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Abstract12

This paper proposes the use of assimilation of phytoplankton functional types (PFTs) sur-13

face chlorophyll for operational forecasting of biogeochemistry on the North-West Eu-14

ropean (NWE) Shelf. We explicitly compare the 5 day forecasting skill of three runs of15

a physical-biogeochemical model: a) a free reference run, b) a run with daily Data As-16

similation (DA) of total surface chlorophyll (ChlTot) and (c) a run with daily PFTs DA.17

We show that small total chlorophyll model bias hides comparatively large biases in PFTs18

chlorophyll, which ChlTot DA fails to correct. This is because in our study the ChlTot19

DA splits the assimilated total chlorophyll into PFTs by preserving their simulated ratios,20

rather than taking account of the observed PFT concentrations. Unlike ChlTot DA, PFTs21

DA substantially improves model representation of PFTs chlorophyll. During forecasting22

the DA reanalysis skill in representing PFTs chlorophyll degrades towards the free run23

skill, however PFTs DA outperforms free run within the whole 5-day forecasting period.24

We validated our results with in situ data and we demonstrated that (in both DA cases)25

the DA substantially improves the model representation of CO2 fugacity (PFTs DA more26

than ChlTot DA). ChlTot DA has a positive impact on the representation of silicate, while27

the PFTs DA seems to have a negative impact. The impact of DA on nitrate and phos-28

phate is not significant. The implications of using a univariate assimilation method which29

preserves the phytoplankton stochiometry, as well as the impact of model biases on the30

non-assimilated variables are discussed.31

1 Introduction32

Monitoring biogeochemistry in shelf seas is of great significance for the economy,33

ecosystems understanding and climate studies. The shelf seas contain 90% of world’s34

fisheries and are responsible for 20% of marine primary production and 20% of atmo-35

spheric carbon dioxide uptake (Pauly et al. [2002]; Borges et al. [2006]; Jahnke [2010]).36

In the North-West European (NWE) Shelf ecosystem the need for more detailed infor-37

mation about marine ecosystem indicators and processes has been clearly pointed out by38

both users and policy makers (Chassot et al. [2007]; Blauw et al. [2010]; Brandsma et al.39

[2013]; Skogen et al. [2014]; Kurekin et al. [2014]; Ford et al. [2017]). Data Assimilation40

(DA) maximizes the use of information about processes in the shelf seas by methodically41

combining the available information from Earth Observations (EO) (satellite data), model42

simulations and sometimes also in situ measurements. The DA methods applied in ecosys-43

tem modelling have been successfully used in reanalysis simulations (i.e assimilation of44

time series in past observations of the system, e.g Nerger and Gregg [2007]) as well as45

operational forecasting (i.e the assimilation of recent observations to initialize model pre-46

dictions of the future biogeochemical state, e.g Teruzzi et al. [2014]).47

DA has its most well known application in numerical weather forecasting (Kalnay48

[2003]), but has also been applied for a long time in physical oceanography (for an overview49

see Cummings et al. [2009]; Edwards et al. [2015]). There are also a growing number50

of studies applying DA to ecosystem variables (Gehlen et al. [2015]). This is mostly fo-51

cused on (ocean-color derived) chlorophyll-a (Ishizaka [1990]) using typically Kalman52

Filter methods (Carmillet et al. [2001]; Natvik and Evensen [2003]; Hoteit et al. [2005];53

Torres et al. [2006]; Nerger and Gregg [2007, 2008]; Fontana et al. [2010]; Ciavatta et al.54

[2011]; Simon and Bertino [2012]; Simon et al. [2015]; Ciavatta et al. [2016]), but also55

Optimal Interpolation (Gregg [2008]) and variational methods (Losa et al. [2004]). There56

are also studies on biogeochemical DA of some optical fields: phytoplankton light absorb-57

tion (Shulman et al. [2013]), diffuse light attenuation coefficient (Ciavatta et al. [2014])),58

reflectance data (Jones et al. [2016]) and absorbtion by Colored Dissolved Organic Car-59

bon (CDOC) (Gregg and Rousseaux [2017]). The variable most commonly used for DA is60

ocean-color derived total chlorophyll-a. Total chlorophyll-a relates to total phytoplankton,61

which contains species that vary in size by 9 orders of magnitude (Finkel et al. [2009])62

and play very different roles within the ecosystem dynamics (Lé Quére et al. [2005]).63
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Many ecosystem models such as the European Regional Seas Ecosystem Model (ERSEM)64

(Baretta et al. [1995]; Butenschön et al. [2016]) therefore split phytoplankton into func-65

tional types (PFTs), largely based on the characteristic size and ecological niche of the66

functional group. It is acknowledged (Gregg [2008]; Teruzzi et al. [2014]; Gehlen et al.67

