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Abstract: Computing the vertical structure of primary production in ocean ecosystem models
requires information about the vertical distribution of available light, chlorophyll concentration
and photosynthesis response parameters. Conversely, given information on vertical structure of
chlorophyll and light, we can extract photosynthesis parameters from vertical profiles of primary
production measured at sea, as we illustrate here for the Bermuda Atlantic Time-Series Study.
The procedure is based on a model of the production profile, which itself depends on the underwater
light field. To model the light field, attenuation coefficients were estimated from measured optical
profiles using a simple model of exponential decay of photosynthetically-available irradiance with
depth, which accounted for 97% of the variance in the measured optical data. With the underwater
light climate known, an analytical solution for the production profile was employed to recover
photosynthesis parameters by minimizing the residual model error. The recovered parameters were
used to model normalized production profiles and normalized watercolumn production. The model
explained 95% of the variance in the measured normalized production at depth and 97% of the
variance in measured normalized watercolumn production. A shifted Gaussian function was used
to model biomass profiles and accounted for 93% of the variance in measured biomass at depth.
An analytical solution for watercolumn production with the shifted Gaussian biomass was also
tested. With the recovered photosynthesis parameters, maximum instantaneous growth rates were
estimated by using a literature value for the carbon-to-chlorophyll ratio in this region of the Atlantic.
An exact relationship between the maximum instantaneous growth rate and the daily growth rate in
the ocean was derived. It was shown that calculating the growth rate by dividing the production
by the carbon-to-chlorophyll ratio is equivalent to calculating it from the ratio of the final to the
initial biomass, even when production is time dependent. Finally, the seasonal cycle of the recovered
assimilation number at the Bermuda Station was constructed and analysed. The presented approach
enables the estimation of photosynthesis parameters and growth rates from measured production
profiles with only a few model assumptions, and increases the utility of in situ primary production
measurements. The retrieved parameters have direct applications in satellite-based estimates of
primary production from ocean-colour data, of which we give an example.
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1. Introduction

Strict experimental quantification of phytoplankton primary production was initiated with the
introduction of the 14C method in 1952 by Steemann Nielsen [1]. Shortly afterwards followed the
quantification of primary production by means of mathematical models based on the first principles
of phytoplankton physiology [2,3]. Decades later, we find ourselves with global scale maps of
phytoplankton production represented by daily carbon uptake at our disposal [4–7]. Such maps
are made possible by combining satellite measurements of chlorophyll concentration with primary
production models forced by photosynthetically-available surface radiation [8,9]. Complementary
estimates based on satellite phytoplankton carbon and growth rates have also been developed [10].
At their core, chlorophyll-based models are founded on knowledge of the photosynthesis–light
relationship, which enables the calculation of primary production.

The standard method for quantifying the photosynthesis–light relationship is by incubating 14C
enriched phytoplankton samples at a set of light intensities and thereby constructing a photosynthetic
response curve [11]. The photosynthesis irradiance function is used to represent the results of these
experiments and to describe the photosynthetic response to changes in available light [12,13]. This is
accomplished by the non-linear fitting of a prescribed photosynthesis irradiance function to the
measurements. The information extracted from the procedure establishes the physiological parameters,
which determine the optimum choice of photosynthesis irradiance function from amongst the infinite
family of possible functions. These are termed photosynthesis parameters [14,15].

Analogously, the parameters can also be estimated from in situ measurements of primary
production [16]. These measurements are carried out at sea with 14C enriched samples in incubation
bottles suspended along a line at predefined depths during the incubation period [17,18]. In this
case, the measurements correspond to production integrated in time over the period of incubation,
and under natural, variable, irradiance conditions. The standard incubation time is the daylength,
and the standard total depth interval is the photic zone [14]. The photosynthesis parameters can be
extracted from the measured production profile in a similar fashion to that from incubations under
controlled light conditions [19]. The former approach, in which the parameters are extracted from
experiments under controlled light conditions, was introduced some decades ago, whereas the latter
one was introduced more recently [16].

With the aid of a mathematical model for the daily production profile based on a photosynthesis
irradiance function, it became possible to describe the photosynthesis-depth relationship using the
same parameters as those used to describe the photosynthesis–light relationship [20]. Such descriptions
of the production profile enabled the recovery of photosynthesis parameters from measurements of
the production profile that were initially designed to estimate watercolumn production [18].

The example of parameter extraction from measured production profiles shows how mathematical
modelling enhances the value of observations carried out at sea. Such indirectly-retrieved values of
photosynthesis irradiance parameters, when combined with databases of direct measurements [21],
could enhance our understanding of the natural variability in these parameters and the factors that
influence them, thereby facilitating model implementations [22,23]. Information about photosynthesis
parameters has immediate application in remote sensing, since the estimation of primary production
from remotely-sensed data also requires the same photosynthesis parameters [24]. Such indirect
estimates of photosynthesis parameters are particularly useful for ocean regions where data on
photosynthesis parameters are scarce, but where relatively rich data archives of production profile
measurements are available.

Important sources of data for extracting photosynthesis parameters are long-term oceanographic
time series, such as the Hawaii Ocean Time-Series [25], the Bermuda Atlantic Time-Series Study [26],
the Cariaco Ocean Time-Series [27], the Monterey Bay Time-Series [28], and others worldwide [29,30].
In our previous works, the parameter recovery method was tested and proved to be successful on data
from the Hawaii Ocean Time-Series [16,20].
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In this work, we extend the application of the method to the Bermuda Atlantic Time-Series Study
data set. We begin with a brief description of the model and the data set. Then, we extract the optical
parameters from the measured irradiance profiles, as these are required to model the underwater light
climate and consequently, the production profile. Following this, we fit an analytical solution for daily
production to the measured primary production profiles, which allows extraction of the photosynthesis
parameters. We then present their distributions and compare the overall precision of our model for the
estimation of normalised production measured at particular depths and for the integrated watercolumn
production. Next, a shifted Gaussian function is used to model chlorophyll profiles and to calculate
watercolumn production using an analytical solution from Kovač et al. [31]. This function is suitable
for describing the vertical profiles of biomass with a deep chlorophyll maximum [32,33], which is
usually present at this station. Afterwards, we employ the recovered assimilation numbers to estimate
the maximum instantaneous phytoplankton growth rates that are used in carbon-based models and
discuss the relationship between the maximum instantaneous growth rate and the daily growth rate.
Finally, we construct the seasonal cycle for the assimilation number and use it to model the seasonal
cycle of watercolumn production. The novelty of the work is two-fold, practical and theoretical.
The practical novelty is the application of a previously established method to a new rich data set from
a different locality, and the theoretical novelty is the derivation of an explicit expression linking the
growth rate to the production profile.

2. Materials and Methods

2.1. Model of the Production Profile

The instantaneous primary production per cubic metre at depth in the ocean was determined
by the amount of available light, the physiological status of the phytoplankton population and,
of course, by the phytoplankton concentration itself [2]. Primary production, P (mg C m−3 h−1),
is expressed as a rate in carbon units [14,17]. As a measure of phytoplankton biomass throughout
this paper, hereafter denoted B, we employed the chlorophyll concentration (mg Chl m−3), which is
the appropriate measure of biomass for chlorophyll-based models. The chlorophyll molecule couples
light with the photosynthetic unit; it is ubiquitous in all phytoplankton taxa and is easily measurable,
making it a useful operational index of phytoplankton biomass [34]. As a measure of available light,
we took the downward irradiance integrated over the visible portion (400–700 nm) of the spectrum,
I (W m−2), which is the photosynthetically-active radiation (PAR), easily measured at sea by optical
profilers, and can also be modelled relatively easily by knowing just the surface light field and the
optical properties of the water column [35,36]. Once B and I are known, what remains to model
primary production is the relationship between P and I, i.e., the photosynthesis light function.

This relationship between P and I reflects the physiological status of the phytoplankton and is
mathematically expressed as

P = BpB(I
∣∣ αB, PB

m
)
, (1)

where pB (I| αB, PB
m
)

is the photosynthesis irradiance function [12], with the following photosynthesis
parameters: the initial slope, αB (mg C (mg Chl)−1 (W m−2)−1 h−1), and the assimilation number,
PB

m (mg C (mg Chl)−1 h−1) [15,37,38]. With this relationship at hand we proceeded to modeling the
instantaneous production at depth, P(z). For this we needed knowledge of the underwater light field
and we employed a simple model:

I(z) = I0 exp(−Kz), (2)

where K is the diffuse attenuation coefficient for downward irradiance and I0 is the surface
irradiance [34]. Surface irradiance naturally changes with time of day, and, as a consequence, so does
the instantaneous primary production. However, primary production measurements in the ocean are
made over a certain time interval (typically from sunrise till sunset) at a series of predefined depths [8].
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As a result, they give an integral measure of daily primary production, labelled PT(z), expressed as the
total amount of carbon assimilated by the phytoplankton per cubic metre, at depth z.

