to assess how these optical
classes relate to Case-1 and Case-2 waters as defined byMorel and
Prieur (1977) and Prieur and Sathyendranath (1981). From the
shapes of the spectra, it appears that classes 1–6 are representative
of Case-1 waters and classes 6–8 of turbid Case-2 waters.

The distributions of the dominant classes of representative
months of the four seasons are shown in Figure 3. The mean
(Figure 2) and covariance values of the optical classes were then
used to classify the waters of the study area for all the months
of the year, using the climatological satellite Rrs data as inputs,
after log-transformation and normalization to obtain Ex. Seasonal
cycles used in description of the optical classes are: 1. southwest
monsoon or summer monsoon (June–September), 2. northeast
monsoon or winter monsoon (December–March), 3. spring
intermonsoon (April–May), 4. autumn (fall) intermonsoon
(October–November).

3.3. Spatio-Temporal Variations of Optical
Classes in the Northern Indian Ocean
3.3.1. Classes 1 and 2

Optical classes 1 and 2 vary strongly with season. They occur
along with class 3 over deeper waters (>200 m). During
the southwest monsoon season (June–September), these classes
represent very few pixels in deeper waters near the Andaman Sea.
In the intermonsoon period (October–November) and northeast

FIGURE 2 | Mean Reflectance Spectra EMi of the eight optical classes, with the

envelopes corresponding to the Mean ± SD.

monsoon (December–March), classes 1 and 2 are present in
the deeper waters along the Southwest coast, West Bengal, and
Andaman Sea. The Eastern India coastal current carries the low
salinity waters (Optical classes 1 and 2) of the Bay of Bengal to
the southwest coast of India during the months of February and
March in the winter monsoon season. In the months of March
and April, the nearshore waters of the Somalia coast and Gulf
of Aden are represented by optical classes 1 and 2, extending
to the Gulf of Yemen and Oman. The region 17–20◦ N, 69–
72◦ E (deeper waters) was also characterized by classes 1, 2, and
3 during the transition period (April–May). The Chlorophyll
concentration corresponding to these classes ranged from 0 to
0.2 mg m−3 and the optical diversity index fell in the range from
1 to 1.3.

3.3.2. Classes 3 and 4

Optical classes 3 and 4 occurs in the isobaths of 100–2,000
m (shallow to deeper depths). These classes show irregular
boundaries in the offshore waters during southwest monsoon
season along west and east coasts of India, extending to the
deeper waters of Andaman Sea. The classes are found near
Gulf of Aden and Oman waters only in June, i.e., during the
onset of southwest monsoon. In the autumn intermonsoon
(October–November), the classes were distributed over the
shallow depths (0–500 m) along the near-shore waters of Gulf
of Yemen, Oman, Arabian Sea, and Bay of Bengal. In the
northeast monsoon, these classes occurred around the islands
off Somalia coast, Gulf of Yemen, west coast, and east coast of
India. The Gulf of Oman waters flowing toward the Arabian Sea
represents class 4 in May (spring intermonsoon). Chlorophyll
concentration corresponding to these classes fell in the range
of 0.5–0.75 mg m−3 and the diversity index ranged from 0.3
to 0.9.
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FIGURE 3 | Monthly climatologies of dominant classes (classes of maximum memberships) in the coastal waters of the Northern Indian Ocean. (Top left) July,

representative of southwest monsoon season. (Top right) January, representative of northeast monsoon season. (Bottom left) May, representative of Spring

intermonsoon season. (Bottom right) November, representative of Fall intermonsoon season. All monthly climatalogies are calculated for the years 1998–2013.