[2015]) that whilst DA of total chlorophyll-a improves the total chlorophyll representa-68

tion, it often fails to improve the representation of other model variables (such as nutri-69

ents). This often results from the limitation imposed by univariate approaches, which up-70

date non-assimilated variables only through the model dynamics (see Nerger and Gregg71

[2007] for a discussion). However, the problem exists also for multivariate assimilation72

methods which can have limited, or even negative impacts on non-assimilated variables,73

in particular when the model has severe biases, for example because of the incomplete74

representation of the ecosystem processes, or deficiencies in specifying internal model75

parameters (see discussion in e.g Ford et al. [2012]; Ciavatta et al. [2016]; Tsiaras et al.76

[2017]; Ciavatta et al. [2018]). One might expect to improve the overall biogeochemical77

simulation through improvement in simulation of the phytoplankton community, which is78

the central component of the low trophic level models. The assimilation of total chloro-79

phyll might not be sufficient for this purpose, because often this approach is not capable80

of correcting the relative ratios of the PFTs composing the community (Ciavatta et al.81

[2011]). This issue can be avoided by directly assimilating PFTs chlorophyll when the82

PFTs chlorophyll-a data are available. Such an approach was taken in an early 1D study83

by Xiao and Friedrichs [2014] and recently by Ciavatta et al. [2018] in a 3D model con-84

figuration of the NWE Shelf.85

In the NWE Shelf Brewin et al. [2017] developed a novel phytoplankton size-class86

chlorophyll data-set for the Copernicus Marine Environment Monitoring Service (CMEMS,87

http://marine.copernicus.eu) project Towards Operational Size-Class Chlorophyll Assimi-88

lation (TOSCA), and this data-set can be directly associated with the PFTs used in the89

ERSEM model. These are (Butenschön et al. [2016]): picophytoplankton (< 2µm), nanophy-90

toplankton ( 2 − 20µm) and microphytoplankton (> 20µm). Microphytoplankton is split91

into diatoms (having silicate cell walls) and dinoflagellates. The chlorophyll-a contained92

in the PFTs can be then directly assimilated into the ERSEM model (this is called PFTs93

DA in the rest of this article). It is expected that this would improve the representation of94

ecosystem dynamics compared to assimilation of total chlorophyll-a (ChlTot). The differ-95

ence the PFTs DA makes to total chlorophyll (ChlTot) DA was shown to be significant96

in a 6-year reanalysis that assimilated monthly PFT data using Ensemble Kalman Fil-97

ter (EnKF) and the pre-operational model Proudman Oceanographic Laboratory Coastal98

Ocean Modelling System (POLCOMS) - ERSEM (Ciavatta et al. [2018]). In this paper99

we focus on PFTs DA in the context of an operational system developed at the Met Of-100

fice, based on the coupled model Nucleus for European Modelling of the Ocean (NEMO)101

- ERSEM and the variational DA system NEMOVAR (Mogensen et al. [2009, 2012]; Wa-102

ters et al. [2015]). The differences to Ciavatta et al. [2018] are that we use daily DA (as103

opposed to monthly DA), different model (NEMO-ERSEM at 7 km resolution, as opposed104

to POLCOMS-ERSEM at 12 km resolution) and a different DA scheme (3DVAR, as op-105

posed to EnKF). Most importantly, unlike Ciavatta et al. [2018] our objective is to assess106

the impact of PFTs DA on forecasting. This is because the NEMO-ERSEM model used107

here is run operationally at the Met Office, delivering daily analysis and forecast products108

to CMEMS, and it is planned to implement the assimilation scheme presented here as part109

of future upgrade (an outcome of the CMEMS TOSCA project). We compare PFTs DA110

forecasting skill with the ChlTot DA forecast and a free reference run. As with Ciavatta111

et al. [2018], our analysis focuses on the NWE Shelf.112
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2 Methods113

2.1 The physical component: NEMO114

The Nucleus for European Modelling of the Ocean (NEMO) ocean physics compo-115

nent (OPA) is a finite difference, hydrostatic, primitive equation ocean general circulation116

model (Madec et al. [2015]). The version used in this work is CO6, based on NEMOv3.6,117

a development of the CO5 configuration described by O’Dea et al. [2017]. The model118

configuration was similar to Ford et al. [2017]. The model used the 7 km resolution grid119

on the Atlantic Meridional Margin (AMM7) domain with 51 vertical levels and a terrain-120

following z∗ − σ coordinate system. The river inputs were set using a climatology of daily121

discharge (Edwards et al. [2012]). The lateral boundary conditions for physical variables122

at the Atlantic boundary were taken from a reanalysis of the GloSea5 Seasonal Forecast-123

ing System (MacLachlan et al. [2015]); the Baltic boundary values were derived from a124

reanalysis produced by the Danish Meteorological Institute for CMEMS. The model was125

forced at the surface by atmospheric fluxes from the ERA-Interim reanalysis (Dee et al.126

