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Abstract 

 

The Lynher Estuary in southwest England is a small, strongly tidal sub-estuary of the 

Tamar Estuary. It is a Site of Special Scientific Interest (SSSI), a Marine Conservation Zone 

(MCZ), a part of the Plymouth Sound and Estuaries Special Area of Conservation (SAC) and 

a Special Protection Area (SPA). Management of the Lynher SSSI and MCZ stipulates that 

good water quality and sediment quality should be maintained; as such, a good understanding 

of its responses to influences such as climate change and changes in agricultural practices 

within its catchment area is required. Observations of salinity, temperature, suspended 

particulate matter (SPM) concentrations, estuarine turbidity maximum (ETM) behaviour, and 

chlorophyll-a are presented for the Lynher over a 1-y period. The dataset provides important 

baseline information with which to identify future changes and guide management of the 

SSSI and MCZ as well as adding to our knowledge of estuarine systems. Salt intrusion is 

largely controlled by tides and runoff. A persistent ETM occurs that is closely associated 

with the freshwater-saltwater interface at high water (HW) and with a minimum in dissolved 

oxygen concentrations. HW depth-averaged ETM magnitudes are relatively low, less than 60 

mg l
-1

 and typically 30 mg l
-1

 over the observation period. Larger tides and stronger flood-

tide wind speeds lead to a stronger ETM. Tidal river HW SPM concentrations are 

intrinsically small (8±8 mg l
-1

 during the observation period). Surface chlorophyll-a 

concentrations are low during winter (when they often peak near the ETM) and are much 

higher during spring and summer. 
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1. Introduction 

The Lynher Estuary in Southwest England (Fig. 1a, b, c) is a sub-estuary of the Plymouth 

Sound and Estuaries Special Area of Conservation (SAC) that covers an area of 

approximately 64 km
2
 (JNCC, 2017). This SAC is representative of ría estuaries in the 

southwest of England. The Lynher is confluent with, and a sub-estuary of, the Tamar Estuary 

(Fig. 1b, c) and is partially within the Tamar Estuary Marine Conservation Zone (MCZ) 

regions (JNCC, 2017). These MCZs are located in two spatially separate areas and cover an 

area of approximately 15 km
2
 that includes the upper reaches of the Tamar and Lynher 

Estuaries, which are the only areas in the southwest of England where there is good evidence 

for use by the mobile FOCI (Feature of Conservation Importance) Osmerus eperlanus 

(smelt). 

The Lynher Estuary was notified as a Site of Special Scientific Interest (SSSI) in 1987 

(Natural England, 2018a). The reasons for its notification highlighted the extensive saltmarsh 

and highly productive mudflats that provide important feeding and roosting grounds for large 

populations of wintering wildfowl and waders as well as its relatively unimpeded freshwater 

inputs from the rivers Tiddy and Lynher, which generate a gradient of salinity along which 

transitional marsh communities have developed (Natural England, 2018a). Management of 

the SSSI stipulates that ‘good water quality and sediment quality should be maintained and 

that the sediment budget within the system should not be restricted by anthropogenic 

influences’ (Natural England, 2018b). Some condition-status monitoring has taken place for 

the Lynher that has facilitated an assessment of the present favourable condition of its littoral 

sediment habitats and identified species and biotopes that are representative or notable within 

the estuary (Ecospan, 2015). Nevertheless, the extent and status of its saltmarshes, mudflats 

and littoral sediment habitats are ultimately dependent on the estuary’s salinity gradients and 

its fine-sediment transport, which are sensitive to dynamic physical processes within the 
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estuary and catchment that vary with agricultural use and with altered freshwater inputs and 

rising sea levels due to climate change. A baseline dataset on physical variables and an 

interpretation and quantitative understanding of its physical behaviour therefore provide 

important information with which to guide future management of the SSSI and MCZ. 

Accordingly, we describe results from fieldwork in this small, strongly tidal estuary that 

over a year illustrate seasonal and spring-neap variations in the mouth-to-head longitudinal 

distributions of salinity and suspended particulate matter (SPM) concentrations and the 

estuarine turbidity maximum (ETM), which are important drivers of saltmarsh and mudflat 

spatial extent and composition, as well as temperature and concentrations of suspended 

chlorophyll-a. Chlorophyll-a is an important variable to include here because the Lynher has 

a tendency towards eutrophication and is considered moderately vulnerable to nutrient 

enrichment (Parr and Wheeler, 1996). Excess nutrient inputs are thought to be mainly due to 

diffuse agricultural pollution and, to a lesser extent, from sewage infrastructure (Ecospan, 

2015). In view of a potential oxygen demand in the estuary, some discussion is also given of 

dissolved oxygen concentrations (DO). 

Although the ETM is usually studied as a physical phenomenon, it can have a profound 

influence on the ecology of an estuary (e.g. Garnier et al., 2010; Savoye et al., 2012; Keller et 

al., 2014), and whereas some work has been published on ETM behaviour in small estuaries 

(e.g. Jago et al., 2006; Uncles and Stephens, 2010), much of the research relates to larger 

estuaries (e.g. Purnachandra Rao et al., 2011; Sommerfield and Wong, 2011; Ralston et al., 

2012; Jiang et al., 2013; Yu et al., 2014; Jalón-Rojas, 2016; Kitheka et al., 2016; Toublanc et 

al., 2016). Despite the SSSI designation of the Lynher, very little information on its physical 

regime has been published and previous studies have focussed on its biology (Joint., 1978; 

Warwick and Price, 1979; Bayne et al., 1987) or its contaminants (Bland et al., 1982; Austen 

and McEvoy, 1997). A review of some biological, chemical and ecological studies of the 
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Plymouth Sound and Estuaries SAC and SPA (including the Lynher Estuary) is given by 

Langston et al. (2003). 

