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Abstract

An assessment of variance in ocean current signal and noise shared by

in situ observations (drifters) and a large gridded analysis (GlobCurrent) is

sought as a function of day of the year for 1993-2015 and across a broad

spectrum of current speed. Regardless of the division of collocations, it is

difficult to claim that any synoptic assessment can be based on independent

observations. Instead, a measurement model that departs from ordinary

linear regression by accommodating error correlation is proposed. The in-

terpretation of independence is explored by applying Fuller’s (1987) concept

of equation and measurement error to a division of error into shared (corre-

lated) and unshared (uncorrelated) components, respectively. The resulting

division of variance in the new model favours noise. Ocean current shared

(equation) error is of comparable magnitude to unshared (measurement) er-
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ror and the latter is, for GlobCurrent and drifters respectively, comparable

to ordinary and reverse linear regression. Although signal variance appears

to be small, its utility as a measure of agreement between two variates is

highlighted.

Sparse collocations that sample a dense (high resolution) grid permit

a first order autoregressive form of measurement model to be considered,

including parameterizations of analysis-in situ error cross-correlation and

analysis temporal error autocorrelation. The former (cross-correlation) is

an equation error term that accommodates error shared by both GlobCur-

rent and drifters. The latter (autocorrelation) facilitates an identification and

retrieval of all model parameters. Solutions are sought using a prescribed cal-

ibration between GlobCurrent and drifters (by variance matching). Because

the true current variance of GlobCurrent and drifters is small, signal to noise

ratio is near zero at best. This is particularly evident for moderate current

speed and for the meridional current component.

Keywords: measurement model, ocean current, collocation, validation

1. Introduction1

The idea that errors in two collocated estimates of ocean current could2

be independent of each other is, like geostrophy itself, both practical and in-3

structive. The difficult implication is that only signal (or truth) is correlated4

while noise (or error) is not. Considering that all measurement models are ap-5

proximate (Box, 1979), such a clean separation may be ideal in principle but6

is probably quite rare in practice. The purpose of this study is to assess the7

GlobCurrent analysis, but the need to accommodate cross-correlated errors8
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between GlobCurrent and drifters is not matched by an existing framework9

for doing so. Thus, a new measurement model is called for.10

Although there is no evidence that ocean current signal is dictated by11

drifters alone, drifters are employed to refine the mean dynamic topography12

(MDT; Rio and Hernandez 2004; Rio et al. 2014). Thus, measurement errors13

may be correlated because the MDT effectively determines GlobCurrent in a14

time-mean sense. Measurement error is not the only type of error, however.15

Perhaps the simplest measurement models (including all models of this study)16

assume that truth and error in a dataset are additive and the signal in two17

datasets can be linearly related. There is growing evidence that for datasets18

that do not conform exactly to such assumptions, an associated equation19

error term needs to be considered (Fuller, 1987; Carroll and Ruppert, 1996;20

Kipnis et al., 1999). It is precisely because equation error may be strongly21

correlated that datasets should not necessarily be considered independent,22

even if there is no apparent physical relationship between them.23

This study represents an experiment in ocean surface current validation24

that draws on advances in measurement modelling, notably in hydrology and25

epidemiology, but contemporary surface current validation also informs this26

work. Johnson et al. (2007) attribute differences between the OSCAR five-27

day current analysis and in situ observations in part to dynamic processes28

that are difficult to resolve (e.g., tropical instability waves and high latitude29

eddies). Additionally, although larger signal and noise are resolved by OS-30

CAR relative to an assimilative model, Johnson et al. highlight the existence31

of intrinsic challenges in capturing the meridional current near the equator32

and variability in both components near the poles.33
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Surface current validation by Blockley et al. (2012) and Sudre et al. (2013)34

similarly acknowledge in situ error. Blockley et al. highlight differences in35

the western equatorial Pacific between surface currents that they derive from36

in situ observations and the FOAM assimilative model. Global correlation37

between model and observations is again much better for the zonal current38

component (versus meridional), especially in the tropics and north Pacific39

(reduced correlation in the Atlantic is attributed to slightly greater cover-40

age by eddies). Although the GECKO satellite-based analysis of Sudre et41

al. finds corresponding systematic variations (by latitude and current com-42

ponent), their combination of geostrophic and Ekman estimates is also sig-43

nificantly correlated with in situ estimates. It is the agreement between, and44

independence of, two such estimates that we wish to reconsider below.45

It is convenient to speak of correlation either in terms of signal and noise,46

or equivalently, truth and error. It is also useful to distinguish between47

the (spatial or temporal) autocorrelation of a single variable and the cross-48

correlation of two variables. Geophysical modelling approaches (including49

this study) often assume that autocorrelation should be easy to find in high50

resolution (analysis) data, and for some (in situ) collocation subset, that an51

affine signal model with additive, orthogonal (or signal-uncorrelated) noise52

applies. More formally, if two collocated ocean current datasets (I and A)53

are divided parsimoniously into shared truth (t) and additive error (ε) such54

that55

in situ

analysis

I

A

=

=

α + βt+ εI

α + βt+ εA,
(1)

then the affine signal model is a linear calibration involving an unbiased in-56
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tercept (α) and slope (β) that relates signal in the two datasets by Asignal =57

α + βIsignal (where Isignal = t). The measurement model (1) is known as a58

regression model with errors in the variables (I and A) but (with reference59

to a linear relationship between Isignal and Asignal) no error in the equation60

(Fuller, 2006). Note also that cross-correlation is only expected from truth,61

or perhaps error, that is shared between datasets and that (1) omits a parti-62

tion of error into shared and unshared, or cross-correlated and uncorrelated,63

components.64

If there is no obvious physical dependence between datasets, then there65

is no guarantee that shared error, or shared truth for that matter, exist. Be-66

cause the geophysical interpretation of cross-correlated error continues to67

evolve, this concept of sharing is at least partly unfamiliar, even in the68

context of two datasets (1). An established explanation in the context of69

three datasets (Stoffelen, 1998; O’Carroll et al., 2008) focuses on the cross-70

correlated part of representativeness error: it is natural for correlation to71

exist between two higher resolution datasets on scales that a lower resolution72

dataset cannot resolve, but if there is a truth that is shared by all three73

datasets, then by definition, this truth is also low resolution and any high74

resolution correlation must be considered erroneous, albeit perfectly natural.75

Errors of representation in geophysics (e.g., mismatches that can be written76

as a component of εI or εA, as in Gruber et al. 2016b) refer to information77

that is beyond some true, or target, spatiotemporal resolution limit. How-78

ever, if shared truth does exist, it follows that the most generic and inclusive79

definition of limitations in this truth is needed to define what remains in each80

individual dataset as error.81
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Stoffelen’s introduction of the triple collocation model provides an im-82

portant description, and one of the earliest quantifications, of representative-83

ness error (see also Vogelzang et al. 2011). Nevertheless, the triple colloca-84

tion model is just identified, so the parameters sought (see Appendix) are85

equal in number to the first and second moment equations that are available86

(cf. Gillard and Iles 2005). A familiar characteristic of this model (like sim-87

pler regression models) is its limited flexibility to identify more parameters.88

Hence, correlated representativeness error, and cross-correlated error in gen-89

eral, must either be known in advance or perhaps be justifiably small for a90

retrieval of the triple collocation parameters.91

Caires and Sterl (2003) discovered a way to explore cross-correlated er-92

ror (between altimeters) in comparative applications of the triple collocation93

model. They examined significant wave height and 10-m wind speed es-94

timates from buoys and two altimeters, which were carefully averaged to95

be comparable in space and time with collocated ERA-40 estimates. Be-96

cause representativeness errors were reduced by this averaging, it was postu-97

lated that any remaining ERA-40 cross-correlated errors could be neglected98

if ERA-40 did not assimilate an observational dataset. A bound on cross-99

correlated error was then estimated for the altimeters, whose uncorrelated100

error was found to be relatively low when retrieved together with ERA-40101

rather than separately with ERA-40 and buoys. Consideration of this bound102

yielded an increase in altimeter error variance by a factor of two or more, but103