[2011]). The same reanalysis data were used to force our 5-day model forecast experi-127

ments because suitable forecast fluxes were not available for the same period as the bio-128

geochemical observation data used.129

2.2 The ecosystem component: ERSEM130

The European Regional Seas Ecosystem Model (ERSEM) (Baretta et al. [1995];131

Butenschön et al. [2016]) is an ecosystem model for marine biogeochemistry, pelagic132

plankton, and benthic fauna (Blackford [1997]). It tracks carbon, chlorophyll, nitrate,133

phosphate and silicate separately, with variable stoichiometric ratios within the simulated134

plankton groups (Geider et al. [1997]; Baretta-Bekker et al. [1997]). The model splits phy-135

toplankton into four functional types largely based on their size (Baretta et al. [1995]):136

picophytoplankton, nanophytoplankton, diatoms and dinoflagellates; only diatoms use sil-137

icate. Phytoplankton are a prey for three zooplankton types (mesozooplankton, microzoo-138

plankton and heterotrophic nanoflagellates) and organic material is decomposed by one139

functional type of heterotrophic bacteria (Butenschön et al. [2016]). The inorganic com-140

ponent is described in the form of nutrients (nitrate, phosphate, silicate, ammonium and141

carbon) and dissolved oxygen. The carbonate system is also included in the model (Ar-142

tioli et al. [2012]). The ERSEM model has been validated in multiple studies using both143

point-wise and emergent skill metrics (Allen and Somerfield [2009]; Edwards et al. [2012];144

Saux Picart et al. [2012]; De Mora et al. [2013, 2016]), and applied in many different con-145

texts (e.g Blackford and Gilbert [2007]; Holt et al. [2012]; Wakelin et al. [2012]; Polimene146

et al. [2012]; Artioli et al. [2014]).147

We used in this study a recent ERSEM parametrization described in Butenschön148

et al. [2016]. At the Atlantic boundary values for nitrate, phosphate and silicate were149

taken from World Ocean Atlas (Garcia et al. [2014]) and dissolved inorganic carbon from150

the GLODAP gridded dataset (Key et al. [2015]; Lauvset et al. [2016]).151

2.3 The Data152

The original data-set of total chlorophyll-a was obtained from the Ocean Colour -153

Climate Change Initiative (OC-CCI) project of the European Space Agency (ESA), Ver-154

sion 3.0 (Sathyendranath et al. [2016]). This total chlorophyll product was processed into155

a phytoplankton functional types chlorophyll data-set by Brewin et al. [2017] using a sim-156

ple, conceptual model (Brewin et al. [2010, 2015]) designed to estimate the chlorophyll157

concentrations of three phytoplankton size classes (micro-, nano- and pico-phytoplankton)158

as a continuous function of the total chlorophyll provided from the OC-CCI data. In the159

implementation, the parameters of the model are varied according to the sea surface tem-160

perature (OISST version from Reynolds et al. [2007]), which is also used to split micro-161
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phytoplankton chlorophyll concentration into the contributions from diatoms and dinoflag-162

ellates. The product of Brewin et al. [2017] is daily and has 4 km spatial resolution. The163

EO data validate well against in situ data (Pearson correlation coefficient 0.46-0.86, see164

Brewin et al. [2017]). The PFT EO errors were estimated in log-space, since chlorophyll165

is typically log-normally distributed Campbell [1995]. The PFT EO errors and biases were166

determined using both in situ and satellite data match-ups following the approach from167

Jackson et al. [2017] and fuzzy logic statistics (Moore et al. [2009]). The data (for both168

total chlorophyll and PFTs) were bias corrected and per pixel errors of the unbiased data169

were computed following the method of Ciavatta et al. [2016]. Because bias corrected170

EO products are supposed to be better than the original ones, it is reasonable to assim-171

ilate bias-corrected data. However, the sum of bias corrected PFTs chlorophyll may not172

be precisely equal to bias corrected total chlorophyll (for details see Brewin et al. [2017]).173

In fact the mean sum of bias corrected PFTs chlorophyll was approximately 0.07mg/m3
174

lower than the mean value for bias corrected total chlorophyll, for 2010 data on the NWE175

Shelf. The bias-corrected EO data were upscaled to the model grid (wherever there were176

multiple EO data-points mapped to the nearest model grid point, the mean value of those177

data-points was taken). We also compared the 2010 OC-CCI chlorophyll data with the178

OC-CCI satellite data monthly climatology which was composed from bias-corrected OC-179

CCI products from 1998-2009.180

The DA outputs were compared on the NWE Shelf with three in situ data-sets. The181

first was the Ecosystem Data Online Warehouse of the International Council for the Ex-182

ploration of the Sea (ICES, http://www.ices.dk/marine-data/data-portals/Pages/), which183

contains measurements of three nutrients of specific interest (nitrate, phosphate and sili-184

cate) and also data for total chlorophyll. The ICES data-set contains measurements at a185

range of depths. We considered only ICES data from the section of the NWE Shelf not186

in the immediate vicinity of the coastline (bathymetry within the interval 10 − 200 m).187