To model PT(z) we assumed, following Platt et al. [39], the following time dependence of
surface irradiance:

I0(t) = Im
0 sin(πt/D), (3)

where Im
0 is the noon irradiance and D is the daylength (time from sunrise until sunset).

Combining (3) with (2) gave us a model for I(z, t). To calculate PT(z), we integrated (1) over D
to get

PT(z) = B(z)
D∫

0

pB
(

I(z, t)
∣∣ αB, PB

m

)
dt, (4)

where B(z) is time independent [8]. To solve this particular integral, we the mathematical form of
pB(I) needed to be specified. Here, we opted for the Platt et al. [40] function:

pB(I) = PB
m
(
1− exp(−αB I/PB

m)
)
, (5)

for which the analytic solution for PT(z) is available [20] and reads

PT(z) = B(z)PB
mD fz

(
Im
∗ e−Kz), (6)

where Im
∗ = αB Im

0 /PB
m and fz

(
Im
∗ e−Kz) is a known analytical function [20]:

fz(Im
∗ e−Kz) =

∞

∑
n=1

2
(

Im
∗ e−Kz)2n−1

π (2n− 1)!
(2n− 2)!!
(2n− 1)!!

−
∞

∑
n=1

(
Im
∗ e−Kz)2n

(2n)!
(2n− 1)!!
(2n)!!

. (7)

Dividing both sides of (6) by B(z) gives the solution for normalized daily production PB
T (z):

PB
T (z) = PB

mD fz
(

Im
∗ e−Kz). (8)

The relationship of this production model to other models of the production profile, along with
an in-depth discussion of their assumptions and limitations, can be found in Kovač et al. [19].

The quantity on the left hand side of this expression can be estimated simply from measurements
by dividing the measured daily production, P̃T(z), by the measured biomass, B̃(z), giving P̃B

T (z).
Please note here that for the measured or known value of a variable or parameter, we used x̃,
whereas for a model variable or parameter we used x. On the right hand side of (8) noon irradiance is
shown, which can also be measured ( Ĩm

0 ), and the attenuation coefficient, which can be determined
from profiles of measured downward irradiance (K̃). Daylength is easily determined, either from
direct observation on the day of measurements or from a model. Here we used a model for daylength
from Kirk [34].

Equation (8) shows that PB
T (z) is a function of depth with two parameters, αB and PB

m. With a set
of measurements, P̃B

T (zn), at a sequence of depths, zn = z1, z2, ..., zN , we can look for the profile of
normalized production (8) that best describes the measurements. This is, in essence, a non-linear
optimization problem that can be solved; the exact procedure is described in detail in Kovač et al. [16]
and Kovač et al. [20]. In short, we treated PB

T (z) as a function of photosynthesis parameters, αB and PB
m,

and found their optimal values that minimized the error between the model and the measurements.
The optimal set of photosynthesis parameters is referred to as the recovered photosynthesis parameters.
This procedure was implemented for the Bermuda Atlantic Time-Series Study (BATS) data set,
as described below.
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2.2. Bermuda Atlantic Time-Series Study Data Set

The Bermuda Atlantic Time-Series Study (BATS) station is located at 31◦40′ N 64◦10′ W,
some 82 km southeast of Bermuda [41] and within the Western subtropical gyre provice of the
North Atlantic, as defined by Longhurst et al. [4]. Measurements as part of the BATS (bats.bios.edu)
commenced in October 1988, and the Bermuda Bio Optics Project (oceancolor.ucsb.edu/bbop)
commenced in January 1992 [26]. In the data archive for this station, we found a total of 285 cruises
with available data. The data set was last accessed on 23 November 2017. Of these, measurements
of chlorophyll, primary production, optical profiles and surface PAR were made on 151 cruises.
To be more precise, chlorophyll, primary production and underwater optical measurements were
available for all of the 151 cruises, whereas surface irradiance measurements were available for only
87 cruises. For the cruises on which surface irradiance measurements were available, we calculated
the noon irradiance, Ĩm

0 , from the total received irradiance , ĨT , as Ĩm
0 = ĨTπ/2D. Surface PAR was

converted to Wm−2 using Smith and Morel’s procedure [42]. Out of the 151 cruises, the first full set of
measurements we used was from 13 February, 1992 and the last was from 20 May, 2012. The sampling
depths for the cruises were 0, 20, 40, 60, 80, 100, 120 and 140 m, for both chlorophyll and primary
production. Optical profiles were sampled continuously. Surface PAR was measured with a 2 s interval
over the course of daytime for the 87 mentioned cruises. The chlorophyll and primary production
data are available at http://batsftp.bios.edu/BATS/bottle/, and the optical data are available at
ftp://ftp.eri.ucsb.edu/pub/org/oceancolor/BBOP/. Information on the method used to measure
chlorophyll concentration can be found at bats.bios.edu/methods/chapter14.pdf, and information on
the method for primary production can be found at bats.bios.edu/methods/chapter18.pdf. Detailed
information on the profiling spectroradiometers used to measure vertical optical profiles can be found
in Allen et al. [43] in the Material and Methods section, along with other references therein. A thorough
review of the BATS measurements was provided by Lomas et al. [44].

3. Results

3.1. Determining the Attenuation Coefficient

A prerequisite for the application of the production model is the knowledge of the underwater
light field. In our model this is determined by the Im

0 exp(−Kz) term in the solution for the normalized
daily production profile (8). As this is a non-spectral model for underwater irradiance, it requires one
value of spectrally-integrated K for the entire PAR domain. We estimated it by first constructing the
PAR profile from the measured spectrally resolved irradiance profiles with

Ĩ(zn) =
S

∑
s=1

Ĩ(zn, λs)∆λs, , (9)

where Ĩ(zn, λs) is the measured irradiance per unit wavelength at depth zn and wavelength λs,
with ∆λs representing the spectral range associated with Ĩ(zn, λs) and S representing the total number
of wavelengths. Here, we assumed that measurements were made simultaneously, which is the same
as assuming constant surface irradiance during the cast of the underwater optical profiler, and that
the profiles were corrected for any variation in the incoming solar radiation during the course of the
measurement. With this procedure, we recovered the PAR profile, Ĩ(zn).

With the knowledge of Ĩ(zn), we proceeded to model it as an exponentially decaying function
of depth, as stated in (2), starting from the depth of the first measurement, z1, up until the last, zN .
These depths, zn, are not the same as the measuring depths for production and chlorophyll, and they
change from cruise to cruise because of the nature of the underwater light measurements. To extract
the optimal value of K, Equation (2) was fitted to the set of points (zn, Ĩ(zn)) and the fitted value of K
was later used to model the production profile (8). The underlying assumption behind this procedure
is the presence of optical homogeneity in the water column; therefore, the effects of vertically-variable

http://batsftp.bios.edu/BATS/bottle/
ftp://ftp.eri.ucsb.edu/pub/org/oceancolor/BBOP/
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biomass and changing the spectral quality of light on K were neglected. This is justified for oligotrophic
open oceans with low chlorophyll concentrations, such as the ocean around the BATS station.

This procedure was applied to all of the profiles available, and the average value of K was
0.0476 m−1 with a standard deviation of 0.0106 m−1. In total, there were 10,052 point measurements
of underwater irradiance, Ĩ(zn), integrated spectrally, according to (9), available from all the cruises.
Upon comparing the predicted versus the measured irradiances, the coefficient of determination
(expressed in percentages) was 97%. This high coefficient of determination justified the application
of (2) as the optical model for this station. With the information on K now available for each cruise,
we used it in the model of the production profile to extract the photosynthesis parameters.

3.2. Photosynthesis Parameters Extraction

With the measured biomass and production profiles complemented by the estimated attenuation
coefficients and the measured noon irradiances, we were able to recover the photosynthesis parameters
for this station, as described in Section 2. First, we describe some characteristics of the parameter
recovery procedure in relation to the available measurements.

The parameter recovery procedure assigned one set of photosynthesis parameters for the
phytoplankton to the entire water column [20]. Similar to the assumption of optical homogeneity
imposed to extract one value of the attenuation coefficient for the entire water column, we recognized
the underlying assumption of physiological homogeneity for the phytoplankton population. This is
justified for the mixed layer, but could be questionable for measurements at greater depths, which may
still be in the photic zone. However, for this station, the mixed layer depth and the photic zone are
of the same order of magnitude in winter [41], implying that one set of parameters can indeed be
assigned to the phytoplankton in the photic zone, as it is most likely well mixed. In summer, the mixed
layer depth can be as shallow as 10 to 20 m and in this case, only one incubation was undertaken in
the mixed layer.