Caires and Sterl suggested that cross-correlated error may have been smaller.104

Janssen et al. (2007) examined wave height data from two altimeters,105

buoys, and an ECMWF wave hindcast, and employed an iterative form of106
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orthogonal regression (Gillard and Iles, 2005) with estimates of uncorrelated107

error from the triple collocation model. An important acknowledgement108

was given of the linear calibration in (1) being a potential source of cross-109

correlated error (i.e., where a nonlinear signal model might be appropriate in-110

stead). As in Caires and Sterl (2003), it was postulated that cross-correlated111

errors could be neglected if data (or systematic errors) were not assimilated,112

but uncorrelated altimetric error was again found to be relatively low when113

the triple collocation model was applied to both altimeters at once. Janssen114

et al. proposed additional model equations (using ECMWF first guess and115

analysis wave products) to quantify rather than just bound most errors, but116

found that altimetric error, including its cross-correlated component, was117

small.118

Methods of collocating buoy, radiometer, and microwave SST estimates119

(e.g., O’Carroll et al. 2008) also point to cross-correlated error being small,120

but only insofar as representativeness error is tested, as above, by parame-121

ter comparisons. A novel assessment of cross-correlated error has also been122

given using a high resolution, rescaled in situ dataset as a proxy for truth.123

Yilmaz and Crow (2014) use this proxy to directly characterize terms of the124

triple collocation model based on soil moisture from an assimilative model125

and soil moisture retrievals from passive (AMSR-E) and active (ASCAT)126

satellites. The dependence of satellite retrievals is notable because signifi-127

cant cross-correlated errors are found. This study concludes that zero error128

cross-correlation is a tenuous assumption of the triple collocation model as129

its corresponding bias in parameter retrievals is systematic.130

Contemporary calibration and validation studies have introduced a grow-131
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ing list of geophysical dataset differences, which taken together, define cor-132

responding limitations on shared truth. However, perhaps the most generic133

characterization of these limitations is found in the measurement modelling134

literature: Fuller (1987) defines measurement error in the familiar sense of135

random data departures from a linear regression solution and distinguishes136

equation error as random departures from the linear signal model of (1),137

owing to nonlinearity in the signal model of interest. Carroll and Ruppert138

(1996) expose the importance of this refinement in a geophysical application139

and, as noted above, Janssen et al. (2007) highlight that such nonlinearity is140

a potential source of cross-correlated error.141

The combination of measurement error and equation error is useful to bet-142

ter accommodate limitations in the scope of a shared truth. With reference143

to person-specific bias in epidemiology, Kipnis et al. (1999, 2002) introduce144

equation error as two additional terms (εQI and εQA) in (1) that lead to145

in situ

analysis

I

A

=

=

α + βt+ εQI + εI

α + βt+ εQA + εA,
(2)

where εI and εA are now random departures from a possibly nonlinear signal146

model. Carroll and Ruppert (1996) note that applications of (2) have been147

limited, possibly because if εQI and εQA are considered to be independent148

of other errors, they can be recombined with εI and εA to yield the simpler149

equation (1) with its original properties intact (Moberg and Brattström,150

2011). Below, the same linear signal model as in (1) will be considered,151

with shared equation error defined by εQI = εQA and total error involving152

both shared and unshared components. In other words, equation error is153

not independent so it is important to quantify this as a separate term in our154
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application of (2).155

In addition to the interpretation of cross-correlated errors, there remains156

the issue of identifying solutions to increasingly sophisticated statistical mod-157

els. Increasing the number of collocated datasets (e.g., Janssen et al. 2007;158

Zwieback et al. 2012; Gruber et al. 2016a) is one approach. However, an159

important development in the geophysical literature is the recognition by Su160

et al. (2014) that three or more datasets may be unnecessary, as colloca-161

tion models appear to belong to a broader family of instrumental variable162

regression models, and within this family, a precedent exists for using lagged163

variables as instruments. Following Su et al., this implies that by embracing164

autocorrelation, strategies should continue to emerge that depend on fewer165

datasets to identify a larger number of collocations and statistical model pa-166

rameters. By comparison with the error-in-variables model (1), the novelty167

of the strategy proposed below is that it also permits the retrieval of variance168

in shared error and, in one ocean current experiment, also equation error.169

The present study seeks to advance measurement modelling and parame-170

ter identification with the benefit of error correlation. The focus is on ocean171

surface current validation, but general supporting concepts and terms (such172

as measurement model) are provided in the Appendix. The next section de-173

scribes the collocation of GlobCurrent and drifters and proposes a commonly174

prescribed linear relationship between them that addresses the difference in175

variance between these two datasets. Formulation of a measurement model176

that permits error correlation to be exploited is given in Section 3. We then177

describe the strong and weak constraints that allow a retrieval of all model178

parameters and assess the performance of GlobCurrent and drifter data in179

9



Section 4. Throughout this paper, equal emphasis is placed on true variance180

and on the contributions to total error. Discussion of inferences based on the181

division of variance into shared truth and error are highlighted in Section 5182

and Section 6 contains the conclusions.183

2. Selection of a calibration184

We begin with the idea that GlobCurrent and drifters provide estimates185

of fundamentally different ocean currents, but they also provide overlapping186

views of a true (or target) ocean current that can be represented at 15 m187

below the surface on a 6-h, 1/4◦ grid. By any definition of shared truth,188

both GlobCurrent and drifters have errors. GlobCurrent is an analysis that189

linearly combines the geostrophic and Ekman components. Drifters respond190

locally to a combination of geostrophic, Ekman, tidal, inertial, Stokes, and191

wind drift processes, including (erroneous) processes on scales smaller and192

faster than the GlobCurrent grid can resolve. In general, such differences193

can be considered a mismatch in their supports (see Appendix). Nearest-194

neighbour collocations of drifters (whose drogues move roughly with the 15-195

m current) and GlobCurrent (also at 15 m, with additional samples at daily196

intervals) are considered below.197

Six-hourly drifter velocity has been estimated following Hansen and Poulain198

(1996). We restrict attention to drifters whose continuous drogue presence199

was confirmed by objective or subjective means (Rio, 2012; Lumpkin et al.,200

2013). The resulting geographic distribution for 1993-2015 (Fig. 1) yields201

more than eleven million drifter and GlobCurrent zonal and meridional ve-202

locity estimates (Danielson 2017; a comparable number of drifters lost their203
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Figure 1: Number of surface drifter velocity observations between January 1993 and De-

cember 2015 (order of magnitude in colour) with drogues attached. Shown are values at

the 1/4◦ resolution of the GlobCurrent grid (i.e., collocations are nearest neighbours).

drogues and, being more responsive to surface wind forcing, are ignored). It204

is convenient to divide collocations by even and odd year, with the latter205

subset permitting an independent check on calculations. Below, only the206

even-year subset is discussed but the same conclusions can be obtained from207

the results (available as supplementary material) of the odd-year subset.208

Joint frequency of occurrence of current speed, including the full range209

of possible linear calibrations of GlobCurrent relative to drifters, is shown in210

Fig. 2. These two-dimensional histograms are rather well behaved following211

removal of about 10% of the most extreme current speeds (Hubert et al.,212

2012). Similar regression slopes are revealed in both the zonal and meridional213

distributions. Between the bounding ordinary and reverse linear regression214

reference slopes (dashed lines) is a slope defined by the ratio of total variance215
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Figure 2: Two-dimensional histograms of a) zonal and b) meridional 15-m current com-

ponent for 5310226 non-outlier collocations from the even years between 1993 and 2015

(approximately half the collocations of Fig. 1, after removing about 10% of these data as

outliers following Hubert et al. 2012). The dashed lines are the ordinary (shallow slope)

and reverse (steep slope) linear regression references for each current component. The

slope of the solid line is defined by the GlobCurrent–drifter variance ratio (the same ratio

for both current components; see next section). The logarithmic colourbar is number of

values in 0.01-ms−1 bins.

between GlobCurrent and drifters (solid line; defined in the next section).216

Unfortunately, scatter away from these regression lines is a poor indication217

that there might be a component of error variance that is shared between218

GlobCurrent and drifters, or that total error variance might be greater than219

the variance in shared truth.220

The corresponding one-dimensional (marginal) distributions (Fig. 3) high-221

light an unsurprising difference between current estimates: because drifters222

capture a greater range of physical processes at higher resolution, we find223

fewer low values and more high values than GlobCurrent (with an equal num-224
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a) Zonal current b) Meridional current