This article is intended to contribute both to our understanding of the Lynher Estuary as a 

guide to its future management and to add to our knowledge of salt intrusion, ETM 

processes, seasonal variability and its consequences for chlorophyll-a in small estuaries using 

measurements from this little-studied SSSI. The issues addressed here that are significant to 

the Lynher as a Marine Protected Area include: (1), salinity intrusion and its dependence on 

environmental forcing factors (determining the salinity gradients along which transitional 

marsh communities have developed); (2), suspended sediment concentrations and sediment 

transport in the tidal river and estuary, including the ETM (contributing to and interacting 

with the extensive saltmarsh and highly productive mudflats and subject to the requirement 

that the sediment budget within the system should not be restricted by anthropogenic 

influences); (3), chlorophyll-a concentrations and the measurement of dissolved oxygen 

levels (in the knowledge that good water quality and sediment quality should be maintained). 

Particularly important aims include: examination of the sensitivity of salinity intrusion and 

ETM location and magnitude to tidal range and freshwater inflow from the catchment; the 

presence or otherwise of unusually elevated chlorophyll-a levels as an indicator of excessive 

or normal nutrient levels; and the existence or absence of dissolved oxygen ‘sags’ as an 

indicator of potential water quality issues. 

2. The Lynher Estuary 

The Lynher Estuary is approximately 13 km long from its mouth in the lower Tamar 

Estuary (x = 12.5 km, Fig. 1b, c) to its tidal limit at the weir (x = -0.5 km, Fig. 1c), where x is 

the centre-line (i.e. midway between adjacent estuary banks/shores) distance along the 

estuary. The distance origin (at x = 0 km) is chosen to be Notter Bridge (Fig. 1c) because the 

great majority of surveys started at this station and only two started farther up-estuary (x = -
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0.23 and -0.25 km) during the HW stands of very large spring-tide, low-runoff surveys. The 

Lynher is a shallow estuary, typically less than 5-m deep at high water (HW). In the lower 

estuary it has extensive intertidal mudbanks and saltmarsh areas, whereas the upper estuary is 

river-like in appearance. Surveys undertaken in 2010 noted that the designated intertidal 

features of interest were in a favourable condition but that there were indications of 

vulnerability to nutrient enrichment (Ecospan, 2015).The most recent site-condition 

monitoring, undertaken in 2014, compared the extent of habitat with aerial photography from 

1988 to 2009 (Natural England, 2014). The great majority of the intertidal areas are 

considered to be in favourable status (Seebold, 2016; Natural England, 2014; Ecospan, 

2015); principal threats are identified as contaminants in water and sediment, elevated 

residual nutrient levels and a low infaunal quality index. 

The estuary receives freshwater inflows from the River Lynher at the weir and from its 

sub-estuary of the Tiddy (x = 5 km, Fig. 1c). Its catchment area is 173 km
2
 (IH, 2003) and its 

daily-averaged freshwater input from both the Lynher and Tiddy Rivers during 1976 to 2016 

ranged from less than 0.5 to greater than 70 m
3
 s

-1
, with a long-term mean of 5.5 m

3
 s

-1
; the 

Tiddy flow typically was 20% of the Lynher River flow and its mean flow was 1 m
3
 s

-1
 

(daily-averaged data supplied by the UK’s Environment Agency, UKEA). During the survey 

period, August 2002 to July 2003, daily-averaged freshwater input from both the Lynher and 

Tiddy Rivers ranged from less than 1.0 to greater than 50 m
3
 s

-1
, with a long-term mean of 

5.0 m
3
 s

-1
; the Tiddy flow typically was only 26% of the Lynher River flow and its mean 

flow was 1 m
3
 s

-1
. 

Some features of the tidal regime of the Lynher have been documented by George (1975). 

Tides are semi-diurnal with mean neap and spring ranges, respectively, of 2.2 and 4. 7 m 

(Admiralty Tide Tables, 2017). 
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3. Methods 

A sea-truck was anchored close to the confluence of the Lynher and Tiddy (Fig. 1c) and 

a small inflatable boat used to survey 12 stations close to HW along the main channel of the 

Lynher between Notter Bridge (at 0 km and located 0.5 km down-estuary of the weir) and the 

Lynher-Tiddy confluence, which included the tidal river and ETM region. The sea-truck was 

then used to sample three remaining stations between the confluence and the Lynher mouth. 

A YSI multiparameter probe (YSI, 2017) was used to obtain vertical profiles of conductivity, 

temperature, salinity, turbidity and dissolved oxygen from 0.1 m above the bed to the surface. 

Data were logged using a 5-s sampling cycle; i.e., all variables, including date, time and 

depth, were measured and recorded every 5 s. Synoptic calibration samples (one or more 500 

ml bottles per station) were collected at the surface. Additional surface samples were 

collected using 2500 ml dark glass Winchester bottles at each station for chlorophyll-a 

analysis and surface-salinity determination using standard methods (e.g. Uncles and Mitchell, 

2017). There were 20 surveys between 13 August 2002 and 21 August 2003, comprising 9 

spring tides and 11 neap tides, with a spring and neap tide each month except for December 

2002 (neap only) and January and July 2003 (springs only) and February, June and August 

2003 (neaps only). 