More precisely, the method recovered the best estimate of the assimilation number for the surface
layers, and a best estimate of the initial slope for the deep waters. Typically, PB

m determined production
rates in light-saturated surface waters, and αB in light-limited deep waters. Greater vertical resolution
of the production profile would be required to circumvent this limitation and allow vertically-variable
photosynthesis parameters to be assigned [16]. Whether it is justified or not to assign one set of
parameters can be judged only retrospectively, by calculating model errors. Given this limitation
imposed by the vertical sampling intervals, we proceeded only along these lines, and extracted one set
of photosynthesis parameters for the entire water column.

Another obstacle to the straightforward application of the method is the lack of surface irradiance
measurements on 64 of the cruises. For these cruises, the median noon irradiance of the remaining
cruises was used in place of noon irradiance. The drawback of this is that it prevented us from
estimating the initial slope for the mentioned 64 cruises. However, this lack of data was compensated
by the fact that αB and Im

0 appeared as a product in the solution for the daily normalized production
profile (8). Since there can only be one model production profile that minimizes the model error [16],
the optimal profile would have one optimal value for the product, αB Im

0 , and one optimal value for PB
m

for each measured production profile. Therefore, it was possible to estimate the assimilation number
for all the cruises, with or without the measured noon irradiance being available. With respect to the
estimation of the assimilation number, this can be identified as a self correcting property of the inverse
procedure for parameter recovery. As long as the optimization algorithm can find the global minimum,
the extracted value of PB

m will indeed be the correct one, i.e., the same as would be obtained by using
the measured irradiance. However, we found no way to circumvent the lack of surface irradiance
measurements to recover the initial slope. This limited the estimation of the initial slope to 87 cruises
which had measured surface irradiance.

In addition, out of all the data, we had to exclude some individual measurements as outliers.
We based the exclusion on the criterion that the normalized production profile has to be a decreasing
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function of depth for a model with uniform photosynthesis parameters [16,20]. We also removed
the outliers that were outside two standard deviations from the mean normalized production at
each depth. These two criteria combined removed 55 measurements out of a total 1208. In addition,
upon applying the method we noticed that it failed on 13 cruises that had a “zig-zag” structure
in the measured normalized production profiles. For these profiles, the optimization method did
not converge to plausible values of photosynthesis parameters, such that we had to exclude them
also. This left us with a total of 138 measured profiles, each with 8 points in the vertical, minus
the 55 outliers, totalling 1049 measurements out of the entire data set that were used to recover
photosynthesis parameters.

Therefore, we estimated 138 values of the assimilation number and 87 values of the initial slope.
The histograms of recovered parameters are given in Figure 1. The mean of the assimilation number
was 7.3, the median was 6.7 and the standard deviation was 4.2, all expressed in mg C (mg Chl)−1 h−1.
The mean of the initial slope was 0.3, the median was 0.26 and the standard deviation was 0.27,
all expressed in mg C (mg Chl)−1 (W m−2)−1 h−1. The αB distribution spread mainly from 0.1
to 0.5 mg C (mg Chl)−1 (W m−2)−1 h−1, with a peak around 0.2 mg C (mg Chl)−1 (W m−2)−1 h−1,
and only a small number of parameter values fell outside these limits. The PB

m distribution ranged
mainly from 2 to 15 mg C (mg Chl)−1 h−1, with a peak at 5 mg C (mg Chl)−1 h−1 and few values
outside this range. As there were more PB

m values estimated, the distribution of PB
m is more reliable

than the distribution of αB. With time, as more measurements become available it is expected that
these distributions will show a more coherent structure.

0 0.2 0.4 0.6 0.8 1.0

0 5 10 15 20

5

10

15

a)

b)

5

10

15

a (mg C m2 (mg Chl W h)-1)B

mP (mg C (mg Chl h)-1)B

20

Figure 1. Histograms of estimated parameter values: (a) distribution of the initial slope, αB, obtained
from 87 cruises and (b) distribution of the assimilation number, PB

m, obtained from 138 cruises.
The abscissa corresponds to the parameter values and the ordinate gives the percentage of cruises that
fell into a certain interval of parameter values.

Having recovered the parameter values, we then used them in the analytical solution (8) to
calculate the normalized daily production at depth. We calculated the coefficient of determination
which scored a high value of 0.95, meaning 95% of variance in the data set was explained by the model.
In addition, we compared all the measurements against the analytical solution, and the comparison is
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presented in Figure 2. The points on the figure represent the normalized production of the measured
biomass divided by PB

mD, plotted against Im
∗ e−Kz, as described in detail in Kovač et al. [20]. In total

there were 1049 points. From the figure, we can see the points fall in line rather well with the analytical
function (7). There are some discrepancies, but the errors are distributed evenly on either side of the
model curve, implying that there is no systematic bias in the model for the daily production profile for
this data set, justifying the usage of one set of photosynthesis parameters for modelling the normalized
production profile at this station. The accuracy of the model was comparable, with respect to the
coefficient of variation, to that found for the HOT data set—0.98 for PB

T (z) for HOT [20] and 0.95 for
PB

T (z) for BATS (this work). These results are similar to the accuracy of photosynthesis irradiance
models applied to production measured under controlled light conditions [13].

1.0

I  e-Kz
*

mfz(       ) 

0

I  e-Kz
*

m

1.50.5

1

10

0.1

0.01

0.001

PT (z) / Pm D
B B

40

Figure 2. Comparison of the model versus measured production at depth obtained by combining
the measured data with the estimated parameter values. The abscissa corresponds to the ratio of
daily production at depth PB

T (z) to the maximum possible production, PB
mD. The ordinate gives the

dimensionless irradiance, Im
∗ e−Kz. The continuous curve is recognized as the fz(Im

∗ e−Kz) function.
The coordinates of each point are (P̃B

T (zn)/PB
mD, αB Ĩm

0 e−K̃zn /PB
m), where αB and PB

m are the estimated
parameters for each profile. The r2 value between the measured normalized production and the
modeled normalized production is 0.95. In total, there are 1049 points.

3.3. Estimation of Watercolumn Production

With the recovered parameters at hand, watercolumn production was calculated. We did so
by employing the analytical solutions for watercolumn production available from the literature.
Of particular interest were the canonical solution for watercolumn production [39] and the
solution for watercolumn production with the biomass profile described by the shifted Gaussian
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function [31]. The two solutions differ with respect to the formulation of the biomass
profile. The former uses B(z) = B, a vertically constant biomass, whereas the latter uses
B(z) = B0 +

(
h/σ
√

2π
)

exp
(
− (z− zm)2/2σ2). B0 is referred to as the background biomass, h is

the integral of the biomass under the Gaussian curve, zm is the depth of the biomass maximum and σ

is the width of the biomass peak. The term, h/σ
√

2π, is also abbreviated to H and yields the height of
the biomass peak.

The canonical solution is valid for a well-mixed water column with uniform biomass, B, and is
given as

PZ,T =
BPB

mD
K

f (Im
∗ ), (10)

where f (Im
∗ ) is a known function [39], and the remaining assumptions are the same as in Section 2

of this paper. The solution for the shifted Gaussian biomass augments the canonical solution by an
additional term which takes into account the excess production due to vertical variation in biomass.
This solution is

PZ,T =
B0PB

mD
K

f (Im
∗ ) + ∆PZ,T , (11)

where ∆PZ,T is the additional term, labelled the stratification term, and the exact expression for it is
given in Kovač et al. [31].

At the BATS station, the chlorophyll profile has been typically observed to vary with depth [26,41],
and therefore, the canonical solution was not valid for the interval below the mixed layer. Viewed
temporally, it is expected to hold for periods of the year during which the mixed layer is deep, such as
the winter months at the BATS station [41]. However, it was possible to use the canonical solution to
calculate the normalized daily watercolumn production, which represents the production per unit
chlorophyll biomass, and hence, is independent of any variation in the chlorophyll profile. Therefore,
we were able to test the canonical solution (10) in a manner similar to that in which the solution (8) was
tested. The results are shown in Figure 3. Again, the points on the figure were obtained as a combination
of measurements and estimated parameters, as described in detail in Kovač et al. [20]. Normalized
daily watercolumn production was calculated by the trapezoidal rule from the measurements. Here,
the coefficient of determination between the measured and modelled normalized daily watercolumn
production was high (0.97). A similarly high coefficient of determination of 0.99 was also found at HOT
for normalized watercolumn production [20]. Such high coefficients of determination at BATS and
HOT demonstrate that this model structure is appropriate for computing watercolumn production.