3.3.3. Class 5

This optical class dominates in regions with isobaths of<1,000m
but >200m. During the onset of southwest monsoon, class 5
is prominent in the inner Persian Gulf, Strait of Hormuz, Gulf
of Oman, Somalia, west and east coasts of India. At the end of
southwest monsoon season and onset of the fall intermonsoon
period, this class is distributed throughout the coastline in the
depth range 0–500 m. This trend persists until the month of
January (northeast monsoon) along the entire coastline. In the
spring intermonsoon this class is present toward the Persian
Gulf, Gulf of Oman flowing into the Northwest coast and
further extending toward the east coast of India including the
Andaman Sea. This class has chlorophyll levels ranging from
0.75 to 1 mg m−3 and the diversity index falls between 0.2
and 0.8.

3.3.4. Classes 6–8

Classes 6–8 dominate in the regions with depths <200 m. Class
6 is dominant in the Persian Gulf characterized by high dense
saline waters in all the seasons. Chlorophyll concentration of
regions with class 6 varied from 1 to 1.5 mg m−3. Classes 7
and 8 are present in the inner shelf regions with shallower
depths influenced by boundary currents and river influx. These
classes appear in the near-shore waters off the Somalia coast,
Gulf of Oman, Inner Gulf of Kutch and Khambhat, Inner Ganges
shelf, and Irrawady river basin near Andaman Sea. Local wind-
driven circulation brings in the waters of optical classes 7 and 8
from the major river deltas and minor rivers. The influxes from
rivers are seasonally variable and rain-fed according to changing
precipitation. In the northeast monsoon, waters belonging to
classes 7 and 8 flow toward the Strait of Hormuz and into

the Arabian Sea in the months of December to April under
the influence of strong northwest wind during winter monsoon
(Hunter, 1983), turning the Gulf of Oman waters into classes 7
and 8 in February. These classes do not show major variations
in the transition periods. The chlorophyll concentration in the
regions with classes 7 and 8 was high, ranging from 2 to 2.5
mg m−3. The diversity index of the classes 6–8 were low,
around 0.3.

3.4. Optical Diversity Index
The previous section describes the distribution of the dominant
classes, but contains no information on contributions to the
optical signal from non-dominant classes. The optical diversity
index, which depends on membership of all classes represented
in a pixel provides complementary information on the extent to
which non-dominant classes are contributing to the signal. If a
single class contributed to the optical signal of a pixel, then the
optical diversity would be a minimum of 0.26 in our classification
with 8 classes represented. On the other hand, if all classes
contributed equally, then the optical diversity index would reach
a maximum of 2.08.

The optical diversity index H (Equations 4 and 5) was
calculated for all months to study the seasonal and regional
variations in optical diversity. The optical diversity index H
(Figure 4) fell mostly between 0.3 and 1.36. Regardless of season,
higher H values (1–1.36) were found in deeper waters off the
south west coast of India (6–15◦ N), around Lakshadweep
and Maldive Islands in the Arabian Sea, around Andaman
and Nicobar Islands in the Bay of Bengal and off Myanmar.
The highest H values are found in these locations during
the winter or northeast monsoon season (December–March),
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FIGURE 4 | Monthly climatologies of Optical diversity index in the coastal waters of the Northern Indian Ocean. (Top left) July, representative of southwest monsoon

season. (Top right) January, representative of northeast monsoon season. (Bottom left) May, representative of Spring intermonsoon season. (Bottom right)

November, representative of Fall intermonsoon season. All monthly climatalogies are calculated for the years 1998–2013.

when the areas covered by high H values were also more
extensive. High diversity indices were also found in the fall
intermonsoon and spring intermonsoon periods. During the
summer monsoon season (June–September), the diversity index
lay mostly in the 0.5–1 range along the entire study region with
some pixels having index >1 appearing in the deeper waters.
High diversity indices (1–1.36) occur along the productive
upwelling areas, the transition zones between coast and open
ocean, oligotrophic waters and regions with the influence of
boundary currents. Low diversity indices occur in the regions of
most turbid waters, regions of high river water influx and inland
waters.