Ocean current speed at 15-m depth (ms−1)

Figure 3: One-dimensional histograms of a) zonal and b) meridional 15-m current compo-

nent, as in Fig. 2, but including outliers separately (dotted lines). Also shown are drifter

(red) and GlobCurrent nowcast (blue), forecast (green and light grey), and revcast (orange

and dark grey) histograms. Forecast and revcast data are taken one day (with extended

data from two days) before and after each collocation, respectively. Statistical moments

of the non-outlier in situ and nowcast distributions are given with a measure of difference

between the two (i.e., one half of the in situ minus nowcast bin count difference). The

logarithmic ordinate is number of values in 0.01-ms−1 bins.

ber at about ±0.15 ms−1). Also as expected, GlobCurrent samples at two225

days (extended forecast) and one day (forecast) before each drifter (in situ)226

observation, as well as one day (revcast) and two days (extended revcast)227

after, have the same distribution as the GlobCurrent collocations (nowcast).228

Outliers are shown separately by dotted lines in Fig. 3 and are identified229

by minimizing the covariance matrix determinant for the six estimates of230

zonal and meridional current (Hubert et al., 2012). Because covariance (and231

skewness and kurtosis) are sensitive to outliers (McColl et al., 2014; Su et al.,232

2014), collocation groups are trimmed by about 10% before other calculations233

13



are performed. Often this excludes extreme values in the zonal or meridional234

component and values close to zero in the opposite component.235

Figure 4: As in Fig. 2, but after dividing all GlobCurrent data by 0.84 (i.e., the ratio

of nowcast to drifter standard deviation), where zonal and meridional components are

expressed as complex numbers and the same variance match is applied to both components.

The distinction between cross-correlated and uncorrelated error is suf-236

ficiently novel that initial solutions of (2) benefit from the assumption of237

a fixed calibration that can be applied uniformly. (Subsequent work will238

seek a general, varying solution, but this simplification applies to all exper-239

iments below.) An assumption that would be consistent with the mismatch240

in GlobCurrent and drifter support (rather than a bias between them) is241

that both are already unbiased. However, we note in Section 4 that if cal-242

ibration is bounded by ordinary and reverse linear regression (dashed lines243

in Fig. 2), then this assumption would not apply to all collocation subsets.244

An alternate assumption that can be applied uniformly, and whose bias is245

familiar in the context of (1), is known as variance matching (Fuller, 2006;246
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Yilmaz and Crow, 2013; Su et al., 2014). This calibration is marked by a247

lack of assumptions about relative error in GlobCurrent and drifters. It fixes248

regression slope midway between the bounding ordinary and reverse linear249

regression solutions (solid line in Fig. 2) and fixes GlobCurrent and drifter250

signal-to-noise ratio (SNR) to be equal. A definition and further implications251

are given in Section 3.252

a) Zonal current b) Meridional current

Ocean current speed at 15-m depth (ms−1)

Figure 5: As in Fig. 3, but after dividing all GlobCurrent data by 0.84.

Figures 4 and 5 are the result of matching the variance of GlobCurrent to253

that of drifters. (Simultaneous matching of the zonal and meridional com-254

ponents is accomplished by expressing these two components as a complex255

number.) Dividing the GlobCurrent data by a standard deviation ratio of256

0.84 reduces the number of weak values and increases the number of strong257

values, as expected. This calibration removes much of the cumulative dif-258

ference in bin counts: from 7-8% in Fig. 3 to about 2% in Fig. 5. However,259

the distinction between calibrated GlobCurrent and drifters remains, as his-260

togram shape is otherwise preserved (note that skewness and kurtosis are261
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variance-normalized moments) and current direction is unchanged. More-262

over, and notwithstanding important applications to assimilation and model263

validation (e.g., Stoffelen 1998; Tolman 1998), this distinction would remain264

at least under any affine calibration.265

3. Measurement model development266

A series of experimental models, based initially on the triple collocation267

approach (Stoffelen, 1998; McColl et al., 2014) with solutions sought by the268

method of moments (Gillard and Iles, 2005), have informed the measurement269

model that we will focus on. The first experimental model in this series (3)270

can be criticised for using extrapolated (forecast and revcast) GlobCurrent es-271

timates assuming that extrapolated errors are independent. Gridded altimet-272

ric data are often based on a centered span of up to 12 days of Topex/Jason273

passes and a longer period for Envisat. Similarly for the Ekman (or Stokes)274

current estimates from a model-based analysis, if a model has the wind front275

in the wrong location or an incorrect initial storm intensity, it may retain a276

consistent bias for days. Thus, the assumption of independent errors ε in a277

slightly modified triple collocation model,278

in situ

forecast

revcast

I

F

R

=

=

=

αF + βF t+ εI

αF + βF t+ εF

αR + βRt+ εR,

(3)

can be considered experimental at best. Note that α, β, t, and ε are addi-279

tive calibration, multiplicative calibration (or regression slope), truth, and280

error, respectively, and our use of drifters as a calibration reference implies281
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that αI = 0 and βI = 1. Here, F and R are obtained by extrapolation of282

GlobCurrent from outside a centered window of only a few days.283

The form of (3) is recognizable in an intermediate (but still unsatisfactory)284

model (4) that includes both GlobCurrent and drifter collocations (I and285

N) and retains additive and multiplicative calibration parameters (α and286

β) for each GlobCurrent estimate. A notable simplification of (4) is that287

extrapolation is replaced by a persistence forecast/revcast, so F and R are288

just GlobCurrent samples taken one day before and after each collocation,289

respectively.290

in situ

nowcast

forecast

revcast

I

N

F

R

=

=

=

=

αN + βN t+ εI

αN + βN t+ εN

αF + βF t+ εN + εF

αR + βRt+ εN + εR.

(4)

The model (4) is overly constrained in its treatment of correlated error, how-291

ever. There is no shared (equation) error between GlobCurrent and drifters292

and a complete sharing of N errors in F and R. In turn, it is perhaps un-293

surprising that there may be effectively no difference (in terms of physical294

insight) between parameter retrievals based on (4) and ordinary and reverse295

linear regression references based on I and N alone (Danielson et al., 2017).296

Two further innovations are required to arrive at the measurement model297

of interest. One is that a first-order autoregressive (AR-1) parameterization298

is probably the simplest way to accommodate both GlobCurrent-drifter error299

cross-correlation as well as GlobCurrent error autocorrelation. Error prop-300

agation is parameterized in the same sense as it might occur in an ocean301

current analysis, with observational error having its biggest impact on an302
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analysis at the time of observation, with a decreasing, but symmetric impact303

at times before and after. The AR-1 form accommodates autocorrelated304

errors (e.g., from altimetry) that also have a symmetric upstream and down-305

stream impact (note that asymmetric error propagation may be appropriate306

in some applications).307

The second innovation, following Su et al. (2014), is that additional, or ex-308

tended, samples of GlobCurrent are beneficial, assuming these remain inside309

the autocorrelation envelope. The resulting model becomes310

in situ

nowcast

forecast

extended forecast

revcast

extended revcast

I

N

F

E

R

S

=

=

=

=

=

=

αN + βN t+ λE(λF (λNεI

αN + βN t+ λE(λF (λNεI + εN

αF + βF t+ λE(λF (λNεI + εN) + εF

αE + βEt+ λE(λF (λNεI + εN) + εF ) + εE

αR + βRt+ λE(λR(λNεI + εN) + εR

αS + βSt+ λS(λR(λNεI + εN) + εR) + εS,

(5)

where Fuller’s (1987) equation error, corresponding in (2) to εQI = εQA (Kip-311

nis et al., 1999), is the shared (cross-correlated) error parameterization λNεI .312