Following this, we tested the solution for watercolumn production with the biomass profile
described by the shifted Gaussian (11). This solution is tailored for variable biomass profiles, such as
those that include a deep chlorophyll maximum, which has been observed to be a quasi-permanent
feature at the BATS station. It is known that the shifted Gaussian is a suitable function for the
description of this class of biomass profiles [32,45]. Here, we fitted the shifted Gaussian function to the
measured biomass profiles, and the comparison of the measured versus modelled biomass is presented
in Figure 4a. Fitting was accomplished by tuning the parameters of the shifted Gaussian, namely B0, h,
σ and zm, to best match the measured biomass profile. The conjugate gradient method was used to
perform this task [46,47] and the fit of the shifted Gaussian was convergent for each chlorophyll profile.
As can be seen from Figure 4a, the match between the model and the measurement was satisfactory.
Quantitatively, the coefficient of determination for the entire biomass data set was 0.93. A total of 1049
chlorophyll measurements were compared with the modelled shifted Gaussian profile in the figure.
This is comparable to that obtained for a similar comparison for data from HOT, where the coefficient
of determination was found to be either 0.87 or 0.98, depending on whether the deepest two depths
were included or excluded [31].
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Figure 3. Comparison of the model and measured normalized daily watercolumn production
obtained by combining the measured data with the estimated parameter values. The abscissa is
the dimensionless irradiance, Im

∗ , and the ordinate is the ratio of normalized watercolumn production
to PB

mD/K. The continuous curve is the f (Im
∗ ) function (10). The coordinates of each point are

(P̃B
Z,TK̃/PB

mD, αB Ĩm
0 /PB

m), where αB and PB
m are the estimated parameters for each profile. The r2

between the measured normalized watercolumn production and the modeled normalized watercolumn
production is 0.97.
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Figure 4. (a) Scatter plot of measured B̃ and modelled biomass B with the shifted Gaussian function.
There are, in total, 1049 points. (b) Scatter plot of measured P̃Z,T and modeled PZ,T watercolumn
production with the analytical solution for the shifted Gaussian biomass. There are, in total, 138 points.
The grey line on both plots represents the 1:1 model versus the measurement ratio.

For the BATS station, the mean of the background biomass, B0, was 0.068 mg Chl m−3, with a
standard deviation of 0.032 mg Chl m−3. The mean depth of the deep biomass maximum, zm, was 99 m,
with a standard deviation of 21 m. The mean width of the biomass peak σ was 22 m, with a standard
deviation of 12.5 m and finally, the mean height of the biomass peak, H, was 0.377 mg Chl m−3, with a
standard deviation of 0.265 mg Chl m−3.
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The successful description of the biomass profiles by the shifted Gaussian further justified the
application of the solution (11) to calculate watercolumn production. The stratification term, ∆PZ,T ,
depends on h, σ, and zm, and therefore, the accuracy of the whole solution depends on these parameters.
For a certain range of parameter values, this solution exhibited convergent behaviour and gave
reasonable estimates of watercolumn production. In particular, when the deep chlorophyll maximum
was deep and narrow, the solution converged, whereas when it was shallow and wide, it tended
to diverge. As a quantitative measure of convergent behaviour, the 3σ rule was applied, following
Kovač et al. [31], where the solution was considered to be valid in situations with zm deeper than 3σ.
This is indeed the expected case for the open ocean with a deep chlorophyll maximum, and the 3σ

condition was satisfied for 116 profiles from the BATS data set. The results are displayed in Figure 4b.
In the figure, we can observe some discrepancies, but an overall matching is evident.

3.4. Estimation of Growth Rates

Knowing the assimilation number enabled us to estimate the maximum growth rate of
phytoplankton. Following Kirchman [48], Marañon [49] and Sathyendranath et al. [50], we defined the
maximum instantaneous growth rate, µm, attainable by a phytoplankton assemblage as

µm =
PB

m
χ

, (12)

where χ is the carbon-to-chlorophyll ratio. To estimate µm for a given production profile,
we needed information on the assimilation number and the carbon-to-chlorophyll ratio. We took
the carbon-to-chlorophyll ratio from Marañon [49] for the Western North Atlantic Subtropical Gyre,
equal to 146 mg C (mg Chl)−1. For each cruise, we calculated µm, and the results are given in Figure 5,
expressed as per day growth rate, by multiplying the hourly rate from Equation (12) by the daylength, D.
In fact, using this method, we determined the maximum daily growth rate. The distribution of the
maximum daily growth rate was skewed to the right. The mean value was 0.7 d−1, the median
was 0.62 d−1 and the standard deviation was 0.39 d−1. The minimum value was 0.13 d−1 and the
maximum was 1.67 d−1. For 118 profiles, the maximum daily growth rate was below one per day,
and for 33 profiles, it was above one per day.

The maximum instantaneous growth rates calculated here are slightly higher than those reported
in Marañon [49]. However, they reported values for different regions of the Atlantic and did not
calculate the µm for our study area, due to a lack of information on PB

m. Also, as stated by the
author [49], his estimates were lower than those reported by other authors, such as Gasol et al. [51]
and Harris [52]. His reasoning in favour of a low growth rate in the oligotrophic ocean was
that phytoplankton do not have sufficiently high assimilation numbers to sustain it. As pointed
out by Marañon [49], a µm > 2.5 d−1 with χ in the range of 100–200 mg C (mg Chl)−1 requires
PB

m > 25 mg C (mg Chl)−1 h−1, i.e., above the theoretical maximum calculated by Falkowski [53]. Here,
did not observe such high assimilation numbers (Figure 1b), but the histogram shows a right-hand tail
with values well above 10 to 15 mg C (mg Chl)−1 h−1, which implies the possibility of high growth
rates, at least on occasion. The bulk of our results are consistent with those of Casey et al. [54],
who reported growth rates in the Sargasso Sea equal to 0.42± 0.17 d−1, based on nitrogen uptake rates.
The reader is referred to Table 2 in Casey et al. [54] for more literature values on the growth rates in
the Sargasso Sea, which are all consistent with the ones reported in this work, although obtained by
different methods.

The growth rate calculated with (12) is actually an upper bound on the daily growth rate
when reported as a daily rate. Expression (12) is valid for constant and saturating light conditions
during the entire daylength. It therefore corresponds to the following growth equation:

d
dt

B(t) =
PB

m
χ

B(t). (13)
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A more plausible approach would be to allow for the temporal dependence of production on
variable light conditions and to calculate the daily growth rate accordingly. Therefore, instead of the
upper bound, µm, the daily growth rate, µ, would be used, starting with the following growth equation:

d
dt

B(z, t) =
PB

m
χ

(
1− exp

(
− αB I(z, t)/PB

m

))
B(z, t), (14)

with time-dependent production due to varying irradiance, I(z, t) = Im
0 sin (πt/D) exp(−Kz),

where both B and I are now recognized as functions of depth and time. With information on the initial
B(z, 0) and final B(z, D) biomass, the daily growth rate at depth z can be expressed as

µ(z) =
1
D

ln
(

B(z, D)/B(z, 0)
)
. (15)
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0 0.5 1 1.5 2.0
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Figure 5. Histogram of the estimated maximum daily growth rate, µm, obtained from 138 cruises based
on Equation (12) and here multiplied by the daylength, D, to convert hourly into daily rates. The value
of the carbon-to-chlorophyll ratio χ is 146 mg C (mg Chl)−1, taken from Maranon (2005).

However, we did not have information (measurements) on the final biomass to use (15) directly,
but we did have information about the daily production at depth PT(z). To use this information,
we expressed the final biomass as a function of the initial biomass and daily production. By integrating
(14) over the daylength, D, we obtained the following expression for the final biomass [19]:

B(z, D) = B(z, 0) exp
(

PB
T (z)/χ

)
. (16)

Upon inserting this expression into (15), we obtained the following equation for the daily
growth rate:

µ(z) =
PB

T (z)
χD

. (17)

Going one step further and expressing PB
T (z) as a function of depth by using solution (8)

we obtained:

µ(z) =
PB

m
χ

fz
(

Im
∗ e−Kz). (18)

This expression shows that the daily growth rate at any given depth can be calculated from the
maximum instantaneous growth rate (12) and the shape of the production profile, set by the
fz
(

Im
∗ e−Kz) function. According to (18), the depth dependence of the growth rate is identical to

the depth dependence of the normalized production profile in the case of a depth-independent
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carbon-to-chlorophyll ratio, χ. Whereas it is plausible to have a uniform χ in the mixed layer, it is
highly unlikely that χ would remain invariant with depth in a stratified ocean. Therefore, to calculate
the daily growth rate for a stratified ocean would require having χ as a function of depth χ = χ(z).
For a mixed layer, it may be argued that the daily growth rate should be calculated from mixed-layer
production, and this has been studied extensively by Platt et al. [55], who gave explicit expressions for
the mixed-layer growth rate. For an in-depth account of mixed-layer growth rate, the reader is also
referred to [56,57].