The surface water samples were analyzed in the laboratory. Salinity was measured with a 

laboratory-based bench salinometer (Guildline Portasal; www.guildline.com). SPM was 

determined gravimetrically by filtering known volumes of sampled water onto a pre-weighed 

GF/F filter paper. Filters were then dried in a desiccator and weighed. Chlorophyll-a was 

measured in samples filtered onboard the sea-truck following collection onto 47 mm 

Whatman GF/F filters. Pigments were extracted with 90% acetone and analyzed according to 

the fluorometric method of Yentsch and Menzel (1963). 
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Wind data (University of Plymouth meteorological data; www.plymouth.ac.uk), 

Freshwater inflow data (UKEA, nrfa.ceh.ac.uk) and tidal data (Admiralty tide tables, 

www.admiralty.co.uk) were collated for the survey period of August 2002 to August 2003. 

4. Results 

The observations presented here were depth averaged to provide a synthesis of the 

important temporal and along-estuary features, excluding the longitudinal location of the 

salinity-1 contour, which was derived from the position at which that contour intersected the 

estuary bed, and the chlorophyll-a data and their associated salinity values, which were 

measured using surface samples. 

4.1. Major seasonal variations: The Lynher mouth and tidal river 

The most up-estuary station in the tidal river (salinity <0.1, usually located at Notter 

Bridge, x = 0, but farther up-estuary at x = -0.23 and -0.25 km on two occasions, Fig. 1c) and 

the Lynher mouth station close to the confluence with the Tamar Estuary (at x = 11.9 km, 

Fig. 1c) showed a strong seasonal cycle for HW temperature that ranged from 6.6 ºC in 

January to 18.6 ºC in August (Fig. 2a). The HW salinity in the tidal river was always <0.1, 

whereas at the mouth of the Lynher it ranged between 34.3 in October and 25.5 in January 

(Fig. 2b). HW SPM concentrations in the tidal river and at the mouth were relatively low 

(8±8 and 9±7 mg l
-1

, respectively) and did not exhibit seasonal variability (Fig. 2c); the large 

SPM peak on 10 September 2002 followed a prolonged period of large tides and, therefore, 

pronounced sediment resuspension in the Tamar Estuary (Uncles and Stephens, 1989). 

Chlorophyll-a concentrations generally were less than 2 µg l
-1

 (Fig. 2d) but during May 

through September had values up to 25 µg l
-1

 in the mouth after a several-day period of small 

tides and up to 9 µg l
-1

 in the tidal river during a small, May 2003 runoff ‘event’. 

4.2. A spring-tide longitudinal survey 
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As an illustration of vertical and longitudinal structure, a HW survey of the Lynher 

Estuary during a low runoff, large spring tide (10 September, 2002) showed saltwater 

intrusion into the upper reaches (Fig. 3b) that exhibited strong vertical and longitudinal 

salinity gradients close to the freshwater-saltwater interface (FSI). At low water (LW; 

marked on Fig. 3a-c) the estuary would have comprised a narrow channel of fresh and 

brackish waters that extended to the deeper waters a few kilometres up-estuary of the Lynher-

Tamar confluence (the mean LW rather than the mean-spring LW drying line is shown in 

Fig. 1c). These LW Lynher waters were pushed back into the upper Lynher by flooding 

Tamar waters to form the HW tidal river and FSI region. 

The temperature (heat content) of the flooding Tamar waters was essentially conservative 

on the flood-tide timescale (i.e. approximately linear when plotted versus salinity) and 

exhibited a similar structure to the salinity distribution (Fig. 3a, b). Similarly, HW SPM 

concentrations (Fig. 3c) were approximately conservative for salinity values between 2 and 

33, indicating strong mixing between intruding Tamar waters and LW Lynher waters, with 

considerable scatter and SPM additions due (presumably) to sediment or detritus 

resuspension. HW SPM concentrations rose from approximately 45 to 60 mg l
-1

 in the newly 

mixed flood-tide waters but were less near the mouth and in the tidal river (but exceeded 30 

mg l
-1

). An estuarine turbidity maximum (ETM) therefore occurred near the limit of saline 

intrusion within the upper Lynher close to HW. The ETM region coincided with a dissolved 

oxygen DO minimum (not shown). 

Although the ETM was a pronounced feature of this large spring tide, all 20 surveys 

exhibited an ETM that varied in magnitude and location throughout the year, together with a 

dissolved-oxygen minimum (DO ‘sag’) that was located in the upper estuary within the ETM 

region and close to the limit of saline intrusion. 

4.3. Locations of the FSI, ETM and the DO minimum 
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The location of the near-bed salinity-1 contour at HW, 
1SX , was used as a measure of salt 

intrusion and the position of the FSI. Trial and error multiple regression analyses of measured 

variables using environmental data on tidal ranges, winds and freshwater inflows (Table 1) 

determined the strongest empirical correlations between these variables. The 20 surveys 

showed that 
1SX  was most closely correlated with the River Lynher freshwater inflow as 

recorded at the start of each survey ( 0,LQ , Table 1) and was larger (farther down-estuary) at 

higher inflows. The FSI location (measured as 
1SX ) was also farther down-estuary during 

smaller tides (smaller tidal ranges, 0R ). 
1SX  varied between 2.6 km down-estuary of Notter 

Bridge to 0.16 km up-estuary, with a mean value of 1 km down-estuary of the bridge, at a 

section where the HW width was approximately 20 m (Fig. 1c). 

The location of the ETM, ETMX , correlated strongly with the location of the FSI and 

moved up or down estuary in qualitative unison with 
1SX  (Table 1). In addition, westerly 

winds during the flooding tide, floodWW , , correlated with an up-estuary movement of ETMX . A 

similar, but not statistically significant wind effect was indicated for 
1SX . ETMX  varied 

between 7 km and 0.3 km down-estuary of Notter Bridge, with a mean value of 3 km down-

estuary of the bridge (Fig. 1c). Therefore, on average, the ETM was located 2 km down-

estuary of the FSI at HW. Westerly winds during the flooding tide decreased the ETM-FSI 

separation, whereas increasing freshwater inflows increased it (R
2
 of 0.58 and a Prob>F of 

<0.001 with 19 DoF). ETMX  was located in waters of salinity that varied between 5 and 20. 