ICES data were available all over the North Sea and Irish Sea, however with a clear spa-188

tial bias towards nutrient- and chlorophyll-rich areas close to the coast of the Netherlands189

and western Denmark. The median depth of the measurement was around 10 m, but could190

vary from month to month. Also numbers of measurements varied from month to month191

between 20 and 300. The total number of ICES data-points for 2010 was well over 1000192

for each nutrient and for total chlorophyll. The second data-set was from the Centre for193

Environment, Fisheries and Aquaculture Science (Cefas, https://www.cefas.co.uk/) and194

consisted of phytoplankton pigment data (nanophytoplankton, picophytoplankton and mi-195

crophytoplankton) collected on International Bottom Trawl Surveys in the years 2010 and196

2011 (Ford et al. [2017], http://doi.org/10.14466/CefasDataHub.33). The Cefas data-set197

contained far less data than the ICES data-set (only around 60 data-points in the relevant198

area for 2010), but is one of the few available in situ data sets that can be used to per-199

form an independent validation of PFT distributions. The third in situ comparison was for200

CO2 fugacity (fCO2) using the Surface Ocean CO2 atlas (SOCAT, https://www.socat.info/,201

Bakker et al. [2014]). The SOCAT dataset was the most statistically robust of the three202

used, with around 10000 data-points. We also did a comparison for PFTs/total chloro-203

phyll and nutrients (nitrate, silicate and phosphate) at the specific location L4 in the West-204

ern English Channel, with data obtained from the HPLC Western Channel Observatory205

pigments & nutrients data-set (Airs and Martinez-Vicente [2014], https://www.bodc.ac.uk/-206

data/). The in situ chlorophyll concentrations for the four PFTs at L4 (diatoms, dinoflag-207

ellates, nanophytoplankton and picophytoplankton) were estimated from HPLC pigment208

data following Brewin et al. [2017]. This essentially involves using accessory pigments209

as markers of the specific groups to help partition total chlorophyll into the chlorophyll210

concentrations of the four groups (see section 2.3.1 of Brewin et al. [2017] for additional211

details). All the in situ data were matched with the model outputs by finding the model212

grid point nearest to the in situ measurement.213
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2.4 The Data Assimilation (DA) set-up214

We used the NEMOVAR (Mogensen et al. [2009, 2012]; Waters et al. [2015]) 3D-215

VAR variational DA system used for operational physical ocean DA at the Met Office.216

NEMOVAR is a computationally efficient DA system specifically adapted for the NEMO217

model, supporting both 4D-VAR and 3D-VAR algorithms. The 3D-VAR version applied218

in this study minimizes the cost function using the conjugate gradient method (Mogensen219

et al. [2012]). DA of chlorophyll into NEMO-ERSEM using NEMOVAR has been imple-220

mented at the Met Office for use in reanalysis and forecasting.221

The PFTs and total chlorophyll DA has been adapted from the method used to as-222

similate total chlorophyll into the global NEMO-HadOCC model (Ford et al. [2012]; Ford223

and Barciela [2017]). The DA was run on a daily cycle, assimilating the daily merged224

OC-CCI chlorophyll products. Since chlorophyll is typically lognormally distributed (Camp-225

bell [1995]), log10(chlorophyll) was assimilated rather than chlorophyll. For total chloro-226

phyll the procedure is described in the following steps.227

Firstly, the model was run for the day in order to create innovations (observation228

minus background differences) using the NEMO observation operator. As in Ford et al.229

[2012], the model surface total log10(chlorophyll) (i.e. the sum of the four PFTs in ERSEM)230

is bilinearly interpolated to each observation location at the nearest model time step to the231

validity time of the observation, providing background values in observation space. Since232

daily merged products were assimilated, with no per-pixel time information provided, all233

observations were assumed to be valid at 12:00 UTC. As the ocean color satellites used234

by OC-CCI are all heliosynchronous, this is a reasonable assumption for the AMM7 do-235

main.236

Secondly, these innovations were used by NEMOVAR to create a set of surface total237

log10(chlorophyll) increments, similarly to the DA of sea ice concentration described by238

Waters et al. [2015]. The model errors were specified by deriving the diagonal elements of239

the background error covariance matrix from a monthly climatology of log-transformed er-240

ror variances obtained from the 100 member Ensemble Kalman Filter POLCOMS-ERSEM241

reanalysis of Ciavatta et al. [2018]. These variances were regularized and smoothed using242

the moving averages algorithm, and rescaled to the range 0.02-1.5 log10(mg/m3), so that243

the average ratio of background error to obervation error was similar to that calculated244

in the region when assimilating OC-CCI data into NEMO-HadOCC (Ford and Barciela245