Comparing (12) with (18), we recognized in the numerator of both expressions, that PB
m was

the maximum possible instantaneous production at depth that would occur under saturating light
conditions. According to solution (8), this is never realised for the entire daylength (sunrise till
sunset), because the function fz(Im

∗ e−Kz) is always less than unity and goes to unity only at the limit
of Im
∗ e−Kz → ∞ [20]. This limit is not reached in the real ocean, which is a direct consequence of the

diurnal cycle of irradiance (3). As the irradiance goes from zero at dawn, to a maximum at noon,
and back to zero at sunset, normalized production falls below PB

m, and normalized daily production
at any depth is always less than PB

mD. This is why (12) gives an upper bound on the daily growth
rate and (18) gives the daily growth rate, which is less than PB

m/χ due to fz(Im
∗ e−Kz) being less than

1. Therefore, we expected the daily growth rate in the ocean to satisfy the condition µ < PB
m/χ when

expressed on a per hour basis.

3.5. Seasonal Cycle

For each Julian day, we calculated the mean value of the parameters that were estimated from
all cruise data measured within the interval set by 15 days before and after that Julian day, for all the
years for which data were available. In such a manner, we obtained an estimate of the seasonal cycle of
average monthly values of parameters. The seasonal cycle of αB was not as pronounced as the seasonal
cycle of PB

m. This might be because we only had 87 estimates of αB, whereas we had 151 estimates of
PB

m. The seasonal cycle of average monthly PB
m is given in Figure 6 (thin blue curve). The minimum in

PB
m occurred in February, after which a steep rise led to a maximum in July. After the maximum, a less

steep decline followed until the end of the year. To this seasonal cycle, we further fitted a sum of two
sine functions superimposed onto a mean (Figure 6, thick blue curve). The first sine has a one year
period and the second has a half-year period, given here explicitly:

PB
m(j) = 8.8− 2.0 sin (2π j/365 + 1.0) + 1.0 sin (4π j/365− 4.4) , (19)

in units of mg C (mg Chl)−1 h−1, where j = 0, 1, 2, ..., 365 is the Julian day. Judging by the figure,
the representation of the seasonal cycle by the sum of two sine functions is well suited for the
assimilation number.

We further observed that the seasonal cycle of normalized water column production was similar
in shape to the seasonal cycle of the assimilation number (Figure 6, red curve). However, the similarity
of the seasonal cycle of watercolumn production was not observed (Figure 7, grey curve).
Upon comparing the two, a noticeable feature in the seasonal cycle of PZ,T was a rise in production
starting in January and lasting during February, March and April, which has been well documented
in the literature [29,30]. This was not observed in the seasonal cycle of PB

Z,T , which had its minimum
in February and maximum in July. To account for this rise in daily production during the period of
January to April, we looked at the seasonal cycle of total chlorophyll concentration within the euphotic
zone, (BZ) (Figure 6, orange curves), and we observed a similar elevation in BZ as in PZ,T during the
same period. Therefore the increase in PZ,T can be attributed to a rise in biomass and not in PB

m. This is
in line with the theoretical solution (10), according to which normalized watercolumn production does
not depend on B, but does depend on PB

m. Following (10) we can infer that the initial slope, daylength,
attenuation coefficient and noon irradiance also play roles, although perhaps not as significant as that
of the assimilation number.
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Figure 6. Estimated seasonal cycles for the BATS station. The thin curves represent the monthly
averages on each Julian day, which were calculated from the daily values, 15 days prior and 15 days
post a given Julian day. The thick curves are the fits of a sum of two sine functions (superimposed onto
an annual mean) to the monthly averages. (a) Seasonal cycle of PB

m (blue) and BZ (orange). (b) Seasonal
cycle of PB

Z,T (red).
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Figure 7. Comparison of the measured (grey curve) versus the modelled seasonal cycle of watercolumn
production based on remotely sensed-chlorophyll with the time-dependent assimilation number, PB

m(t)
(blue curve), and the average assimilation number, 〈PB

m〉 (dashed blue curve).

Further, by comparing the seasonal cycle of BZ with PB
m, we observed that they were nearly in

counterphase. Starting in January, biomass increased, but PB
m declined and then in April, the opposite

occurred, with PB
m now increasing and BZ decreasing. PB

m rose from March untill July, and more or less
declined from August until March. On the other hand, BZ declined from February until October (with
a steady period during June, July and August) and then increased from October until March. In the
context of the observed annual cycle of the assimilation number (Figure 6a) we see that, although
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the assimilation number was low during winter, the biomass still managed to rise. These findings
are consistent with Evans and Parslow [58] for the seasonal cycle in the North Atlantic. According to
these authors, the deepening of the mixed layer in winter, combined with low incoming solar radiation
caused a decline in the average light available for photosynthesis in the mixed layer, and consequently,
a reduction in the average production per unit biomass. A reduction in normalized production was
indeed observed at the BATS station (Figure 6), along with an increase in the mixed-layer depth during
winter [26,41].

Another consequence of winter mixed layer deepening is the effect it has on zooplankton that
graze on phytoplankton. When the mixed layer deepens and the phytoplankton are diluted, this causes
a reduction of food for the zooplankton and their numbers decline. This precondition, occurring before
the spring, means that when larger phytoplankton start to increase, the larger zooplankton are
unable to catch up with them immediately, allowing a bloom to form. Indeed, according to
Sarmiento and Gruber [59], the spring bloom at Bermuda is caused by larger phytoplankton, which are
able to break free of the grazing control exerted by larger zooplankton. In addition to this, as reported
from observations by Chisholm [60], picoplankton are present all year long at a more or less constant
biomass in the North Atlantic near Bermuda. This implies that the grazers of smaller phytoplankton
are able to catch up on a potential increase in small phytoplankton, so the smaller phytoplankton
are kept in check all year long. In simpler terms, as the succession of phytoplankton proceeds
over time, the phytoplankton with higher assimilation rates take over and dominate the population
because their grazers are unable to catch up on their growth, which subsequently causes a rise in the
assimilation number of the total population. Similar behaviour was also reported by Casey et al. [61]
and Wallhead [62] and has been observed in multiple-size-class models [63].

Additionally, temperature could also have an effect on the seasonal cycle of the assimilation
number. The seasonal cycle of sea surface temperature at Bermuda has been observed to be well
defined, with a minimum in February and a maximum in August [30]. The timings of the minimum
and maximum temperatures are well aligned with the minimum and maximum assimilation numbers.
The amplitude of the seasonal cycle of sea surface temperature was observed to be about 8 ◦C [30].
Such an amplitude could also have an effect on the assimilation number, since the enzymatic reactions
underlying carbon fixation are affected by temperature [53].

Delineating these factors in more detail and decoupling the functional mechanisms would require
more measurements and more complex models. Nonetheless, even the measurements we had available,
although limited in spatial and temporal resolution, proved useful for the recovery of the assimilation
number and the estimation of its seasonal cycle. This in itself is valuable, because prior to this study,
there was no information on the seasonal cycle of the assimilation number at BATS station. With time,
as more measurements become available, such estimates of the seasonal cycle will be more reliable
and precise, and it will become possible to extract the seasonal cycle of the initial slope αB as well.

In an early compilation of seasonal variation in assimilation number [24], the highest assimilation
number reported for the Western sub-tropical gyre was 5 mg C (mg Chl)−1 h−1, in spring. A more
recent compilation [21] revised the mean value for spring slightly upwards, to 5.92, which is quite close
to the value that we found for PB

m in early spring (March, in Figure 6). However, instead of this being a
maximum, the seasonal cycle in Figure 6 shows the value in March of ~6 mg C (mg Chl)−1 h−1 to be a
minimum, with a maximum of ~12 mg C (mg Chl)−1 h−1 being reached in summer. The differences
may indicate that sporadic data from ships fails to capture the full extent of seasonal variations in
photosynthesis irradiance parameters, such as those revealed here. These differences have immediate
implications for the computation of marine primary production based on remotely-sensed chlorophyll
concentration combined with photosynthesis irradiance parameters (e.g., Sathyedranath et al. [24]).