We return to the interpretation of shared and unshared error in εI below.313

The remaining errors are uncorrelated measurement errors, also denoted in-314

dividual errors: εN , εF , εE, εR, and εS.315

A so-called INFR model, whose name is taken from the data samples316

on the LHS of (4) but whose RHS is taken from (5), has parameters that317

are almost identifiable (in a statistical sense). That is, one can derive 10318

covariance equations (given below) but there are 11 unknown parameters.319

The INFERS model (5) includes an extended forecast and revcast, which320

are GlobCurrent samples two days before and after each collocation. Under321
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the assumption that GlobCurrent errors remain correlated at least over five322

days (e.g., as gauged by the product λFλEλRλS), INFERS is more attractive323

because there are more covariance equations (21) than unknown parameters324

(17). (Of course, with more samples further improvement in the ratio of325

these numbers is possible.) Standard assumptions of no correlation between326

truth and error (orthogonality) and among individual errors then allow all327

elements of the covariance matrix to be defined by328

V ar(I)

V ar(N)

V ar(F )

V ar(E)

V ar(R)

V ar(S)

Cov(I,N)

Cov(I, F )

Cov(I, E)

Cov(I, R)

Cov(I, S)

Cov(N,F )

Cov(N,E)

Cov(N,R)

Cov(N,S)

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

σ2
t + σ2

I

β2
Nσ

2
t + λ2Nσ

2
I + σ2

N

β2
Fσ

2
t + λ2Fλ

2
Nσ

2
I + λ2Fσ

2
N + σ2

F

β2
Eσ

2
t + λ2Eλ

2
Fλ

2
Nσ

2
I + λ2Eλ

2
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and329
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(7)

The corresponding 17 unknowns are true variance (σ2
t ), multiplicative330

calibration for five datasets (βN , βF , βE, βR, βS), and error variance for all six331

(σ2
I , σ

2
N , σ

2
F , σ

2
E, σ

2
R, σ

2
S). There are also five parameters that gauge GlobCurrent-332

drifter error cross-correlation (λN is denoted shared error fraction below) and333

GlobCurrent error autocorrelation (λF , λE, λR, λS). An analytic solution of334

all parameters except σ2
t and βN is possible using (6) as a strong constraint335

(i.e., using all variances and the covariances involving the GlobCurrent and336

drifter collocations I and N). The remaining equations (7) are denoted the337

autocovariance equations (i.e., covariances involving only GlobCurrent fore-338

cast and revcast samples FERS).339

True variance (σ2
t ) and multiplicative calibration or regression slope (βN)340

between GlobCurrent and drifters are key measurement model parameters.341

In the context of INFERS, these are both free parameters that can be sought342

numerically using the autocovariance equations as a weak constraint, that is,343

by approaching minima in the difference between the LHS and RHS of (7).344

Matching GlobCurrent variance to that of drifters (as in Section 2) provides345

all experiments with a fixed, but approximate, slope parameter βN . In other346

words, our focus on a search for true variance is also limited by this assump-347
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tion. It is important to note, moreover, that variance matching provides more348

freedom to retrieve large cross-correlated error because it is midway between349

the bounding ordinary and reverse linear regression solutions (i.e., where all350

variance in either GlobCurrent or drifters is assigned to truth and the possi-351

bility of cross-correlated error is excluded). It follows from this assumption352

that353

β2
N = V ar(N)/V ar(I) ⇒ σ2

N = σ2
I (β2

N − λ2N). (8)

The remaining INFERS model parameters are retrieved once a solution354

for σ2
t is obtained. The weakly constrained minimization of (7) is sought355

between bounds for σ2
t that are given by V ar(I) = σ2

t +σ2
I (i.e., between σ2

t =356

0 and the ordinary linear regression solution of σ2
I = 0), with the additional357

strong constraint that all other variances (σ2
N , σ

2
F , σ

2
E, σ

2
R, σ

2
S) also remain358

non-negative. Just like the variance matched solution for βN , each zonal and359

meridional current component is first expressed as a complex number so that360

17 parameters are identified for both components at the same time (i.e., the361

covariances in (6) and (7) are real parts).362

The remainder of this study is a diagnostic exploration of the parame-363

ters obtained from (5)-(8) given surface current variations that are jointly364

sampled by GlobCurrent and drifters. As required by INFERS, we also per-365

form a simple check that GlobCurrent samples of truth and error (combined)366

remain inside their autocorrelation envelope: for any group of collocations,367

the minimum correlation between an NFERS pair (i.e., between E and S) is368

expected to be larger than about 0.7. All correlation estimates are obtained369

from the LHS of (6) and (7).370
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4. Performance assessment371

We introduce a retrieval of measurement model parameters for all 5310226372

non-outlier collocations from the even years between 1993 and 2015. This373

is followed by retrievals for subsets of this group as a function of day of374

the year and current speed. GlobCurrent and drifters appear to provide375

complementary information about ocean surface current. The SNR is near376

zero at best as variance in a shared true current tends to be smaller than the377

variance in total (shared and unshared) error. We also show that shared error378

fraction (λN) is quite high. A posteriori, this motivates our accommodation379

of cross-correlated error in (5). To the extent that cross-correlated error and380

equation error are the same (see Section 5), an important question is raised381

of whether a linear signal model and additive errors for GlobCurrent and382

drifters can be considered robust (and by what metric). Large individual383

(measurement) error is consistent with GlobCurrent and drifters as offering384

quite noisy estimates of shared true current variability (again subject to a385

linear calibration). In Section 5, we find that individual error is similar to the386

ordinary and reverse linear regression reference solutions. In other words, it387

is mainly a quantification of shared/correlated truth and error that require388

our attention.389

Figure 6 depicts the absolute difference in LHS minus RHS of the fore-390

cast and revcast autocovariance equations (7). Differences are shown for391

all candidate values (i.e., true variance between zero and the variance of392

drifters), but model solutions are of interest only where variance is positive393

(unshaded region). The target minimum (open purple circle) is the average394

of three available local minima (i.e., no minima are associated with the ex-395
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Figure 6: First demonstration of an INFERS parameter solution by weakly constrained

minimization of the magnitude of differences between the LHS and RHS of the autocovari-

ance equations (7) for the 5310226 non-outlier collocations from even years between 1993

and 2015 (roughly half of Fig. 3). The abscissa is true variance (σ2
t ) in m2s−2 between

zero and V ar(I). The ordinate is log of absolute difference (LHS minus RHS). Grey shad-

ing denotes regions of negative error variance retrieval. Included are the target minimum

(open purple circle at the average of three local minima) and the chosen minimum on

the unshaded region (closed purple circle). The GlobCurrent-drifter shared error fraction

(λN ) at the chosen minimum is also shown.
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tended forecast E). Although this target minimum is not accessible (on the396

unshaded region), the chosen true variance solution is just to the right of397

this locus of three minima and about the same distance from them as they398

are from each other. This choice implies that at least one model variance399

estimate is zero. Here, shading on the left in Fig. 6 corresponds to negative400

shared true variance of the meridional current component (this is a derived401

quantity that varies with λN).402

Whereas target solutions on the unshaded region can be seen as a re-403

minder that models like (1), (2), and (5) are parsimonious (Box, 1979), the404

tendency of autocovariance minima to be found on the left side of Fig. 6405

may be the most important aspect of accommodating error cross-correlation.406

This first demonstration indicates that true variance shared by GlobCurrent407

and drifters is as small as possible (given that retrieved variance should be408

positive). Visually, true and drifter error variance are the abscissa lengths409

to the left and right of the closed purple dot, respectively. True variance is410

thus smaller than drifter error variance when all collocations are considered.411

Table 1 provides model parameters for the drifter (in situ) and GlobCur-412

rent (nowcast) zonal (U) and meridional (V ) current components. We find413

that truth and error are of similar magnitude and that GlobCurrent and414

drifters sample not only a shared truth but also shared error. However, this415

truth exists only in the zonal component (0.127 ms−1). Negligible merid-416

ional amplitude (0.003 ms−1) corresponds with a solution at the border of417

the shaded region in Fig. 6. The additive calibration of GlobCurrent (αN) is418

also negligible and multiplicative calibration (βN) is prescribed by variance419

matching (Fig. 5). Evidently, GlobCurrent samples are within their auto-420
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Table 1: Model parameters of the drifter (I) and GlobCurrent nowcast (N) zonal (U) and

meridional (V) current components that are retrieved using 5310226 non-outlier colloca-

tions from the even years between 1993 and 2015 (cf. Fig. 3). Parameters include total

standard deviation (σ), true standard deviation (σt), nowcast additive calibration (αN ),

multiplicative calibration (βN ), shared error fraction (λN ), individual ([1 − λN ]1/2σI and

σN ) and total (σI and [λ2Nσ
2
I + σ2

N ]1/2) error standard deviation as in (6), signal correla-

tion (McColl et al., 2014), and signal to noise ratio (SNR; Gruber et al. 2016b). Standard

deviation and additive calibration are given in ms−1 and SNR is in dB.