The location of the DO minimum, minDOX , was positively correlated both with the FSI and 

the ETM locations (Table 1). It varied between 7 km and 0.8 km down-estuary of the bridge 

and was located, on average, 2.6 km down-estuary; i.e., 1.6 km down-estuary of the FSI and 



 10 

0.4 km up-estuary of the maximum SPM concentration, on average, and within the ETM 

region. minDOX  was located in waters of salinity that varied between 24 and 8. 

4.4. Salinity and SPM concentrations 

The seasonal variability exhibited by HW salinity at the survey station close to the Lynher 

mouth (Fig. 2b), which is confluent with the much larger Tamar Estuary, was most strongly 

correlated with the average Tamar Estuary runoff over the preceding 14 days ( dTQ 14, ) and, to 

a lesser extent, with the average tidal range during the preceding 6 days ( dR6 ); larger tides 

over this 6-d period led to higher salinity at the mouth (Table 1). Similarly, a correlation 

existed between wind speed averaged over the preceding 3 days and HW salinity, with 

stronger winds tending to reduce the Lynher-mouth salinity. 

The seasonal and monthly variations in SPM concentration at the mouth station, mouthP  

(Fig. 2b) could not be accurately described using the chosen environmental factors of wind 

speed, runoff and tides. However, excluding three high-concentration SPM outliers for 

August of 2002 and 2003 led to good correlations (all positive, Table 1) between the ETM 

magnitude, ETMP , and mouthP , the tidal range 0R  and the wind speed during the flooding tide, 

floodW . ETMP  was larger than mouthP  by between 4 and 70 mg l
-1

 and the mean difference was 

23 mg l
-1

. 

The seasonal and monthly variations in HW tidal river SPM concentration measured at the 

most up-estuary station, rivertidalP  , were correlated with the HW SPM concentration at the 

Lynher mouth station (positively), the tidal range (negatively) and wind speeds over the 

preceding 3 days (positively), dW3  (Table 1). SPM concentrations had a marked influence on 

DO concentrations and the recorded DO minima over the observation period were strongly, 

negatively correlated with the SPM concentration at position minDOX  (Table 1). 
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4.5. Seasonal variations in the longitudinal distributions 

An ETM was formed in the upper estuary of the Lynher during the observational period 

(shown up to July 2003 in Fig. 4). Except for the relatively high runoff January survey (Fig. 

4f) the ETM was located up-estuary of the confluence of the Tiddy and the Lynher (Fig. 1c) 

and less than 5 km from Notter Bridge in the very narrow and shallow part of the upper 

estuary, typically at 3 km, where widths are < 100 m and depths < 4 m at HW of large tides. 

The large August neap-tide ETM (Fig. 4a) followed a 1-day peak in runoff after a sustained 

period of low and decreasing inflows and might have been enhanced by the presence of 

newly imported sediment from the catchment. The rapid rise in SPM from tidal river to 

estuary was closely associated with the FSI (salinity shown in Fig. 4). 

Surface chlorophyll-a was less than about 3 µg l
-1

 throughout the estuary during 

November through March (Fig. 5d-h) and, compared with the tidal river, tended to show 

somewhat higher values in the estuary. April concentrations increased to 4 µg l
-1

 (Fig. 5i) and 

then to 10 µg l
-1

 during the large spring tide of May (Fig. 5j), with highest values in the tidal 

river. Bloom conditions (up to 25 µg l
-1

) occurred down-estuary of the ETM during the June 

neap tide (Fig. 5k) and during the July spring tide (Fig. 5l). The highest concentrations 

occurred during the September neap tide (Fig. 5a) when concentrations increased 

dramatically down-estuary of the tidal river and reached 75 µg l
-1

 at a location where the 

surface salinity was 27. 

5. Discussion 

The Plymouth Sound and Estuaries system (Fig. 1b) was designated as a Special Area of 

Conservation (SAC) in 2005 under the European Habitats Directive (92/43/EEC) for features 

including its estuaries, large shallow inlets and bays, mudflats and salinity-graded biological 

communities (JNCC, 2017). The conservation objective for the SAC is to maintain the 

estuaries in favourable condition and the advice for relevant authorities is to manage human 
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activities so that they do not result in deterioration or disturbance including increased 

siltation of the estuary bed or intertidal communities, abrasion of the estuarine habitats or 

nutrient/organic enrichment and/or increases in turbidity. However, such conservation 

objectives and advice for this and other SACs are qualitative aspirations without the type of 

quantitative background data on sediments, salinity and water quality and their interpretations 

that have been presented here for the Lynher Estuary. 