3.6. Application to Remote Sensing

The estimated seasonal cycle of the assimilation number can be used directly to calculate primary
production based on remotely-sensed chlorophyll fields, as we demonstrate here. Our goal was to
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model the seasonal cycle of watercolumn production with remotely-sensed chlorophyll concentration
and the estimated seasonal cycle of the assimilation number. For this simple demonstration, we used
the canonical solution (10) as the model for watercolumn production on each Julian day (ignoring
the influence of any deep chlorophyll maximum in the interest of keeping the demonstration simple).
For αB and K, we used yearly average values. We obtained the information about the chlorophyll
concentration from the Ocean Colour Climate Change Initiative [64] data archives [65], which are
publicly available at www.oceancolour.org. We used the monthly chlorophyll fields and estimated
the seasonal cycle of remotely-sensed chlorophyll in the same manner as the seasonal cycle of the
assimilation number. We calculated D and Im

0 based on the model from Kirk [34], assuming clear-sky
conditions. We employed the canonical solution on each day with the seasonal cycle of the assimilation
number based on the sine approximation. The results are presented in Figure 7, along with the
average seasonal cycle of measured watercolumn production. In the figure, the annual cycle of
primary production obtained with seasonally-varying assimiliation number is labelled PB

m(t), and the
corresponding result based on the yearly average value of of the assimilation number is labelled 〈PB

m〉.
We can see there was indeed a difference between the two estimates. On average, the difference

was 8%, with the maximum difference being as high as 24%. The difference was most pronounced
during summer. It is also evident that estimates of watercolumn production made with 〈PB

m〉 were
generally lower compared with the ones made with PB

m(t). The results were in better agreement with
the measured watercolumn production during winter, which was expected due to the strong mixing
and resultant vertical homogeneity in the biomass, which was assumed in (10). During summer,
the agreement was not as good. This may be due to three factors: firstly, remotely-sensed chlorophyll
has a minimum in summer, whereas in situ surface chlorophyll does not; secondly, the contribution
to watercolumn production due to the deep chlorophyll maximum could be significant; and thirdly,
the seasonal variations in αB, cloud cover and the diffuse attenuation coefficient, which are ignored here,
could be significant. Here, we see clear evidence that, in parts of the seasonal cycle, the stratification
term, ∆PZ,T (11), is important. Nevertheless, this simple demonstration highlights the importance
of assigning the correct values of photosynthesis irradiance parameters in computations of primary
production using satellite data—if the computations had relied on previous archives of the parameters,
the computed primary production would have been significantly lower than the observations.

4. Discussion

In this work, we built upon the previously established procedure for photosynthesis parameter
recovery [16,20] by expanding it to estimate the growth rate based on the recovered photosynthesis
parameters. We differentiated between the maximum instantaneous growth rate and the daily growth
rate and demonstrated the connection between the two. The maximum instantaneous growth rate
is defined as the ratio of the assimilation number to the carbon-to-chlorophyll ratio [50]. As such,
it represents the growth of phytoplankton at its maximum capacity, as would occur under saturating
light conditions. Due to the daily cycle of irradiance, which causes irradiance to drop below saturation
levels, the instantaneous growth rate is, at times, below the maximum instantaneous growth rate.
To account for this and to relate the daily growth rate to the maximum instantaneous growth rate,
we started with a growth equation for phytoplankton, taking into account variable light conditions
(14). We demonstrated that if growth effects are taken into account when calculating daily production,
then a direct link between daily production and the daily growth rate emerges (17). In fact, we went a
step further by providing a direct link between the maximum instantaneous growth rate and the daily
growth rate (18). This was done on the premise of Equation (15), in which the daily growth rate is
calculated from the logarithm of the ratio of the final to the initial biomass, divided by the time period
over which it is calculated. However, some authors take a different approach.

For example, Kirchman [48] argued for not calculating the growth rate by using the expression (15),
instead opting to calculate the growth rate by dividing production by the standing stock (biomass).
When using (15), he employed B(z, D) = B(z, 0) + PT(z)/χ, which is, in essence, the first order

www.oceancolour.org
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approximation to (16). He then went on to argue that employing (15) is correct only for low growth
rates and short incubation times, in other words, the conditions for which the first order approximation
holds. Here, we used a solution (16) that takes into account the positive feedback between production
and biomass and is valid for any growth rate. When using (16) in (15), the daily growth rate turns out
to be calculable as the ratio of production and biomass (17), which is, in essence, what Kirchman [48]
advocates as the proper way of calculating the daily growth rate.

Therefore, we have demonstrated that no difference exists between growth rates calculated simply
by dividing the production by the standing stock and by calculating the growth rate with (15), when the
effect of growth on production is accounted for. Kirchman’s (2002) argument for dismissing (15) as the
incorrect approach stemmed from using the incorrect expression for the final biomass when calculating
the daily growth rate. This is, indeed, not an argument against (15); rather, it is an argument against
using B(z, D) = B(z, 0) + PT(z)/χ in (15). If it is acknowledged that phytoplankton increase due to
production, then expression (16) for the final biomass should be used in (15).

Another detail to consider is the way in which normalized production is calculated. When using
field data, normalized daily production, PB

T (z), is calculated by normalizing P̃T(z) to the initial biomass,
thereby obtaining

P̃B
T (z) = P̃T(z)

/
B̃(z, 0). (20)

Obviously this problem does not arise in models, because normalized production is calculated
with the photosynthesis irradiance function (5). To be more exact, we can use the solution for B(z, D)

to express the daily production, PT(z), in the case of the growing biomass given by (14), as in [19]:

PT(z) = χB(z, 0)
[

exp
(

1
χ

PB
T (z)

)
− 1
]

. (21)

Combining the previous two expressions gives us the measured normalized daily production on
the left hand side and the model normalized daily production on the right hand side:

P̃B
T (z) = χ exp

(
PB

T (z)/χ
)
− χ. (22)

Therefore we see that what we measure does not, in fact, correspond to the true normalized
daily production of the model if we allow for growth in biomass during the course of the period
of incubation.

Consequently, if P̃B
T (z) deviates significantly from the model, PB

T (z), a potential mismatch in
the calculated daily growth rates might arise. In the case of the BATS dataset, the model-estimated
production with the recovered parameters (αB and PB

m) does not stray far from the measurements
(Figure 2), and this implies the calculated growth rates will be approximately the same,
whether calculated from the data or from the model-derived expression (18). However, this does come
with a penalty, as the assimilation number extracted from (8) might overestimate the true assimilation
number estimated from a growth model in which computed production accounted for the growing
biomass. The solution for production in this case is given by (21), and we see that solution (6) is a
first-order approximation to it (see details in Kovač et al. [19]). Further theoretical work is needed to
expand on these considerations.

Another point worthy of discussion is the lack of sufficient data on the carbon-to-chlorophyll ratio
which is required in expression (18) for each depth at which one wants to calculate µ(z) from P̃B

T (z),
which obliged us to use a fixed value obtained from the literature to calculate the upper bound on
the daily growth rate (Figure 5). An alternative approach would have been to use a photoacclimation
model. In the model of Geider et al. [66], with the analytical solution presented by Jackson et al. [67],
χ is an explicit function of irradiance scaled to Ik:

θ =
θm

I∗

(
1− exp (−I∗)

)
, (23)
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where θ = 1/χ, with θm being the maximum chlorophyll-to-carbon ratio, and I∗ = I/Ik. In the case of
in situ incubations, phytoplankton are maintained at a fixed depth and if we assume adaptation to
average daily irradiance at that depth, then we have

I∗(z) = Im
0 exp (−Kz)D

/
(12π Ik). (24)

We can now solve (23) for χ and use it directly in (18), but this only switches the problem to the lack
of information on the maximum chlorophyll-to-carbon ratio θm. However, this is a problem of practice,
not of principle, and (18) could be used to calculate the daily growth rate at any depth using the
retrieved Ik, if θm were known. Thanks to the parameter recovery procedure, we are now one step
closer to estimating the carbon-to-chlorophyll ratio and the growth rates straight from production data
measured at sea. The only information still beyond our grasp is θm, which is required in expression (23).

A related issue is the need for to measure surface irradiance concurrently with in situ primary
production measurements. These were unavailable on some cruises and consequently, we were
only able to estimate the initial slope for a subset of the cruises, such that there was insufficient
information to calculate a reliable parameter distribution and the seasonal cycle for both the initial
slope and the photoadaptation parameter. Perhaps with time, as more complete data sets become
available, the initial slope will be estimated on more cruises and the seasonal cycle will be better
constrained. We might argue that it would be cheaper just to measure surface irradiance in addition
to biomass and production profiles than it would be to conduct more laboratory experiments on the
photosynthesis light relationship on top of measuring the production profiles to allow estimation of
the initial slope. Therefore, from an economic standpoint, measuring surface irradiance routinely has
definite advantages.

The surface irradiance also relates to the growth rate. When deriving (17) and (18), we assumed a
sinusoidal cycle of daily irradiance. This cycle is an idealisation suitable for a clear sky, but under an
overcast sky, the daily cycle changes and the total irradiance reaching the ocean surface is reduced.
As a consequence, production is lower in comparison with clear sky irradiance and consequently,
the daily growth rate is also lower. Paradoxically, not having an estimate of surface irradiance does
not prevent us from estimating the daily growth rate directly, as we can estimate PB

m and Im
∗ , and only

these quantities appear in (18). Also, we can take measured normalized production directly in (17) and
get the growth rate if we know χ. Again, calculating the growth rate precisely is hampered by the lack
of information on the carbon-to-chlorophyll ratio.