σ σt αN βN λN σindiv σtotal Corr SNR

UI 0.195 U:

0.127

V:

0.003

0.100 0.148 0.652 -1.3

VI 0.159 0.107 0.159 0.021 -33.6

UN 0.168 -0.001
0.843 0.546

0.100 0.129 0.640 -1.6

VN 0.130 0.001 0.097 0.130 0.022 -33.3

covariance envelope as the minimum correlation for this sample is 0.91 and421

0.83 for the zonal and meridional current components, respectively.422

We obtain most of the individual error terms in (5) and (6) from the model423

retrievals of unshared (measurement error) variance (i.e., σ2
N , σ

2
F , σ

2
E, σ

2
R, and424

σ2
S). The exception is individual error for drifters ([1− λN ]εI), which follows425

from our definition of shared equation error (Kipnis et al., 1999). Diagnostic426

equations for shared and unshared drifter error variance can be written as427

λNσ
2
I and (1−λN)σ2

I , respectively (i.e., assuming an even split of the covari-428

ance between equation error λNεI and individual error [1− λN ]εI). Because429

over 50% of drifter error is shared by GlobCurrent (λN), the percentage of430

total variance in (6) that is shared equation error ranges from 23% (GlobCur-431
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rent zonal component) to 55% (drifter meridional component).432

Individual and total error variance for the zonal and meridional compo-433

nents are both high (Table 1). Calibration by variance matching dictates434

that drifter and GlobCurrent correlation with truth (McColl et al., 2014)435

and SNR (Gruber et al., 2016b) are roughly the same by zonal or merid-436

ional component (Su et al., 2014). Meridional noise dominates signal (SNR437

is -33dB) and even zonal noise is larger than signal (SNR < 0). Note that438

SNR is calculated using total error (i.e., both correlated and uncorrelated;439

third column from the right in Table 1). A preliminary regional assessment440

(not shown; GlobCurrent project document 2017) is consistent with previous441

studies (Johnson et al., 2007; Blockley et al., 2012; Sudre et al., 2013) in442

highlighting that weak meridional SNR is a characteristic of the equatorial443

regions.444

Figure 7 is a second demonstration that true variance shared by GlobCur-445

rent and drifters is small. Parameters are retrieved as a function of day of446

the year, and to isolate one high latitude seasonal cycle, collocations north of447

15◦N latitude are selected. We focus on 2385232 collocations of this northern448

region from even years between 1993 and 2015 (i.e., 21% of those available,449

using about 6000 collocations per day and applying variance matching and450

outlier removal at daily intervals). Figure 7 depicts solutions of true variance451

for an arbitrary selection of 12 days, of which eight are consistent with Fig. 6452

insofar as the locus of autocovariance minima (7) are at exceedingly small453

true variance. Only on day 240 (Fig. 7h) is true variance relatively large (as454

dictated by covariance involving F). An examination of all 364 days reveals455

a similar result: true variance is as small as possible on 250 of 339 days456
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Figure 7: As in Fig. 6, but only for collocations north of 15◦N on day a) 30, b) 60, c) 90,

d) 120, e) 150, f) 180, g) 210, h) 240, i) 270, j) 300, k) 330, and l) 360 of the year for even

years between 1993 and 2015.

(74%). No parameters are estimated on 25 of 364 days (7%) because no457

autocovariance minima are found.458

Figure 8 depicts the Northern Hemisphere seasonal cycle by five-day run-459

ning means for the full set of INFERS model parameters. There is an annual460

variation in the calibration and shared error parameters (c,d) that can be461

explained by (e,j) GlobCurrent and drifter variations being slightly more462

similar in amplitude toward the end of the year than at the beginning (e.g.,463

solid lines tend to bracket the annual-average dashed lines in March and to464
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Figure 8: Retrieved model parameters as in Table 1, but for 339 days of the year us-

ing about 6000 collocations per day from north of 15◦N and from even years between

1993 and 2015. Shown are the drifter (in situ/red) and GlobCurrent (nowcast/blue, fore-

cast/green, revcast/orange, and extended forecast/light grey and revcast/dark grey) re-

trievals of a) zonal and b) meridional additive calibration (ms−1) and c) multiplicative

calibration and d) shared error fraction for both zonal and meridional components, and

e,j) 15-m current, f,k) shared truth, g,l) total error, and h,m) individual error standard

deviation (ms−1), and i,n) signal to noise ratio (dB) for the zonal and meridional com-

ponents, respectively. Solid lines are averages over five days and dashed lines are annual

averages.
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be bracketed by them in September). Of course, this similarity is largely su-465

perficial, based on a consistent retrieval throughout the year of small shared466

truth in the zonal component (f; Fig. 7), and as in Table 1, almost no signal467

in the meridional component (k).468

Drifter noise in Fig. 8 appears to be greater during spring than fall469

whereas GlobCurrent signal (via seasonality in multiplicative calibration)470

is the opposite. As a result, signal to noise ratio is higher for both GlobCur-471

rent and drifters in late summer compared to spring, even for the meridional472

current (despite its weak signal). A spatiotemporal refinement of this re-473

sult (with specific attention to the role of mixed layer depth) seems to be474

required. This same seasonality in SNR is obtained for the forecast and475

revcast samples, although via a different allocation of variance (i.e., with to-476

tal error being almost entirely defined by the GlobCurrent nowcast error).477

The range in multiplicative calibration (c) for the forecast and revcast data478

is an a posteriori justification for retaining separate calibrations in (5). All479

NFERS GlobCurrent samples again appear to be within their autocovariance480

envelope, as the minimum correlation among all days of the year is 0.88 and481

0.84 for the zonal and meridional current components, respectively.482

Figure 9 is the third demonstration that true variance shared by GlobCur-483

rent and drifters is small. For a diagnosis of model parameters as a function484

of drifter current speed, we again apply variance matching and outlier re-485

moval (Hubert et al., 2012) as above, but to small groups of collocations.486

Tolman (1998) demonstrates that fine bin resolution (with sample sizes of487

O[100]) is useful to avoid bias in covariance estimates. Moreover, Zwieback488

et al. (2012) recommend at least 500 collocations based on idealized triple489
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Figure 9: As in Fig. 6, but for subsets of 500 collocations whose drifter speed is nearest

to a) 0.1 ms−1, b) 0.2 ms−1, c) 0.3 ms−1, d) 0.4 ms−1, e) 0.5 ms−1, f) 0.6 ms−1,

g) 0.7 ms−1, h) 0.8 ms−1, i) 0.9 ms−1, and j) 1.0 ms−1. Note that abscissa range varies

with current speed.

collocation simulations. Solutions of true variance are thus obtained over a490

finely resolved (0.01-ms−1) range in drifter speed using 500 collocations clos-491

est to each of 101 target speeds. (This sampling requires less than 1% of the492

available collocations.) Individual panels in Fig. 9 are again consistent with493

Fig. 6 in that all 10 loci of autocovariance minima (7) are at exceedingly494

small true variance. An examination of the 101 speed bins reveals that true495

variance is as small as possible for 90 of 92 bins (98%) and no parameters496

are estimated for 9 of 101 bins (9%) because no autocovariance minima are497

found.498

Figure 10 illustrates the dependence of model parameters on current499

speed. There are weak trends in the calibration and shared error parameters500

(a-d) and strong trends in most variance parameters (e-n). As in Table 1,501
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Figure 10: Model parameters as in Fig. 8, but for 92 subsets of 500 collocations whose

drifter speed is nearest to target values between 0.1 ms−1 and 1.1 ms−1 at intervals of

0.01 ms−1 (excluding 9 solutions for which no autocovariance minima were found). Solid

lines are averages of five adjacent intervals. Dashed lines are best fits of the form y(x) =

a+becx (Jacquelin, 2014), but for c) multiplicative calibration, this fit ignores target values

less than 0.3 ms−1.