The Lynher is a sub-estuary of the much larger Tamar and forms part of the Plymouth 

Sound and Estuaries SAC (Fig. 1b). It receives its high-salinity waters from the Tamar during 

the flooding tide and flushes most of these waters back into the Tamar during the ebbing of 

larger tides. This interdependence of waters, solutes and suspended sediments means that 

conservation objectives must be adhered to throughout the system and that processes, 

including physical processes, in all the sub-systems must be understood if the SAC as a 

whole is to be understood. The fresh and brackish waters that remain in the Lynher over LW 

are pushed back into the upper Lynher during the flood and are partially mixed with the 

incoming waters to produce vertical and longitudinal gradients in SPM, temperature, salinity 

and other solutes; lower salinity, relatively buoyant waters will be mixed into the upper water 

column and a relatively sharp longitudinal FSI will be generated separating predominantly 

Tamar waters from tidal river and LW Lynher waters. These processes lead to the salinity 

gradients that have been highlighted as of particular importance to the transitional marsh 

communities that have developed along them, which vary from saltmarsh to freshwater fen 

and willow carr (Natural England, 2018a). Saltmarsh vegetation communities range from 

pioneer stands of Townsend's Cord-grass and Sea Aster through lower-mid marsh with 

Common Saltmarsh-grass Puccinellia maritima and Sea purslane, to mid-upper marsh and 

transition freshwater inundation communities. The saltmarshes and their adjacent mudflats 

provide important roosting and feeding grounds for large numbers of wintering wildfowl and 
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waders (Natural England, 2018a). Therefore, an understanding of the salinity distribution and 

its dependence on environmental forcing is a prerequisite for predicting how these 

communities may change with such forcing. 

The work presented here has shown that the extent of salinity intrusion in the Lynher 

Estuary is largely controlled by tides and freshwater runoff from the River Lynher, the latter 

being very dependent on climate and anthropogenic changes within the catchment, and is 

such that larger tides increase intrusion and decrease vertical salinity gradients and larger 

runoff reduces intrusion and increases vertical gradients, which is similar to salinity 

behaviour in the Tavy sub-estuary (Fig. 1b, Uncles and Stephens, 2011) and many other 

estuaries (e.g., Xu et al. 2008; Becker et al., 2010; Ralston et al., 2010; Giddings et al., 2011). 

The salinity of incoming Tamar waters depends on the volume of freshwater runoff into the 

Tamar over the previous weeks, due to the delay caused by the Tamar’s residence time for 

fresh water, which is roughly two weeks (Uncles and Stephens, 1990), and again emphasizes 

the interdependence of the sub-systems of the Plymouth Sound and Estuaries SAC. A period 

of larger tides over the previous several days similarly leads to incoming waters that have 

higher salinity, whereas a period of stronger winds tends to reduce the Lynher-mouth salinity 

at HW, which may be caused by wind-enhanced vertical mixing and reduced gravitational 

circulation (e.g. Officer, 1976) in the lower Tamar Estuary, thereby increasing the residence 

time of fresh water there. The influence of wind effects on salinity distributions and salinity 

stratification has been observed in numerous other estuaries (e.g., Barlow, 1956; Goodrich et 

al., 1987; Van de Kreeke and Robaczewska, 1989; Blumberg and Goodrich, 1990; Geyer, 

1997; Dellapenna et al., 1998; Scully et al., 2005; Xu et al. 2008; Chen and Sanford, 2009; 

Behrens et al., 2016). 

The Lynher has a small but persistent ETM that is closely associated with the FSI and 

located typically 2 km farther down-estuary at HW. The existence of the ETM and its 
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changing SPM concentration and position with changing environmental forcing, as 

delineated here, demonstrates that fine-sediment transport is not simply conservative, i.e. 

linearly related to salinity, but has a dynamic component associated with water-column 

particle settling, deposition and resuspension, and that it therefore influences the morphology 

and composition of the intertidal mudflats, which have been highlighted as highly productive 

and providing important feeding and roosting grounds for large populations of birds. Depth-

averaged ETM magnitudes were less than 60 mg l
-1

 and typically 30 mg l
-1

 over the 

observation period, although the SPM concentrations of incoming Tamar waters at HW 

typically were 10 mg l
-1

 but would have been greater at the start of the flood because of 

longitudinal gradients of SPM within the Tamar, where concentrations increase progressing 

up-Tamar. A regression equation for ETM magnitude based on mean spring tidal range and 

tidal length, and derived from numerous estuaries worldwide (Uncles et al., 2002a), estimates 

the Lynher ETM to be ~30 mg l
-1

. An ETM of similar magnitude also occurs in the Tavy sub-

estuary (Fig. 1b), close to the limit of salt intrusion at HW, where concentrations typically are 

less than 40 mg l
-1

 at HW, although they can exceed 80 mg l
-1

 when tides and winds are 

strong (Uncles and Stephens, 2010). 

In the Lynher, the rapid increase in SPM from tidal river to estuary indicates three 

possible causes: scenario (a), weakly deposited fine sediment and detritus is eroded from the 

mudflats by the incoming, leading edge of the flooding tide and transported into the estuary; 

scenario (b), the Lynher waters remaining within the lower estuary at LW are themselves 

turbid and mix strongly with the incoming, less turbid Tamar waters; and scenario (c), the 

incoming Tamar waters possess their own longitudinal SPM and salinity gradients (Uncles 

and Stephens, 1990) that at the Lynher mouth have greatest SPM concentration and lowest 

salinity close to LW and which are then transferred into the Lynher on the flood. 
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In the first case, scenario (a), if vertical gradients and mixing are ignored then the 

incoming tide will push the initially ebbing Lynher waters back up-estuary, forming a 

convergent front between them that moves into the upper estuary until it reaches its HW 

position. A greater area of mudflat becomes available for erosion as the water level rises and 

the faster flowing tidal waters immediately behind the leading edge of the flooding tide will, 

if they are fast enough, suspend the easiest-erodible sediment and detritus, thereby 

maximising the SPM concentration in this up-estuary-moving region. Because this process 

begins at the mouth of the Lynher at the start of the flood, the brackish and fresh river waters 

that eventually form the FSI lay in front (up-estuary) of the leading edge. The addition of 

mixing and vertical structure generates both an FSI and the potential for density-driven flow 

superimposed on the flood-tide currents, which would further accumulate SPM behind the 

FSI (e.g., Festa and Hansen, 1978). This scenario emphasizes the strong interactions between 

water-column processes and the mudflats that are an important feature of the Plymouth 

Sound and Estuaries SAC. 