We should emphasise here the difference between the type of parametrization of phytoplankton
photosynthesis and the different types of parametrizations used in atmospheric and physical
oceanographic models, which are, in essence, models based on physical laws. In these physical models,
parametrizations arise in response to the inability of the models to resolve sub-grid processes [68].
Parametrizations of this sort become superfluous with increased model resolution, as the finer scale
models can resolve the previously parametrized physical processes. This stands in sharp contrast to
the parametrization of phytoplankton photosynthesis. Here, the parametrization of photosynthesis is
itself the fundamental law and is necessary, irrespective of how fine or coarse the model grid spacing
is. In essence, the parametrization of photosynthesis cannot be dispensed with on the grounds of
increased resolution.

This is true not only for the model used here, but for the this whole class of primary production
models. In technical terms, the model used is a canonical model, first introduced in the literature by
Platt et al. [39]. Strictly speaking, a model is canonical if there is piecewise continuous transformation
of variables that transforms any model into the canonical one [69]. This canonical model has the
basic structure required to study the entire family of primary production models. For a more detailed
description and discussion of the relationship between different models, the reader is referred to
Kovač et al. [19] and Kovač et al. [31].
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As a final note, we compare our results with those reported earlier. The assimilation number,
PB

m, reported for the Sargasso Sea by Tin et al. [9] (their Table 2) ranged from 0.88± 0.60 up to
7.46± 0.33 mg C (mg Chl)−1 h−1. The same authors [9] also reported that the initial slope, αB, ranged from
0.017 to 0.806± 0.46 mg C (mg Chl)−1 (W m−2)−1 h−1. These ranges coincide well with the distribution
given in Figure 1. The values of PB

m = 7.41± 2.09 mg C (mg Chl)−1 h−1 reported by Forget et al. [70] for
the Sargasso Sea are also in line with the values shown in Figure 1b. However, the values reported by
the same authors for αB = 0.097± 0.024 mg C (mg Chl)−1 (W m−2)−1 h−1 fall on the lower end of values
given in Figure 1a. The numerous values for αB and PB

m reported by Platt et al. [71] for the Northwest
Atlantic obtained by photosynthesis light experiments all match well with the ones reported in this work.
Platt et al. [71] reported that PB

m went from about 1 to 12 mg C (mg Chl)−1 h−1 and αB from roughly 0.01 to
0.2 mg C (mg Chl)−1 (W m−2)−1 h−1 (the reader is referred to Figure 3a in Platt et al. [71]). We conclude
that the values recovered here from in situ production measurements are in a reasonable range for
the open ocean and are consistent with previous, direct estimates based on photosynthesis irradiance
measurements at sea.

These results have direct implications for the remote sensing of primary production
from satellite data. In comparison, Sathyedranath et al. [24] assigned αB as 0.06 to
0.11 mg C (mg Chl)−1 (W m−2)−1 h−1 and PB

m as 1.7 to 5.0 mg C (mg Chl)−1 h−1 for this region of
the Atlantic. According to the results presented here (Figure 1), these PB

m values fall in the lower end
of the parameter distributions. Furthermore, rather than applying fixed values for the assimilation
number for each season, our results (Figure 7) allowed a smoothly-varying function to be applied to
account for seasonal variation in the parameter when computing primary production using satellite
data. These considerations further emphasise the importance of being able to evaluate the seasonal
cycle in αB as well.

5. Conclusions

The presented work dealt with the estimation of photosynthesis parameters from primary
production data collected at BATS over the past 30 years. This region of the Atlantic has been well
studied experimentally, with a rich archive of in situ primary production measurements [41], but data
on photosynthesis parameters are scarce. This is a consequence of the strategies adopted by research
institutions [72], which have opted either to measure primary production in situ, or under controlled
light conditions, seldom performing both experiments simultaneously. As a result, some time series
stations, such as BATS, have a rich data set of in situ primary production measurements, but only a
limited data set of photosynthesis parameters.

The parameter recovery procedure applied here established an archive of photosynthesis
parameters for BATS (Figure 1). The recovered parameters were firstly used to model primary
production and to test the adequacy of this model in accurately predicting primary production.
The overall accuracy in terms of the coefficient of determination was 0.95 for production at depth
and 0.97 for watercolumn production. Also, the chlorophyll-depth relation was described with the
shifted Gaussian function, which accounted for 0.93 of variance in the measured chlorophyll profiles.
Together, such high coefficients of determination demonstrate that this model can accurately calculate
primary production at BATS.

The recovered values of the assimilation number were further used to estimate the maximum
potential growth rate (Figure 5), which was previously unknown for this region due to a lack of
information on the assimilation number [49]. A mathematical relationship between the maximum
instantaneous growth rate and the daily growth rate was also derived (18). A lack of sufficient data on
the carbon-to-chlorophyll ratio prevented a more in-depth calculation of the daily growth rates based
on the measured production at each depth. Linking the carbon-to-chlorophyll ratio to the growth rate
and how it relates to primary production measurements is a potential course for future research.

The seasonal cycle of the assimilation number was estimated, and it was observed to be nearly in
counterphase with the chlorophyll seasonal cycle. The highest values of the assimilation number were
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observed during June, July and August, while the lowest were observed during January, February
and March. It was also demonstrated that the seasonal cycle of the assimilation number can be well
described by a sum of two sine functions. The utility of this description is that it can easily be used
in remote sensing applications to model primary production at this station, as was demonstrated in
Figure 7.
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Analytic Solutions for Watercolumn Production Integrals. Front. Mar. Sci. 2017, 4, 163. [CrossRef]

32. Longhurst, A.R. Ecological Geography of the Sea, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998.
[CrossRef]

33. Mignot, A.; Claustre, H.; Uitz, J.; Poteau, A.; D´Ortenzio, F.; Xing, X. Understanding the seasonal dynamics
of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo
float investigation. Glob. Biogeochem. Cycles 2014, 28, 856–876.

34. Kirk, J.T.O. Light and Photosynthesis in Quatic Ecosystems, 3rd ed.; Cambridge University Press:
Cambridge, UK, 2011. [CrossRef]

35. Sathyendranath, S.; Platt, T. The spectral irradiance field at the surface and in the interior of the ocean:
A model for applications in oceanography and remote sensing. J. Geophys. Res. 1988, 93, 9270–9280.
[CrossRef]

36. Platt, T.; Sathyendranath, S.; White, G.N.; Ravindran, P. Attenuation of visible light by phytoplankton in a
vertically structured ocean: solutions and applications. J. Plankton Res. 1994, 16, 1461–1487. [CrossRef]

37. Platt, T.; Sathyendranath, S. Estimators of Primary Production for Interpretation of Remotely Sensed Data
on Ocean Color. J. Geophys. Res. 1993, 98, 14561–14576. [CrossRef]

38. Frenette, J.; Demers, S.; Legendre, L. Lack of agreement among models for estimating the photosynthetic
parameters. Limnol. Oceanogr. 1993, 38, 679–687. [CrossRef]

http://dx.doi.org/10.1093/icesjms/fsv204
http://dx.doi.org/10.1146/annurev.es.11.110180.002043
http://dx.doi.org/10.1002/9780470995204
http://dx.doi.org/10.1016/j.pocean.2017.10.013
http://dx.doi.org/10.1002/2015JC011293
http://dx.doi.org/10.5194/essd-10-251-2018
http://dx.doi.org/10.1029/90JC02305
http://dx.doi.org/10.1023/A:1015874028196
http://dx.doi.org/10.1016/0967-0637(95)00059-F
http://dx.doi.org/10.1016/0967-0645(96)00005-7
http://dx.doi.org/10.1016/S0967-0645(00)00148-X
http://dx.doi.org/10.1029/1999JC000291
http://dx.doi.org/10.1016/S0967-0645(99)00132-0
http://dx.doi.org/10.1146/annurev.marine.010908.163917
http://www.ncbi.nlm.nih.gov/pubmed/21329205
http://dx.doi.org/10.1016/j.dsr2.2013.01.035
http://dx.doi.org/10.3389/fmars.2017.00163
http://dx.doi.org/10.1002/2013GB004781
http://dx.doi.org/10.1029/JC093iC08p09270
http://dx.doi.org/10.1093/plankt/16.11.1461
http://dx.doi.org/10.1029/93JC01001
http://dx.doi.org/10.4319/lo.1993.38.3.0679
http://dx.doi.org/10.1098/rspb.1990.0072


Remote Sens. 2018, 10, 915 22 of 23

39. Platt, T.; Sathyendranath, S.; Ravindran, P. Primary Production by Phytoplankton: Analytic Solutions for
Daily Rates per Unit Area of Water Surface. Proc. R. Soc. B 1990, 241, 101–111.