GlobCurrent-drifter shared error fraction (λN ≈ 0.5) is quite high, variance-502

matched multiplicative calibration (βN) is about 0.85 beyond 0.3 ms−1, and503

additive calibration of GlobCurrent (αN) is negligible. Justification for our504

application of variance matching thoughout this study (rather than assum-505

ing no GlobCurrent bias) is that an upper bound on multiplicative bias, as506

given by reverse linear regression, falls below one at large current speed (not507

shown). In turn, the need to address strong current underestimation (per-508
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haps locally in time and space, but at the resolution of the GlobCurrent509

analysis) may continue to exist (cf. Rio et al. 2014).510

Errors in GlobCurrent samples separated by a day are basically the same511

in Fig. 10g,h,l,m. The product of the forecast and revcast shared error512

fraction parameters (λFλEλRλS) is thus close to unity, which implies that513

GlobCurrent error is being sampled within its autocovariance envelope. In514

effect, this justifies the use of the extended forecast and revcast samples in515

the INFERS model. Among all 92 subsets, the minimum correlation of com-516

bined truth and error (found at low speed between E and S) is 0.84 and 0.76517

for the zonal and meridional current components, respectively.518

Figure 10f,k reveals weak agreement between GlobCurrent and drifters on519

a shared truth at low current speed, but more agreement at higher current520

speed. This is dictated in part by current speed itself (Fig. 10e,j), but the521

meridional component of drifter error increases quickly with current speed522

(more so than the zonal component) and the opposite is the case for true523

variance. In contrast to negative SNR for the zonal component in Table 1,524

the GlobCurrent/drifter best fit SNR (Fig. 10i dashed lines; equivalent by525

variance matching) eventually exceed, but remain close to, 0 dB from about526

0.3 ms−1.527

This section constitutes an introduction to the INFERS model featuring528

hundreds of parameter solutions. Our experiments are thus enabled by access529

to millions of drifter current estimates and a GlobCurrent analysis that is530

about three orders of magnitude larger. This is not to say that 500 colloca-531

tions is small. In many contexts, including ours, a few hundred collocations532

may be ample. However, with the freedom afforded by large datasets to533
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identify a range of solutions using appropriate instruments (cf. Kipnis et al.534

2002), comes the opportunity to better characterize shared truth and error.535

The next section briefly explores shared truth as an updated measure of536

agreement between variates and clarifies shared error as an updated measure537

of dependence.538

5. Discussion539

It is sometimes the case in geophysics that only one truth (a so-called gen-540

uine truth) is of interest. Implicit in this concept is the idea that truth carries541

no information about particular datasets, which differ only in terms of their542

corresponding error, and this error is intrinsic (i.e., defined without reference543

to another dataset). Implicit in the definition of shared truth, on the other544

hand, is the idea that if shared truth exists, then it contains information about545

an overlap in data supports (see Appendix). Beyond the scope of this paper,546

but notable within geophysics, are formal inference theories that concern a547

conjunction of information and the problem of aggregated opinion (Taran-548

tola, 2005). Here, it suffices to note that measurement models can provide549

a calibration by linear mapping, and a validation by shared/unshared error,550

but they can also provide a useful measure of agreement among datasets by551

shared truth.552

One documented application of shared truth is an assessment by Bentamy553

et al. (2017) of various global ocean surface heat flux analyses. Using the554

INFERS model, Bentamy et al. experiment with shared truth as a metric555

of competitive validation (see Appendix). Following a recalibration of each556

gridded analysis to the same in situ reference, they observe that in situ and557

33



analysis total error becomes equal, whereas shared truth is invariant (their558

Table 2 thus provides a standardized ranking). This invariance of shared559

truth is a property of many measurement models and may not be well known,560

perhaps in part because shared truth itself is often undocumented. To be561

fair, all documented searches so far (including Bentamy et al.) assume a562

fixed calibration rather than seeking true variance and calibration together563

(cf. Section 3).564

Figure 11: Shared truth (a,b,e,f) and individual error (c,d,g,h) as in Figs. 8 and 10

(f,k,h,m), but only for the drifter (in situ; red) and GlobCurrent (nowcast; blue) colloca-

tions. Included are the corresponding ordinary (OLR; dashed black) and reverse (RLR;

dashed grey) linear regression reference solutions.

We propose that shared truth should have equal focus to error in typical565

validation efforts. Because INFERS introduces error correlation into the566

errors-in-variables regression model, a good comparison for INFERS is the567
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full range of solutions consistent with (1), with familiar analytic solutions568

for ordinary (OLR) and reverse (RLR) linear regression being appropriate569

references. Solutions of the OLR and RLR models are identified by the570

method of moments with either drifter error (εI for OLR) or GlobCurrent571

error (εA for RLR) set to zero. INFERS estimates of truth and error from572

the previous section are placed alongside these two reference solutions in573

Fig. 11. It is notable that INFERS solutions of true standard deviation574

(Fig. 11a,b,e,f) are smallest. This is remarkable because the OLR and RLR575

references are understood to be the solutions that bound the range of true576

variance (and multiplicative calibration or regression slope) values that are577

consistent with the errors-in-variables model (1).578

Further comparison between INFERS and the corresponding OLR and579

RLR reference solutions permit an interpretation of the unshared (measure-580

ment) errors that define much of the total error in this study. Figure 11c,d,g,h581

reveals that the magnitude of OLR error in GlobCurrent and RLR error in582

drifters appear to differ little from the unshared error shown in Fig. 8h,m583

and Fig. 10h,m. As noted in Section 4, some ambiguity is expected in a di-584

agnostic estimate of drifter unshared error, but the overlapping agreement in585

GlobCurrent unshared error (i.e., black dashed and blue lines) is evident for586

all collocation divisions. Whereas OLR and RLR impose separate assump-587

tions on (1) that provide hypothetical bounds on uncorrelated error, in this588

study a single model seems to provide both solutions.589

Figure 11 reveals that total error in GlobCurrent and drifters can be590

interpreted as a combination of respective RLR and OLR upper limits in591

uncorrelated error. Subject to the caveat that a fixed calibration by variance592
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matching allows more freedom for shared error in our INFERS solutions, the593

reason that shared true variance falls outside the OLR and RLR bounding594

reference solutions is because not only can the INFERS model accommo-595

date bounds on unshared (measurement) error, as given by (1), but shared596

(equation) error is accommodated as well.597

We conclude this initial characterization of model solutions by noting that598

shared error offers an updated measure of error dependence. It is important599

to recognize that any decision to exclude shared error from a measurement600

model, based on physical knowledge of the data alone, can always be chal-601

lenged. In other words, even if there is no apparent physical relationship602

between two datasets, independence of their errors should not be presumed603

without considering that the measurement model is only an approximation604

(Box, 1979). Thus, it may be appropriate to accommodate sharing even605

if one cannot assume that shared error (or truth) exists. More specifically606

(Fuller, 1987), if the model assumes that truth and error are additive with607

a linearly related signal, as in (1), and this might not be strictly true of608

the data, then some form of both equation and measurement error (2) or609

correlated and uncorrelated error (5) should be included.610

Equation error and correlated error are considered to be essentially the611

same in this study, as we now demonstrate, but they are not strictly the same612

error in general. For instance, Kipnis et al. (1999) allow for correlation in613

both equation error and measurement error. The Introduction acknowledges614

that GlobCurrent and drifters also may share a component of measurement615

error. This is because many of the same drifters that are employed to re-616

fine the CNES-CLS13 mean dynamic topography (MDT; Rio and Hernandez617
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2004; Rio et al. 2014) are employed above for validation. Although INFERS618

provides an estimate of error correlation that may include measurement error,619

one option for demonstrating its interpretation as equation error is a valida-620

tion only after 2013. Instead, we opt to replace the CNES-CLS13 MDT in621

each GlobCurrent sample (NFERS) with a more approximate GOCE-only622

MDT (Rio et al., 2014). Drifter measurement error is thus removed from623

GlobCurrent and the remaining error correlation can be attributed entirely624

to equation error.625

Table 2: As in Table 1, but for a measurement-error-independent comparison between

GlobCurrent and drifters: GlobCurrent data exclude a velocity component associated with

the CNES/CLS-2013 MDT and include instead a component associated with the GOCE-

only geodetic MDT (Rio et al., 2014). Parameters of the drifter (I) and GlobCurrent

nowcast (N) zonal (U) and meridional (V) current components are retrieved using 5280828

non-outlier collocations from the even years between 1993 and 2015.