In scenario (b), if there is no flood-tide sediment erosion, mixing or vertical structure, then 

the turbid LW Lynher waters, with less turbid tidal river waters behind them, will be pushed 

back by the flooding, less-turbid Tamar waters and their SPM concentrations will remain the 

same. Including mixing and structure, then mixing will generate a non-frontal FSI between 

the Lynher and Tamar waters that will exhibit highest SPM concentrations at lower salinities, 

so that vertical structure and density-driven currents during the slack, late flood of the upper 

reaches will further accumulate SPM behind the FSI (e.g., Festa and Hansen, 1978). In this 

case, the longitudinal salinity gradient and freshwater inputs still play a key role in the 

distribution of SPM and salinity that affect saltmarsh development. 

In scenario (c), the ETM concentrations are increased because of the longitudinal SPM 

gradient in the Tamar (Uncles and Stephens, 1989). Over the seasonal observation period the 
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ETM magnitude was observed to be about 20 mg l
-1

 greater than the Lynher mouth SPM 

concentration at HW. An examination of historical Tamar data indicates that this 

longitudinal-gradient effect may be too small to account for the observed difference, although 

it could provide a significant contribution. In this case too, physical transport of salinity and 

SPM, this time from the Tamar, would affect the mudflats and marshes of the Lynher. The 

processes outlined in scenarios (a-c) have been observed in many other estuaries to varying 

degrees (e.g., Kessarkar et al., 2010; Uncles et al., 2010; Rao et al., 2011; Sommerfield and 

Wong, 2011; Ralston et al., 2012; Wu et al., 2012; Keller et al., 2014; Yu et al., 2014; 

Kitheka et al., 2016). 

The HW SPM concentration at the Lynher mouth is greater after a period of large tides but 

less after a period of stronger winds (although the wind correlation was only marginally 

significant). The Tamar has a strong ETM in its upper reaches during spring tides (Uncles 

and Stephens, 1989), so that a delayed increase in SPM loads and a lagged dependence on 

tidal range can be anticipated for the lower Tamar. Increasing winds may also increase 

vertical mixing, reduce the gravitational circulation (e.g. Officer, 1976) and decrease the 

amount of fine SPM reaching the lower Tamar in its somewhat fresher, near-surface waters. 

An increased HW SPM concentration at the Lynher mouth leads to a stronger HW ETM, 

as would be anticipated from flood-tide scenarios (a) and (c). Larger tides and stronger flood-

tide wind speeds also lead to a stronger ETM, indicating a potential increase in tidal and 

wind-induced suspension of sediment and detritus from the mudflats (scenario (a)) and 

increased mixing with LW Lynher waters (scenario (b)). The HW location of the ETM 

moves up or down estuary in qualitative unison with the FSI. Westerly winds during the 

flooding tide tend to produce an up-estuary movement of the ETM, which may be caused by 

a wind-reduced up-estuary tidal flow at the surface in the lower Lynher compensated-for by 

an enhanced up-estuary flow at the bed. 
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Although intrinsically small (8±8 mg l
-1

), the tidal river HW SPM concentrations increase 

with greater Lynher mouth concentrations, which indicates a possible up-estuary, short-term 

response to the variable input of SPM from the Tamar to the Lynher. Possible HW deposition 

of SPM from turbid LW Lynher waters (scenario (b)) in the upper reaches would be eroded 

during the following, relatively fast-flowing freshwater river currents, allowing sediment to 

be mixed into tidal river waters prior to the following flood. The tidal river concentrations 

also increase following a period of stronger winds, potentially reflecting enhanced suspension 

of sediment and detritus into the tidal river during the LW period (scenario (b)). Smaller tides 

are associated with greater SPM concentrations in the tidal river, although the effect is small 

(< 5 mg l
-1

 for the observed range of tides). Possible explanations are that smaller tides and 

less vertical mixing may enhance the near-bed density-driven flow and transport its sediment 

load into the upper reaches, or that previous higher tides deposit sediment onto the channel-

flanking bed of the upper reaches over their HW stands, which may then be eroded by small 

waves at the water edges during the lower HW stands of smaller tides. 

Dissolved oxygen levels within estuaries are influenced by a range of physical, chemical 

and biological factors, including circulation (Scully, 2010), stratification, photosynthesis and 

water column and benthic oxygen demands, possibly associated with e.g. SPM, sediments or 

pollution events (e.g. Brown and Power, 2011; Chen et al., 2014; Testa and Kemp, 2014). 

Freshwaters carrying diffuse agricultural pollution and sewage, although to a lesser degree, 

are thought to affect the Lynher Estuary to some extent (Ecospan, 2015) and might produce a 

decrease in dissolved oxygen when encountering higher-turbidity saline waters. In the Lynher 

Estuary, the findings presented here show that the ETM exerts a control over the local DO, 

such that the minimum DO occurs within the ETM region and is strongly, negatively 

correlated with the SPM concentration at that location, indicating a potential water-quality 

issue. Morris et al. (1982) showed that the oxygen demand exerted within the ETM zone of 



 18 

the Tamar Estuary can generate a sharp drop in DO concentration down-estuary of the FSI. 

They attributed this primarily to the degradation of organic detritus within the ETM, but 

acknowledged that an oxygen demand by inflowing fluvial organic particles may play a role. 

In the extremely turbid Humber-Ouse Estuary, Uncles et al. (1998b) showed that there was a 

linear correlation between total bacterial number and SPM concentration, suggesting that the 

strong DO demand was exerted locally via bacterial activity associated with the SPM. 