[2017]). Experiments using different ratios demonstrated the results to be relatively insen-246

sitive to the average ratio. The off-diagonal elements of the background error covariance247

matrix were parametrised using correlation lengthscales set equal to the Rossby radius, as248

in Waters et al. [2015]. The diagonal elements of the observation error covariance matrix249

were set equal to the per-pixel observation uncertainties from the OC-CCI products (Cia-250

vatta et al. [2016]), plus a constant of 0.01 log10(mg/m3) (Ford and Barciela [2017]), to251

take account of the remaining representation error (Janjić et al. [2017]) not included in the252

OC-CCI uncertainties, whilst maintaining the average ratios suggested by Ford and Bar-253

ciela [2017]. The off-diagonal elements of the observation error covariance matrix were254

set to zero.255

Thirdly, the model background was used to convert the total log10(chlorophyll) in-256

crements to total chlorophyll increments, and divide them into a set of chlorophyll incre-257

ments for each PFT. At each grid point the total chlorophyll increments were split into258

PFT chlorophyll increments according to the ratios of the PFTs in the model background,259

so that the assimilation did not directly alter the phytoplankton community structure. Up260

to this stage the DA scheme updated only PFTs chlorophyll. The DA set-up was tested261

with this simplistic scheme (only updating PFTs chlorophyll) and the results are presented262

in the Supporting Information (1). However, it is important to maintain the phytoplankton263

physiological state adapted to the environmental conditions. To do this we used another264

scheme, where all the other phytoplankton cell variables (carbon, nitrogen, phosphorus265
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and for diatoms silicon) were updated to preserve the existing stochiometric ratios. This266

means DA altered only concentrations of phytoplankton, but preserved its model physiol-267

ogy. Our approach is similar to the one used in Teruzzi et al. [2014].268

Fourthly, the model was run again for the day to create the reanalysis state, with the269

increments applied using the incremental analysis update (IAU) technique (Bloom et al.270

[1996]), in which in an equal proportion of the increments is applied at each time step,271

in order to minimise initialisation shocks. The surface PFT (chlorophyll, carbon, nitrogen,272

phosphorus, silicon) increments were applied throughout the mixed layer. The reanalysis273

state was then used to initialize a 5-day “free” forecasting run.274

The total chlorophyll assimilation has then been extended in this study to PFT chloro-275

phyll assimilation, by considering each PFT separately at each step in the process. The276

observation operator step directly compared the satellite PFT data to the corresponding277

model PFTs, to create a set of innovations for each PFT. The background error variances278

used by NEMOVAR were calculated using the same method as for total chlorophyll DA279

from ensemble variances for the individual PFTs in the reanalysis of Ciavatta et al. [2018].280

The observational errors were obtained from the pixel errors provided by Brewin et al.281

[2017] with bias removed as per Ciavatta et al. [2016] and the representation error added282

as in case of total chlorophyll DA. NEMOVAR was used to calculate a set of log10(chlorophyll)283

increments for each PFT, which could be applied directly to the model, thereby directly284

updating the phytoplankton community structure.285

2.5 The runs and the analysis286

We performed three 1-year long simulations for 2010 on the Met Office and NERC287

Supercomputing Node (MONSooN). The first simulation was a free reference run (abbre-288

viated as “noDA”), the second run was daily total chlorophyll DA (abbreviated as “ChlTot289

DA”) and the third run PFTs chlorophyll daily DA (abbreviated as “PFTs DA”). In each290

DA run the assimilation step was followed by a 5 day forecast.291

It is important to assess how DA impacts on the model representation of the true292

state of the simulated ecosystem (Gregg et al. [2009]). The DA (both reanalysis and fore-293

casting) skill has to be evaluated using data-sets that are both statistically robust and at the294

same time reasonably independent of the assimilated EO data-set. For the 5 day chloro-295

phyll forecasting skill we used the satellite OC-CCI data-set, since its robustness (number296

of data) seems to outweigh its inter-day correlation (dependence on the assimilated data).297

Although the dynamics of the satellite fields is slow (significant inter-day correlations be-298

tween the same-pixel values), the rapid movement of atmospheric clouds means that the299

regions seen by the satellite in the successive days overlap by only 30% (we calculated300

this from the 2010 satellite data). We therefore considered the forecast validation EO data-301

set to be sufficiently independent of the assimilated data-set. The in situ observations are302

largely independent of the assimilated OC-CCI satellite data, but relatively sparse. The303

in situ chlorophyll measurements were used to evaluate the DA reanalysis skill (which is304

where the OC-CCI data-set cannot be used for validation, but just for verifying a correct305

implementation of the assimilation algorithm). This is relevant for the spatio-temporal re-306

gions with missing satellite EO data (such as cloudy regions, or regions below the ∼ 10307

m surface layer measured by the satellite). Similarly to chlorophyll, we also used in situ308

data to evaluate the DA reanalysis skill to represent some of the relevant non-assimilated309

variables (such as nutrients, fCO2). The DA reanalysis skill was considered sufficient for310

nutrients and fCO2, because the impact of DA on the nutrient (or fCO2) concentrations is311

slow compared to the short forecasting window. Consequently for non-assimilated vari-312

ables there will be very little difference between DA reanalysis skill and DA forecasting313

skill. We confirmed this at the in situ locations by comparing the nutrient 5th forecasting314

day outputs with the reanalysis for the same day. The median difference for PFTs DA was315