σ σt αN βN λN σindiv σtotal Corr SNR

UI 0.194 U:

0.119

V:

0.001

0.106 0.153 0.612 -2.2

VI 0.158 0.110 0.158 0.007 -43.7

UN 0.161 -0.001
0.818 0.517

0.101 0.128 0.604 -2.4

VN 0.127 0.002 0.097 0.127 0.007 -43.5

Table 2 provides a comparison between GlobCurrent (GOCE-only MDT)626

and drifters based on 5280828 non-outlier collocations from the even years627

between 1993 and 2015. With some of the strongest current components (i.e.,628

most different in terms of MDT) again excluded as outliers, true standard de-629

viation in the zonal component decreases slightly (0.127 ms−1 to 0.119 ms−1)630
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for an MDT that lacks drifter information. Otherwise, the results of Ta-631

ble 1 are reproduced, including small true variance in the meridional com-632

ponent and a large shared error fraction (λN = 0.517). Although this is a633

measurement-error-independent comparison, it is nevertheless clear that the634

two datasets are not independent. Shared error fraction in Table 1 is quite635

similar (λN = 0.546), as is the percentage of total variance in (6) that is636

shared error, again ranging from 24% for the GlobCurrent zonal component637

to 52% for the drifter meridional component. The implication is that there638

is little error correlation owing to drifter measurement error in the CNES-639

CLS13 MDT. There is instead large error correlation owing to equation error.640

6. Conclusions641

This study provides an approach to the challenge of introducing and, like642

any other model term, identifying cross-correlated error in linear regression643

models such as (1). Subject to the caveat that calibration is prescribed by644

variance matching (rather than being jointly retrieved with shared true vari-645

ance), over 90% of all attempts to retrieve model parameters for GlobCurrent646

and drifters are successful. Perhaps the more surprising aspect is that, given647

two datasets, we require just a few additional samples of the GlobCurrent648

analysis around the time of each drifter observation. Compared to the fre-649

quency of these additional samples, necessary confirmation of slow changes650

in the evolution of GlobCurrent and its errors is also obtained.651

Formulation of a new measurement model called INFERS (an acronym652

taken from data sample names) is inspired by instrumental variable regres-653

sion (Su et al., 2014) and specifically the triple collocation approach (Stof-654
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felen, 1998; Caires and Sterl, 2003; Janssen et al., 2007; O’Carroll et al.,655

2008; Vogelzang et al., 2011; Zwieback et al., 2012; McColl et al., 2014; Yil-656

maz and Crow, 2014; Gruber et al., 2016b). Error propagation through the657

data samples is modelled using a first-order autoregressive (AR-1) formula,658

except that propagation begins with the collocated sample equations (IN),659

which provide the cross-correlated error terms, and then includes a tempo-660

rally symmetric application of AR-1 to error autocorrelation in the remaining661

equations (FERS). The most direct model comparison is to solutions of the662

linear errors-in-variables regression model (1) because this is the same model663

given by the collocated sample equations (IN) if cross-correlated errors are664

ignored. A search for true variance in a limited parameter space of the IN-665

FERS model (i.e., assuming the variance matching calibration) yields values666

smaller than for any solution of (1), as given by ordinary (OLR) and reverse667

(RLR) linear regression bounds. Over three quarters of these model solu-668

tions (Fig. 11) support the proposition that truth and signal, as defined in669

the INFERS model, are small (see also Table 2 of Bentamy et al. 2017).670

If truth is considered a shared model variable just like error (ignoring671

its unshared component), then shared true variance can be considered a672

measure of agreement between GlobCurrent and drifters. Inferences about673

measurement model approximations as well as overlaps in data support are674

then possible. While it would be unfortunate to start with a true variance675

that is smaller than it actually is (i.e., the variance matching calibration676

may yield such a bias), to start with a truth that is larger than it actually is677

would likely be more worrisome. This study indicates that there is a potential678

to overstate the agreement between GlobCurrent and drifters based on an679
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inflated true variance in the linear errors-in-variables model. Like the triple680

collocation model, OLR and RLR are just identified and necessarily lack681

a term for cross-correlated error. Because their solutions involve variance682

budgets with fixed total variance, as in the LHS of (6), if total error is683

increased by introducing a new error term (equation or correlated error),684

then true variance decreases by the same amount. Tables 1 and 2 reveal that685

roughly a quarter to a half of the total variance in GlobCurrent and drifters686

is shared error variance. Presumably, shared error is a first order term that687

could not be much larger and remain hidden. Subsequent studies are needed688

to confirm whether this masquerading of equation error as truth is common689

for other datasets and whether it should be attributed to limitations in the690

errors-in-variables model. However, this should exclude prescribed calibration691

and instead explore solutions in the full parameter space of the INFERS692

model.693

Implications of measurement model assumptions (e.g., that truth and er-694

ror are additive with a linearly related signal) are discussed in geophysics695

(e.g., Janssen et al. 2007; Zwieback et al. 2016), and moreso in the statistical696

literature, where notions are established regarding how to accommodate non-697

linear signals in linear regression by including equation error (Fuller, 1987;698

Carroll and Ruppert, 1996). Furthermore, accommodation of equation er-699

ror and measurement error correlation is given in sophisticated measurement700

models in epidemiology (Kipnis et al., 1999, 2002). In turn, it appears that701

the opportunity to simultaneously identify all parameters of such models can702

be taken up in part by studies like this one that incorporate an experimental703

sampling of large datasets.704
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A sufficient number of GlobCurrent samples is taken before and after705

each collocation (as persistence forecasts and revcasts, respectively) so that706

there are more covariance equations than model parameters. Retrieval of the707

17 INFERS model parameters employs variance matching to first prescribe708

the calibration from GlobCurrent to drifters. Six autocovariance equations,709

involving the FERS samples, weakly constrain shared true variance and the710

remaining 15 covariance equations are a strong constraint on the remaining711

15 unknown parameters. Insofar as true variance is weakly constrained, this712

study avoids a common assumption that real data be cast in the form of a713

simple measurement model.714

Model solutions have been examined for collocation groups numbering715

about six million (from eleven years), 6000 (on each day of the year in the716

NH), and 500 (nearest drifter speeds at 0.01-ms−1 intervals). One must be717

cautious about groups of collocations both large (if in situ error is autocor-718

related) and small (if parameter retrievals depend on individual collocations;719

cf. Zwieback et al. 2012). However, for all these subsets, SNR is near zero720

at best because the error in GlobCurrent and drifters is high, while variance721

of the true current is low. There are indications that the preferentially low722

SNR of the meridional component is a characteristic of equatorial regions723

(cf. Johnson et al. 2007; Blockley et al. 2012; Sudre et al. 2013). The inter-724

pretation of large individual error is also interesting in that the OLR and725

RLR reference bounds on uncorrelated error are reached by both GlobCur-726

rent and drifters.727

The last experiment of the Discussion is perhaps the most relevant for an728

interpretation of shared and unshared error in terms of equation and mea-729
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surement error, respectively. A measurement-error-independent comparison730