Management of the Lynher SSSI and MCZ stipulates that good water quality and sediment 

quality should be maintained and the sediment budget within the system should not be 

restricted by anthropogenic influences (Natural England, 2018c). However, because the 

Lynher has a tendency towards eutrophication and is considered moderately vulnerable to 

nutrient enrichment (Parr and Wheeler, 1996) it has been important to quantify chlorophyll-a 

concentrations in order to provide a baseline dataset and to identify seasonal variability 

within it. Surface HW chlorophyll-a concentrations in the Lynher showed a similar seasonal 

pattern to that in many other estuaries (e.g. Cloern et al., 1985; Cloern, 1987; Jackson et al., 

1987; Malone et al., 1988; Uncles et al., 1998a; Philippart et al., 2010), having low values (< 

3 µg l
-1

) during winter and much higher, ‘bloom’ values during spring and summer (up to 25 

µg l
-1

). In the Lynher, chlorophyll-a peaked during a September neap tide (75 µg l
-1

) after 

several weeks of low and decreasing freshwater runoff. The recorded DO was strongly 

supersaturated during this bloom. Although chlorophyll-a concentrations were very high, 

Cloern (1987) showed that during the summer bloom in Suisun Bay, northern San Francisco 

Bay, the chlorophyll-a concentrations were consistently greater than 60 µg l
-1

 on the shoals 

but less than 30 µg l
-1

 in the adjacent channel. Cloern (1987) also reported values exceeding 

40 µg l
-1

 in South San Francisco Bay during stratified conditions in April. Philippart et al. 

(2010) analysed chlorophyll-a data for the western Wadden Sea during the period 1974–

2007; although they could not find any long-term trends in the start and end times of 
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phytoplankton spring blooms they did show that spring bloom concentrations often exceeded 

70 µg l
-1

 and that in two of the years concentrations exceeded 100 µg l
-1

. 

In the Lynher Estuary, chlorophyll-a concentrations are very low during the winter months 

but often show a peak in the vicinity of the ETM that is likely caused by one of the 

mechanisms that produce the ETM (scenario (b)). Some other estuaries also show a peak of 

chlorophyll-a close to the FSI; e.g., the spring bloom in Chesapeake Bay (Malone et al., 

1988), the fluvial-dominated northern San Francisco Bay (Cloern et al., 1985), the turbid 

Humber-Ouse (Uncles et al., 1998a) and the Tamar (Jackson, 1987). 

Climate change influences on coastal and estuarine systems will become increasingly 

important in the future. Global sea level is expected to continue rising, with recent 

assessments from the Intergovernmental Panel on Climate Change (IPCC) ranging from 

approximately 0.25 to 1 m during the 21
st
 century (Edwards, 2017). According to DEFRA 

(2014), future changes in river-flow magnitudes and groundwater recharges are uncertain, but 

it is likely that flows will be more variable, with higher high flows and lower low flows, and 

that the frequency of high intensity events (e.g. flushing, erosion and accretion) will increase, 

thereby affecting estuarine morphology. River, coastal and estuarine temperatures are also 

very likely to increase. A key risk is nutrient enrichment and its consequences, which will be 

influenced by hydrological and biogeochemical changes as well as land-use changes 

(DEFRA, 2014). 

Changes in estuarine morphology will affect estuarine biology, e.g. mudflat biota; in 

addition, it is often assumed that sea-level rise will increase estuarine salinity and salinity 

intrusion, which in turn will cause an up-estuary shift in salinity-dependent species 

distributions and community composition (Little et al., 2017). However, Little et al. (2017) 

demonstrated that whilst salinity is a dominant factor in benthic species distribution and 

community composition, other factors play a role, such as substratum type (also likely to be 
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affected by climate-change-induced erosion or deposition), biotic competition and predator-

prey relationships. Saltmarsh vegetation communities will alter in response to changing 

salinity intrusion and changes to mudflat composition and spatial extent will affect wildfowl 

and waders. To complicate the issue, whilst rising sea levels in combination with reduced 

low-flow summer runoff will increase salinity intrusion compared with present conditions 

(e.g. Prandle and Lane, 2015), it is not clear that the same will apply during increased high-

flow winter runoff. For example, EA (2010) concluded that changes in river flow will affect 

vertical mixing and salinity intrusion, and whilst increases in river flow would only have 

significant impacts on vertical mixing in the shallower estuaries, it could lead to significant 

decreases in saline intrusion in any estuary, which would be substantially enhanced in 

shallow waters. 

Higher high winter freshwater flows due to climate change and associated increased river 

sediment loads due to greater soil erosion in the catchment and nutrient loads (e.g. Uncles et 

al., 2002b) will result in abrasion of the estuary’s bed and increased estuarine turbidity, as 

well as the potential for eutrophication and other water quality issues such as dissolved 

oxygen ‘sags’ in a system that is already recognised to be moderately vulnerable to nutrient 

enrichment and is considered to have a tendency towards eutrophication (Parr and Wheeler, 

1996). 

Finally, the Plymouth Sound and Estuaries SAC is a complex site to monitor and manage; 

it is one of the few SACs in England that comprises multiple estuaries, each of which has 

many different features and sub-features. Natural England is reviewing its approach to 

condition assessment to ‘make better use of all available evidence relating to feature 

condition [including both] direct and indirect information’. Sampling the marine environment 

is difficult, which makes gathering robust evidence for condition assessments costly and 

time-consuming (Rush and Solandt 2017). In a complex environment such as an estuary with 
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multiple potential impacts it is unrealistic to expect to establish strict causality between 

anthropogenic inputs and adverse impacts, and therefore advice should also be modelled on a 

‘revised approach’ that will allow better integration of qualitative evidence and quantitative 

evidence (such as that presented here) for estuarine management (Marine Management 

Organisation, 2014). The significance of our quantitative evidence for the Lynher Estuary 

includes: the strong dependence of saline intrusion on catchment freshwater flow, which 

affects transitional marsh communities; the dependence of the ETM location (maximum SPM 

concentrations) to the saline intrusion and therefore catchment freshwater inflow, which 

affects saltmarshes, mudflats and the sediment budget; and the observation of normal 

suspended chlorophyll-a levels but a routinely observed dissolved oxygen ‘sag’ near the 

ETM, which are relevant to water quality and sediment quality objectives. 