–7–



Confidential manuscript submitted to JGR-Oceans

of the order of 10−3 mmol/m3 for silicate and phosphate; for nitrate the absolute value of316

the median difference was approximately 0.1 mmol/m3.317

To evaluate model skill we chose in situ and EO data only from the NWE Shelf. We318

matched both the EO and in situ spatio-temporal locations with the corresponding model319

data (i.e. the data closest in space and time). Both the EO and in situ data have different320

number of data points for different months. Furthermore the in situ (ICES and SOCAT321

data) spatial locations (geographic locations and depths) can vary substantially between322

months. We used two skill metrics: model bias and bias corrected median absolute dif-323

ference. Under “bias” we mean median difference in model and EO (model minus EO)324

values. The biases were calculated for monthly binned data and the 2010 year bias was325

then taken to be the median of the monthly biases. The reason for binning data monthly326

was to correct for some of the spatio-temporal biases of the EO and in situ data. By “bias327

corrected median absolute difference” we mean median of absolute values of differences328

between model and EO, after subtracting the bias from the model outputs. This was again329

calculated for the monthly data (we subtracted monthly biases from absolute differences)330

with the annual value being the median of monthly values.331

Both model and EO raw data can be (by definition) represented as a sum of clima-332

tology and anomalies from climatology. The model forecasting skill for both raw data and333

anomalies was also compared using a metric analogous to Ryan et al. [2015]:334

FS = 1 −
AD

ADR
. (1)

Here AD/ADR is the ratio between the annual median from monthly medians of abso-335

lute differences of the forecast and the reference outputs (both compared to the EO data).336

Positive values of FS mean that forecast outperforms reference and vice versa. We con-337

sidered here as reference the free run and persistence, where persistence means fixing the338

biogeochemical variables equal to the output of the reanalysis and using these constant339

values to forecast the biogeochemistry in the subsequent 1-5 days. AD from equation (1)340

is for raw data defined as ADraw = Med(|Modraw − EOraw |) and for anomalies as341

ADan = Med( |Modan − EOan |), (“Med” means median, “Mod” means “Model” and342

subscripts describe the type of data, with “an” standing for “anomaly”). Anomalies can343

be calculated by subtracting field climatology from the raw data. Twelve-year climatol-344

ogy was available only for the OC-CCI EO data-set. If we define the climatological model345

bias B(x, t) as the difference between the model climatology (Modclim) and the climatol-346

ogy of the EO (EOclim), the model climatology can be obtained as:347

Modclim (x, t) = EOclim (x, t) + B(x, t). (2)

The bias B(x, t) was estimated from the 2010 data as:348

B(x, t) =
BA(x) + BD (t)

2
, (3)

where BA(x) is annual median bias at the location x and BD (t) is spatial median bias on349

the NWE Shelf at the time t. The BA(x) and BD (t) functions were then calculated from350

the model and the EO 2010 data. The raw data and model bias are sufficient to calculate351

the ADan value:352

ADan = Med( |Modraw − B − EOraw |), (4)

and therefore they are sufficient to compute the anomaly forecast skill FS .353

Interpreting skill metrics (such as the one in equation (1)) needs some caution. The354

purpose of these skill metrics is merely to indicate: 1. whether reanalysis is closer to EO355

data than the reference run, 2. how rapidly forecast changes the match-ups between model356

outputs and EO data. The definition of these skill metrics assumes that the EO data rep-357

resent the “true state". However, the EO data might also contain relatively large errors,358

although typically these errors are lower than the model errors. Therefore if DA moves359

–8–



Confidential manuscript submitted to JGR-Oceans

Figure 1. The Figure shows the 2010 annual median spatial distributions for the four PFTs chlorophyll

(in mg/m3) for the free run (first row), total chlorophyll DA (second row), PFTs DA (third row) and satellite

EO data (fourth row). The shelf boundary (bathymetry < 200 m) is marked by the black line. The model data

were masked whenever the EO data were missing.