40. Platt, T.; Gallegos, C.L.; Harrison, W.G. Photoinhibition of photosynthesis in natural assemblages of marine
phytoplahnkton. J. Mar. Res. 1980, 38, 687–701. [CrossRef]

41. Michaels, A.F.; Knap, A.H. Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study and the
Hydrostation S Program. Deep Sea Res. Part II Top. Stud. Oceanogr. 1996, 43, 157–198. [CrossRef]

42. Morel, A.; Smith, R.C. Relation between total quanta and total energy for aquatic photosynthesis.
Limnol. Oceanogr. 1974, 19, 591–600. [CrossRef]

43. Allen, J.G.; Nelson, N.B.; Siegel, D.A. Seasonal to multi-decadal trends in apparent optical properties in the
Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 119, 58–67. [CrossRef]

44. Lomas, M.W.; Bates, N.R.; Johnson, R.J.; Knap, A.H.; Steinberg, D.K.; Carlson, C.A. Two decades and
counting: 24-years of sustained open ocean biogeochemical measurements. Deep Sea Res. II 2013, 93, 16–32.
[CrossRef]

45. Platt, T.; Caverhill, C.; Sathyendranath, S. Basin-scale estimates of oceanic primary production by remote
sensing: The North Atlantic. J. Geophys. Res. 1991, 96, 15147–15159.

46. Baldick, R. Applied Optimization: Formulation and Algorithms for Engineering Systems, 1st ed.; Cambridge
University Press: Cambridge, UK, 2006. [CrossRef]

47. Knyazev, A.V.; Lashuk, I. Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning.
SIAM J. Matrix Anal. Appl. 2008, 29, 1267–1281. [CrossRef]

48. Kirchman, D.L. Calculating microbial growth rates from data on production and standing stocks. Mar. Ecol.
Prog. Ser. 2002, 233, 303–306. [CrossRef]

49. Marañon, E. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 2005,
50, 299–310. [CrossRef]

50. Sathyendranath, S.; Stuart, V.; Nair, A.; Oka, K.; Nakane, T.; Bouman, H.; Forget, M.; Maass, H.; Platt, T.
Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar. Ecol. Prog. Ser. 2009,
383, 73–84. [CrossRef]

51. Gasol, J.M.; del Giorgio, P.A.; Duarte, C.M. Biomass distribution in marine planktonic communities.
Limnol. Oceanogr. 1997, 42, 1353–1363. [CrossRef]

52. Harris, G.P. Phytoplankton productivity and growth measurements: past, present and future. J. Plankton Res.
1984, 6, 219–237. [CrossRef]

53. Falkowski, P.G. Light-shade adaptation and assimilation numbers. J. Plankton Res. 1981, 3, 203–216.
[CrossRef]

54. Casey, J.R.; Lomas, M.W.; Mandecki, J.; Walker, D.E. Prochlorococcus contributes to new production in the
Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 2007, 34, L10604. [CrossRef]

55. Platt, T.; Bird, D.F.; Sathyendranath, S. Critical depth and marine primary production. Proc. R. Soc. B 1991,
246, 205–217. [CrossRef]

56. Sathyendranath, S.; Platt, T. New production and mixed-layer physics. Proc. Indian Acad. Sci. Earth Planet.
1994, 103, 177–188.

57. Platt, T.; Sathyendranath, S. Latitude as a factor in the calculation of primary production. In Ecology of
Fjords and Coastal Waters: Proceedings of the Mare Nor Symposium on the Ecology of Fjords and Coastal; Elsevier:
New York, NY, USA, 1995; pp. 3–13. [CrossRef]

58. Evans, G.T.; Parslow, J.S. Model of Annual Plankton Cycles. Biol. Oceanogr. 1985, 3, 327–347.
59. Sarmiento, J.L.; Gruber, N. Ocean Biogeochem. Cycles, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2006.
60. Chisholm, S.W. Phytoplankton Size. In Primary Productivity and Biogeochemical Cycles in the Sea; Plenum Press:

New York, NY, USA, 1992; pp. 213–237. [CrossRef]
61. Casey, J.R.; Aucan, J.P.; Goldberg, S.R.; Lomas, M.W. Changes in partitioning of carbon amongst

photosynthetic pico- and nano-plankton groups in the Sargasso Sea in response to changes in the North
Atlantic Oscillation. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 93, 58–70. [CrossRef]

62. Wallhead, P.J. Long-term variability of phytoplankton carbon biomass in the Sargasso Sea.
Glob. Biogeochem. Cycles 2014, 28, 1–17. [CrossRef]

63. Armstrong, R.A. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of
an ecosystem model with multiple food chains. Limnol. Oceanogr. 1994, 39, 597–608. [CrossRef]

http://dx.doi.org/10.1016/0967-0645(96)00004-5
http://dx.doi.org/10.4319/lo.1974.19.4.0591
http://dx.doi.org/10.1016/j.dsr.2016.11.004
http://dx.doi.org/10.1016/j.dsr2.2013.01.008
http://dx.doi.org/10.1029/91JC01118
http://dx.doi.org/10.1137/060675290
http://dx.doi.org/10.3354/meps233303
http://dx.doi.org/10.4319/lo.2005.50.1.0299
http://dx.doi.org/10.3354/meps07998
http://dx.doi.org/10.4319/lo.1997.42.6.1353
http://dx.doi.org/10.1093/plankt/6.2.219
http://dx.doi.org/10.1093/plankt/3.2.203
http://dx.doi.org/10.1029/2006GL028725
http://dx.doi.org/10.1098/rspb.1991.0146
http://dx.doi.org/10.1007/BF02839535
http://dx.doi.org/10.1080/01965581.1985.10749478
http://dx.doi.org/10.1016/j.dsr2.2013.02.002
http://dx.doi.org/10.1002/2013GB004797
http://dx.doi.org/10.4319/lo.1994.39.3.0597
http://dx.doi.org/10.1016/j.rse.2017.04.017


Remote Sens. 2018, 10, 915 23 of 23

64. Sathyendranath, S.; Brewin, R.J.W.; Jackson, T.; Mélin, F.; Platt, T. Ocean-colour products for climate- change
studies: What are their ideal characteristics? Remote Sens. Environ. 2017, 203, 125–138.

65. Sathyendranath, S.; Groom, S.; Grant, M.; Brewin, R.; Thompson, A.; Chuprin, A.; Horseman, A.; Jackson, T.;
Martinez Vicente, V.; Platt, T.; et al. ESA Ocean Colour Climate Change Initiative: Version 3.1; Centre for
Environmental Data Analysis: Didcot, UK, 1 June 2018. [CrossRef]

66. Geider, R.J.; Macintyre, H.L.; Kana, T.M. Dynamic model of phytoplankton growth and acclimation:
responses of the balancedgrowth rate and chlorophyll a:carbon ratio to light, nutrient-limitation and
termperature. Mar. Ecol. Prog. Ser. 1997, 148, 187–200. [CrossRef]

67. Jackson, T.; Sathyendranath, S.; Platt, T. An Exact Solution For Modeling Photoacclimation of the
Carbon-to-Chlorophyll Ratio in Phytoplankton. Front. Mar. Sci. 2017, 4, 283.

68. Cushman-Roisin, B.; Beckers, J.M. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects,
2nd ed.; Academic Press: Cambridge, MA, USA, 2011.

69. Izhikevich, E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 1st ed.; MIT Press:
Cambridge, MA, USA, 2007. [CrossRef]

70. Forget, M.H.; Sathyendranath, S.; Platt, T.; Pommier, J.; Vis, C.; Kyewalyanga, M.S.; Hudon, C. Extraction
of photosynthesis-irradiance parameters from phytoplankton production data: Demonstration in various
aquatic systems. J. Plankton Res. 2007, 29, 249–262. [CrossRef]

71. Platt, T.; Sathyendranath, S.; Ulloa, O.; Harrison, W.G.; Hoepffner, N.; Goes, J. Nutrient control of
phytoplankton photosynthesis in the Western North Atlantic. Nature 1992, 356, 229–231. [CrossRef]

72. Platt, T.; Sathyendranath, S.; White, G.N.; Jackson, T.; Saux Picart, S.; Bouman, H. Primary Production:
Sensitivity to Surface Irradiance and Implications for Archiving Data. Front. Mar. Sci. 2017, 4, 387.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3354/meps148187
http://dx.doi.org/10.3389/fmars.2017.00283
http://dx.doi.org/10.1093/plankt/fbm012
http://dx.doi.org/10.1038/356229a0
http://dx.doi.org/10.3389/fmars.2017.00387
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Model of the Production Profile
	Bermuda Atlantic Time-Series Study Data Set

	Results
	Determining the Attenuation Coefficient
	Photosynthesis Parameters Extraction
	Estimation of Watercolumn Production 
	Estimation of Growth Rates
	Seasonal Cycle
	Application to Remote Sensing

	Discussion
	Conclusions
	References