3.5. Optical Classes, Optical Diversity, and
Chlorophyll Concentration
In coastal waters, we know that the optical remote-sensing
reflectance spectra are affected not only by chlorophyll
concentration, but also by suspended sediment load. The
seasonal variability of the chlorophyll concentration for the
representative months is shown in Figure 5. The remote-
sensing reflectance value at 670 nm is often taken to be a
measure of suspended sediment load. Therefore, in Figure 6,
we have plotted the dominant optical class as a function
of chlorophyll-a concentration and Rrs(670), for the monthly
climatology of February, as an example. Only well-classified
pixels (cumulative class membership >0.5) are plotted. We see
a gradual progression in the optical classes 1–8, with increasing
chlorophyll concentration and increasing Rrs values, clearly
indicating that the optical classification is affected by both
chlorophyll concentration and suspended sediment load. Since
the chlorophyll concentration in Version 2 of OC-CCI was
calculated with a single, global algorithm, we can discount the
possibility that the relationship seen in Figure 6 is emerging

from the use of different algorithms for different optical classes.
On the other hand, it is worth discussing whether a single
chlorophyll algorithm would work equally well in all optical
classes in the coastal waters of the northern Indian Ocean.
Tilstone et al. (2011) reported that there was a good agreement
between OC4v6 and another algorithm (OC5) in open-ocean
and coastal waters with chlorophyll concentration up to 2
mg m−3 for the Arabian Sea and the Bay of Bengal. In the
current study, the classes 7 and 8 had chlorophyll concentrations
ranging from 1.5 to 2.5 mg m−3, quite close to conditions
discussed by Tilstone et al. (2011), so that we can assume that
OC4 algorithm was suitable for even these high-turbid classes.
Nevertheless, it would be interesting, in a future study, to
explore the advantages of using algorithms designed for coastal
waters (e.g., Le et al., 2013; Loisel et al., 2017; Tilstone et al.,
2017).

A similar plot (Figure 7) for the optical diversity index H
reveals a more complex pattern, with very high and very low
indices appearing in close juxtaposition to each other in clear
waters (where both chlorophyll concentration and Rrs values are
low). Strands of high values of the index also appear for higher
values of chlorophyll concentration and Rrs. The differences in
the distribution of H values, compared with Figure 6 for the
optical classification, suggest that optical diversity H perhaps
tends to be high during transition between optical classes.

3.6. Comparison of Regional Optical
Classes With Results of a Global
Classification
The question remains whether the regional classification
presented here yields results similar to those found in the
global classification of Mélin and Vantrepotte (2015). The first
difference we note is that the regional classification yielded
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FIGURE 5 | Monthly climatologies of chlorophyll concentrations in the coastal waters of the Northern Indian Ocean. (Top left) July, representative of southwest

monsoon season. (Top right) January, representative of northeast monsoon season. (Bottom left) May, representative of Spring intermonsoon season. (Bottom

right) November, representative of Fall intermonsoon season. All monthly climatalogies are calculated for the years 1998–2013.

FIGURE 6 | Relationship between chlorophyll concentration and Rrs(670). Climatological data for February are shown as an example. Only well-classified pixels

(cumulative membership >0.5) are plotted here. The dominant optical classes are identified using different colors.

only eight classes, whereas the global classification produced 16
distinct classes. The log-normalized mean reflectance spectra
(Figure 2) of our optical classes 1–4 are similar to those of
classes 10–16 of Mélin and Vantrepotte (2015). The spectral
characteristics of their classes 8–16 of Mélin and Vantrepotte
(2015) are typical of clear waters, and are similar to those of
our classes 1 and 2. We also see similarities between the optical
signatures of our classes 6, 7, and 8 and the classes 1–7 of
Mélin and Vantrepotte (2015), and both these sets are typical of
highly turbid waters, with mineral particles and dissolved organic

matter (Vantrepotte et al., 2012). For the optical diversity, the
values of H from this study lie in the range of 0–1.3 which was
lower than the range (0–3) reported by Mélin and Vantrepotte
(2015) globally. These differences in values of optical diversity
are associated, by definition, with the differences in the number
of classes, which has a direct impact on the values of optical
diversity (Mélin and Vantrepotte, 2015). It is important to note
therefore, that the values of optical diversity reported here are
not directly comparable with those of Mélin and Vantrepotte
(2015). Similarly, the differences in the class numbers have to be