365

366

367

368

the reference run outputs closer to the EO data, it typically moves it closer to the “true360

state" as well, but it can happen that a very close match with the EO data is not a very361

close match with the “true state". These metrics are therefore typically informative, but362

one has to keep in mind that there are situations in which they are misleading.363

3 Results364

3.1 Reanalysis376

DA had a substantial impact on both PFTs and total chlorophyll distributions. In377

respect of the reference run, ChlTot DA does not improve the spatial match-ups with the378

EO PFTs chlorophyll. It does, however, substantially improve the match-ups with EO to-379

tal chlorophyll. This can be seen in Figure 1, which shows the annual median chlorophyll380

distributions of the four phytoplankton functional types, and in Figure 2, which shows381

the same for the total chlorophyll. It is evident that the PFTs DA produced PFTs and to-382
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Figure 2. The Figure shows the 2010 annual median spatial distributions for the total chlorophyll (in

mg/m3) for the free run, total chlorophyll DA, PFTs DA and satellite EO data. The model data were masked

whenever the EO data were missing.

369

370

371
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Figure 3. The Figure compares daily time series of PFTs chlorophyll and total chlorophyll spatial median

values (in mg/m3, for the NWE Shelf) for free run (noDA), ChlTot DA, PFTs DA, satellite EO data (EO) and

satellite EO data climatology (EO clim). The time series were smoothed on a 10 day time scale using moving

averages. The model data were masked wherever the EO data were missing.

372

373

374

375
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tal chlorophyll distributions that look very similar to the EO satellite products (Figure 1383

and Figure 2). The DA impact is largest in the Southern North Sea, which is the area384

with the largest chlorophyll concentrations. Figure 1 demonstrates the major impact of385

PFTs DA, especially on dinoflagellates where the difference between model and EO data386

is most significant. The improved match-up between the model output and the EO data387

(as one moves from the free run to DA in Figures 1 and 2) can be understood as a basic388

self-consistency test for the DA algorithms.389

Figure 3 displays a daily time series for 2010 of spatial median PFT chlorophyll390

values (for the NWE Shelf). Figure 3 shows that bias between free run and EO data de-391

pends largely on the season. The model tends to underestimate PFTs chlorophyll in the392

Autumn and Winter, and greatly overestimate PFTs chlorophyll during Spring bloom and393

Summer (especially diatoms in Spring). This implies that the model has much larger sea-394

sonal variability than the EO data. Consistently with Figures 1 and 2, Figure 3 shows that:395

1. The PFTs DA moves the annual time series very close to the EO data. The same is396

true for ChlTot DA and total chlorophyll time series. 2. The largest impact of PFTs DA397

is on dinoflagellates, where there is the poorest match between the model free run and the398

EO data. 3. ChlTot DA slightly improves the time series of nanophytoplankton and di-399

atoms, however in Winter it considerably degrades dinoflagellates. 4. The model shows a400

dominant PFTs bloom in Spring (with huge concentrations of diatoms), whereas the EO401

PFTs data (and PFTs in PFT DA run) have an Autumn peak in chlorophyll concentrations.402

5. Satellite EO data anomalies are relatively small when compared to the satellite monthly403

climatology.404

The PFT chlorophyll-to-total chlorophyll ratios represent the composition of the409

phytoplankton community structure which can be seen as an emergent property of the410

ecosystem model and it can be used as a tool for model skill assessment (De Mora et al.411

[2016]). Figure 4 shows that PFTs DA improved the model representation of the plankton412

community structure (as represented by the assimilated data of Brewin et al. [2017]), when413

compared to both the model free run and the assimilation of total chlorophyll.414

3.2 Forecasting429

Figure 5 demonstrates model skill to predict the satellite EO observations for each430

PFT and total chlorophyll. For all PFTs, PFTs DA substantially outperforms both ChlTot431

DA and the free run over the whole 5 day forecasting period. The PFTs DA and ChlTot432

DA total chlorophyll have biases with opposite signs (except for the last forecasting day).433

The reason why there is difference between PFT and ChlTot DA total chlorophyll distribu-434

tions is that, as previously mentioned, the bias corrected EO total chlorophyll concentra-435

tions assimilated in ChlTot DA are approximately 0.07mg/m3 larger than the sum of bias436

corrected PFT chlorophyll EO assimilated in PFTs DA. Figure 5 further shows that the437

model (free run) accurately represents total chlorophyll levels (bias close to zero), how-438

ever this hides large biases in PFTs concentrations (except for diatoms).439

Figure 6 compares ChlTot DA and PFTs DA forecasting skill using the metric from440

equation (1), with the free run and the persistence as references. The upper row (plots A441

and B) shows model skill to predict the total and PFTs chlorophyll raw values (sum of442

climatology and anomaly). The bottom row (plots C and D) shows model skill to pre-443

dict anomalies. In both cases (plots A and C) PFTs DA substantially outperforms the free444

run on the 5 day time scale (this is consistent with Figure 5). In the case of raw values445