between GlobCurrent (using a GOCE-only MDT) and drifters permits a di-731

agnosis of just how large the correlation in equation error may be. There732

is little change in shared error fraction between the two MDT experiments,733

which suggests that correlated error in other comparisons of this study may734

be viewed as predominantly that of equation error rather than measurement735

error (in spite of a drifter error contribution to the CNES/CLS13 MDT).736

Good correspondence between equation error and correlated error provides737

further impetus for a review of common model assumptions.738

The so-called genuine truth is not viewed in this study as the same true739

variable t that appears in most measurement models. The search for a gen-740

uine ocean surface current is ongoing, however, and iterative or comparative741

applications of a measurement model have a role to play (e.g., Bentamy et al.742

2017). By analogy with efforts to validate SST, surface current depth should743

be useful to distinguish between a slower, quasi-balanced flow and interac-744

tions with the atmosphere. For example, both drifters and GlobCurrent may745

be good references for balanced flow experiments at the equator (cf. Chan746

and Shepherd 2014) and at higher latitudes (cf. Penven et al. 2014). High747

resolution analyses are expected to grow in number, and while validation is748

not a prescription for finding the genuine current, there is an opportunity749

to quantify improvements in two or more datasets (or versions of a single750

dataset) against one chosen reference dataset. This study documents varia-751

tions in INFERS model parameters as a function of day of the year and cur-752

rent speed, but a high latitude flow experiment may benefit from distinctions753

between cyclonic and anticyclonic eddies, whereas an equatorial experiment754
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may opt to treat the zonal and meridional components separately. With a755

view to mapping model parameters in the dimensions of large datasets, an756

important challenge involves selecting subsets of collocations according to an757

informed physical understanding.758

This study is a contribution to efforts of the geophysical community to759

construct high resolution ocean surface current analyses using assimilative760

numerical models and a synergy of observations (this issue). Because obser-761

vational coverage is sparse, especially over the ocean and in early years, a762

topical question remains whether to withhold reference observations from an763

analysis so as to later perform an independent validation. To respond to this764

question in the negative would imply that the same observations should be765

allowed to benefit both the construction of an analysis and its validation. In766

turn, shared signal and noise in observations and analyses need to be consid-767

ered and measurement models that accommodate both equation error and768

measurement error are called for (cf. Caires and Sterl 2003; Gruber et al.769

2016b). It appears that not only can a basis for understanding shared signal770

and noise be found in literature, but a year-on-year accumulation of geophys-771

ical observations and high resolution data is permitting more freedom, and772

slightly less parsimony, in experimental measurement modelling.773
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9. Appendix922

Measurement models (defined below) are actively evolving in various923

fields, with geophysical applications that may be unfamiliar or are just be-924

ginning to have an impact. The solution of such models is called an in-925

verse problem (Tarantola, 2005), by contrast with evolution equations for926

mass, motion, and constituents as a forward model. It should be noted that927

longstanding experience in the geo-physical/biological/chemical communities928

with forward modelling and with taking high resolution (so-called longitudi-929

nal) observations provide the basis for estimating error autocorrelation (e.g.,930

using FERS). A brief clarification of other concepts relevant to this study is931

offered here as a complement to more formal definitions. Online sources (e.g.,932

Wikipedia) also provide recent and useful collaborative summaries. Concepts933

relevant to this study include:934
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• Affine calibration: synonymous with a linear calibration by intercept935

(αN) and slope (βN) parameters. Adjustment of the nowcast data936

(N) by these parameters is a good test of the retrieval method, as the937

adjusted nowcast should be unbiased (αN ≈ 0 and βN ≈ 1). Regardless938

of the method, however, it is important to note that no bias correction939

can fully address a mismatch in support.940

• Autoregressive (AR) parameterization: an established expression of941

information propagation; used here to encompass not just error auto-942

correlation in time or space but also error cross-correlation between943

two ocean current variates. The first order (AR-1) form explored here944

is the simplest.945

• Competitive validation: evaluation of two or more datasets (or versions946

of a single dataset) against one chosen reference dataset, where the947

metric of success is shared true variance. Even if linear calibration is948

postulated (as in this study, rather than estimated from a measurement949

model), removal of linear bias from one dataset has no impact on shared950

truth, but this is not so for error. This approach was first attempted951

by Bentamy et al. (2017) in a comparison of heat flux estimates.952

• Footprint: target area (e.g., at the ocean surface) that contributes to953

radiation received by a satellite sensor during an imaging interval. Un-954

less it is possible to combine views of the same target area to synthe-955

size higher resolution, the footprint often defines a support scale lower956

bound.957

• Instrumental variable: additional data is often required when the mea-958
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surement model has too many unknown parameters to estimate. A959

conventional instrument, following Fuller (2006), is a variable that is960

taken to be correlated with truth but not with error. The forecast and961

revcast (FERS) lagged variables, by comparison, involve correlation of962

both truth and error, but this is accommodated by their model equa-963

tions. As instruments, FERS play the required role of facilitating the964

identification of all model parameters.965

• Measurement model: measurement error models accommodate error in966

all sources of information [i.e., both in the calibrated and uncalibrated967

data; this accommodation is known as (Fuller, 2006) an approach to968

errors in variables in econometrics and observation error or measure-969

ment error in other fields]. There is no intended distinction between a970

measurement model and measurement error model. The sole rationale971

for omitting the term “error” is that a more balanced focus on truth972

and error can be anticipated. In other words, a regression model is973

effectively a truth model as much as it is an error model. However,974

only if it is possible to claim that a model does not lack any broad975

category of error (i.e., equation error or correlated error), does it seem976

justifiable to explore inferences based on truth.977

• Parsimony: synonymous with simplicity, especially in reference to mea-978

surement models that minimize the number of parameters to be iden-979

tified. That is, non-technical definitions apply (e.g., to a careful collec-980

tion or use of data with minimal extra assumptions).981

• Shared variance: synonymous with correlation and involving a term982
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that appears in more than one of the measurement model equations of983

interest (possibly multiplied by a parameter). The concept of sharing984

applies to both truth and error. It is central to the idea that there can985

be multiple truths, with each containing information about overlap-986

ping data supports, and that measurement model assumptions should987

be considered when determining statistical independence. It should be988

noted that standard metrics, including the coefficient of determination989

or percentage of explained variance, correlation with truth (McColl990

et al., 2014), and SNR (Gruber et al., 2016b) are all subject to inter-991

pretation in terms of shared variance.992

• Strong constraint: as an example, many equations of the GlobCurrent993

and drifter covariance matrix (6) are satisfied exactly as part of any994

measurement model solution (cf. weak constraint).995

• Support: a characterization of the type (e.g., range or quality) of infor-996

mation that a given platform or instrument is sensitive to. Often this is997

with reference to spatial and temporal scales that can be resolved, but998

any information sensitivity can be included, which implies that such999

information may exist as truth or perhaps as equation error, according1000

to the measurement model.1001

• Synergy: an approach to combining information such that the whole1002

is more valuable and informative than the sum of individual contri-1003

butions. Measurement modelling is an unlikely tool to prescribe how1004

synergy could be achieved, but may permit the quantitative exploration1005

of both individual contributions and informed attempts to combine in-1006
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formation.1007

• Triple collocation: following McColl et al. (2014), the model parameters1008

sought are uncorrelated error variance of three independent datasets,1009

and with one dataset as a reference, additive and multiplicative cali-1010

bration of the other two. Following Stoffelen (1998), this measurement1011

model implicitly includes cross-correlated error (e.g., representativeness1012

error) because three different sources of information invariably have1013

three different supports, so at least between two information sources1014

with broader support (e.g., higher resolution), error cross-correlation1015

would be expected.1016

• True variance estimation: curves of the LHS-RHS of the autocovariance1017

equations (7) are each characterized by a single localized minimum and1018

flatness elsewhere in the range of zero to V ar(I). The present study1019

treats each available minimum as an equally good estimate of shared1020

true variance and their average is taken. This is in contrast to a global1021

minimum sought using the average of all such curves. However, min-1022

ima are often not overlapping so the global minimum is effectively a1023

selection among one of the six possible minima. This implies a reliance1024

on the accuracy of each curve in representing its own (very small) min-1025

imum value, which might be ill advised.1026

• Weak constraint: as an example, the autocovariance equations provide1027

different target estimates of shared true variance that cannot all be1028

satisfied simultaneously; a solution close to the center of the ensemble1029

is thus adopted (cf. strong constraint).1030
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