Frontiers in Marine Science | www.frontiersin.org 8 March 2018 | Volume 5 | Article 87

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Monolisha et al. Optical Classification of the Indian Ocean

FIGURE 7 | Relationship between chlorophyll concentration and Rrs(670). Climatological data for February are shown as an example. Only well-classified pixels

(cumulative membership >0.5) are plotted here. The optical diversity indices are identified using different colors.

accounted for, when comparing our results with those of Mélin
and Vantrepotte (2015).

CONCLUDING REMARKS

We have implemented an optical classification using a log-
transformed, normalized, remote-sensing reflectance (Rrs)
datasets, with spatial resolution of 4 km. In this study, eight
optical classes were obtained in the coastal waters of the northern
Indian Ocean. Seasonally-reversing monsoons are a defining
oceanographic characteristic of the Indian Ocean. Here, we
have discussed variations in optical classes with reference to
the southwest and northeast monsoon seasons of the study
region. The distribution pattern of optical classes in the study
region showed major variations between seasons. An example
is the presence of optical classes 1, 2, 3, and 4 in the latitudes
(0–18◦ N) during December–March, whereas they were not
found in the months of June–September. The influence of class
5 in intermediate coastal waters is consistent in all the regions
with fewer variations in each month. Class 6 is also a minimal
contributor to the coastal waters of India, restricted the Persian
Gulf in northeast monsoon season. These patterns show that
in southwest monsoon season, the optical constituents of the
coastline are affected mainly by precipitation and river water
intrusion; this condition is not prevalent in northeast monsoon
season. The regional distribution of dominant optical classes, and
how they are related to physical and biological oceanographic
features and processes, is presented in the Table S3.

We have also used the memberships of different optical
classes in a given pixel, to study optical diversity within a pixel.
Both the dominant optical class and the optical diversity index
appear to be related to the chlorophyll concentration and the
remote-sensing reflectance at 670 nm (used here as an index of
suspended sediment load), but in quite different ways. Whereas,

the dominant optical classes transition in a systematic matter
from classes 1 to 8 with increasing concentration of chlorophyll
and increasing Rrs 670, the diversity index appears to be high
in areas of transition between optical classes. We also see that
the diversity index was high in clear waters around coral islands
and in deeper waters away from the shore. Since it is well-
known that biological diversity tends to be high when chlorophyll
concentration is high, these results suggest that optical diversity
indices might run counter to biological diversity. This suggestion
can only be verified when data on phytoplankton diversity in the
study area become available on a systematic, and extensive basis.
But once such relationships are established, optical diversity and
optical classification would pave the way for mapping biological
diversity at large scales, using remote sensing.

We opted for the Ocean Color Climate Change Initiative
products for the study, because of the long time series
of data available, which would facilitate extension of our
work to study trends and inter-annual variability, and also
because of the better spatial coverage, especially during the
monsoon season. However, the dataset is limited to six SeaWiFS
wavebands in the visible, which was dictated by the historical
sensor capabilities. The number of wavebands available also
determined the extent to which optical diversity could be
explored. No doubt as better-resolution data become available
over long time scales from missions such as Sentinel 3,
which carries the Ocean and Land Color Instrument (OLCI)
sensor with 10 wavebands in the visible domain, it would
become possible to investigate optical classes and optical
diversity with higher spectral resolution, which may reveal
additional optical classes which were not captured in the present
analysis.

The optical classification presented in this work enables us
to study the seasonal dynamics in the bio-optical characteristics
of the coastal waters of the Northern Indian Ocean, and
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how they are related to the physical and biological processes.
Spatio-temporal variations of the eight optical classes under the
influence of seasonally reversing monsoons were profound. This
study will aid as a first step for investigations of the inter-annual
variations in distribution of optical classes and their shifts in
response to changing climatic conditions such as El Niño and La
Niña events.
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