6. Conclusions 

Because management of the Lynher SSSI and MCZ stipulates that good water quality and 

sediment quality should be maintained and that the sediment budget within the system should 

not be restricted by anthropogenic influences, confidence in the intertidal mud features 

remaining in favourable status requires a good understanding of its responses to influences 

such as climate change and changes in agricultural practices within the catchment area. 

Potentially higher high winter freshwater runoff due to climate change and its increased 

sediment and nutrient loads will result in abrasion of the estuary’s bed in its upper reaches, 

accretion nearer the mouth and increased estuarine turbidity, as well as possible 

eutrophication and dissolved oxygen ‘sags’ during subsequent summer months, so that 

chlorophyll-a is an important variable to measure if good water quality is to be monitored 

and maintained. Lower low summer freshwater runoff and sea-level rise is likely to increase 

estuarine salinity and salinity intrusion and affect salinity-dependent species distributions and 

community composition. 
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Our seasonal measurements show that salinity intrusion in the Lynher is largely controlled 

by tides and freshwater runoff. Larger tides increase intrusion and decrease vertical salinity 

gradients and larger runoff reduces intrusion and increases vertical gradients. The salinity of 

Tamar waters flooding into the Lynher depends on the volume of freshwater runoff into the 

Tamar over previous weeks. A period of larger tides over the previous several days leads to 

incoming waters of higher salinity, whereas a period of stronger winds tends to reduce the 

Lynher-mouth salinity at HW. 

The Lynher has a persistent ETM that is closely associated with the FSI and located 

typically 2 km farther down-estuary at HW. The HW location of the ETM moves up or down 

estuary in qualitative unison with the FSI and the ETM magnitude appears to exert a control 

over the local DO, such that the minimum DO occurs within the ETM region and is strongly, 

negatively correlated with the SPM concentration at the minimum. The reasons for this are 

not known, but it is thought that freshwater inputs that might carry diffuse agricultural 

pollution and small amounts of sewage may play a role and could produce a decrease in 

dissolved oxygen when encountering saline waters and greater SPM loads. 

Depth averaged ETM magnitudes are relatively low, less than 60 mg l
-1

 and typically 30 

mg l
-1

 over the observation period, although the SPM concentration of incoming Tamar 

waters at HW typically can account for at least 10 mg l
-1

 of this. Larger tides and stronger 

flood-tide wind speeds lead to a stronger ETM. An increased HW SPM concentration at the 

Lynher mouth leads to a stronger HW ETM and the HW SPM concentration at the Lynher 

mouth is itself greater after a period of large tides. 

Although the tidal river HW SPM concentrations are small (8±8 mg l
-1

 during the 

observation period), they increase with greater Lynher mouth concentrations, indicating 

sediment deposition into the upper reaches during the HW stands of larger tides. The tidal 

river concentrations also increase following a period of stronger winds. 
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Surface HW chlorophyll-a concentrations in the Lynher show a similar seasonal pattern to 

that in many other estuaries, having low values during winter and much higher ‘bloom’ 

values during spring and summer when very high values can occur during neap tides after 

several weeks of low and decreasing freshwater runoff. Although chlorophyll-a 

concentrations are very low during the winter months, they often show a peak in the vicinity 

of the ETM. 

The results of this study provide an example of observations and analyses that can be 

shared to inform a more proactive and informed management of protected areas and that 

could be used to identify a threat before it leads to more significant damage to a feature 

within them. 
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Figure and Table Captions 

Table 

Table 1. Multiple regression results for measured and derived variables from 20 surveys of 

the Lynher Estuary between August 2002 and August 2003. The degrees of freedom 

(DoF) generally comprise 19 data (20 minus the intercept determination) of which one to 

three accommodate the regression model (one to three slopes of the regression for one to 

three ‘parameters’ - respectively) and 16 to 18 accommodate minimisation of the 

regression error. R
2
 is the Coefficient of Determination (the proportion of variance 

‘explained’). 

Figures 

Figure 1. Maps showing: (a), the location of the Lynher Estuary in southwest England, UK; 

(b), the location of the Lynher Estuary in relation to the Tamar Estuary; and (c), the 

Lynher Estuary showing distances from Notter Bridge and station positions. 

Figure 2. Time series of depth-averaged data close to HW between August 2002 and August 

2003 for stations at the Lynher mouth (filled squares) and in the tidal river (open circles): 

(a), water temperature; (b), salinity; (c), SPM concentration; (d), chlorophyll-a. 

Figure 3. Contour plots of survey data close to HW along the Lynher for a large spring tide 

on 10 September, 2002: (a), temperature; (b), salinity; and (c), SPM concentration. 

Figure 4. Lynher depth-averaged SPM concentrations (filled squares) and depth-averaged 

salinity (open circles) close to HW plotted along the Lynher for surveys between August 

2002 and July 2003, (a)-(l). 

Figure 5. Lynher surface chlorophyll-a concentrations (filled squares) and surface salinity 

(open circles) close to HW plotted along the Lynher for surveys between September 2002 

and July 2003, (a)-(l). 