(plot A) PFTs DA substantially outperforms ChlTot DA in PFTs chlorophyll and performs446

similarly than ChlTot DA in total chlorophyll forecasting. However, it is interesting that447

persistence outperforms the dynamical forecast from the PFTs DA on the 5 day forecast-448

ing time scale, which suggests that (PFTs) reanalysis plays an essential role in forecasting449

skill. The fact that persistence outperforms the model forecast simulation implies that the450

model degrades chlorophyll faster than the chlorophyll dynamics observed in the EO data.451
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Figure 4. The Figure compares the 2010 PFTs to total chlorophyll ratios. The x-axis shows the total

chlorophyll concentrations (in mg/m3) and the y-axis shows PFT to total chlorophyll ratio. The EO data

ratios are split based on the model of Brewin et al. [2010, 2015]. The shades of the red color mark the number

of overlapping datapoints.

405

406

407

408
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Figure 5. The Figure compares the reanalysis and forecasting of the assimilative runs with the reference

for the data of the four PFTs (diatoms, dinoflagellates, nano-, picophytoplankton and of total chlorophyll).

The bullet point is the free run, for the DA runs the first point on each line (with larger marker size) is reanal-

ysis and the other five points are the five forecasting days. The x axis shows bias (in mg/m3) and the y axis

shows bias corrected median absolute difference (mg/m3). The Figure shows that PFTs DA outperforms on

the 5-day forecasting scale both free run and ChlTot DA in how it represents PFTs concentrations. From the

lines on the plot one can see (for each PFT as well as total chlorophyll) that in the forecasting run model skill

moves from the reanalysis skill towards the free run skill.

415

416

417

418

419

420

421

422

–14–



Confidential manuscript submitted to JGR-Oceans

Figure 6. The Figure compares the reanalysis and 5 day forecasting skill (the first point on the line is re-

analysis and the other five are the five forecasting days) using the skill metrics defined in equation (1). The

left-hand plots (A and C) use as reference the free run and the right-hand plots (B and D) use persistence. The

upper plots (A and B) are predictions of raw data (sum of climatology and anomalies) and the bottom plots (C

and D) are only predictions of anomalies. Positive values mean that the evaluated model forecast outperforms

the reference, whereas negative values mean that reference outperforms the model forecast.
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3.3 Validation using in situ data452

The validation using in situ data is summarized in Table 1 and Table 2. The two ta-453

bles present annual values of the bias and the bias corrected absolute difference. Table 1454

shows that for most of the year the model overestimates observed nitrate (the biases are455

almost 200% of in situ nitrate values). This is moderately improved by DA, where the456

bias decreases by 5% (of its value). The model overestimates observed silicate by approx-457

imately 50% and the bias can be reduced (ChlTot), or increased (PFTs) by the DA quite458

substantially (by about 40%). Unlike nitrate and silicate, the model has very low (posi-459

tive) phosphate bias and even though this is to some extent degraded by the DA, the bias460

is always between 1and3.5% of the observed value. Table 1 demonstrates that DA has461

substantial positive impact on the fCO2 representation reducing the model negative bias by462

50% (PFTs DA more than ChlTot DA). This reduces model relative error from 11.3% to463

5.6% (PFTs DA).464

Table 1. The annual bias (model minus in situ data) for the three nutrients (nitrate, phosphate and sili-

cate) in mmol/m3, CO2 fugacity (fCO2) in µbars (SOCAT data), total chlorophyll (ICES data) and three

phytoplankton size classes (Cefas data) in mg/m3. The columns show free run, ChlTot DA and PFTs DA.

465

466

467

variable noDA ChlTot PFTs

nitrate 8.82 8.4 8.65

phosphate 0.007 0.012 0.019

silicate 2.47 1.87 3.41

fCO2 -45.3 -28.7 -22.4

total chlorophyll -0.2 -0.23 -0.35

microphytoplankton -0.15 -0.14 -0.16

nanophytoplankton -0.19 -0.14 -0.15

picophytoplankton -0.06 -0.04 -0.05

468

472

The DA increases the negative bias of total chlorophyll with respect to the in situ476

data (Table 1). This can be explained by the larger (relative to the free run) negative bias477

of satellite data with respect to the in situ data (the satellite data are on average 0.45 mg/m3
478

lower than the in situ data). This suggests the ICES and OC-CCI data-sets are not entirely479

consistent and the DA drives chlorophyll away from the in situ distributions. The evalua-480

tion of the impact of DA on the three phytoplankton size-classes using the in situ observa-481

tions from the Cefas dataset is ambiguous (see Tables 1 and 2). In this case DA seems to482

improve the representation of both nanophytoplankton and picophytoplankton (in general483

ChlTot DA more than PFTs DA), but it increases the bias of microphytoplankton.484

The L4 data (see Figure 7) demonstrate a very good total chlorophyll match be-485

tween satellite and in situ data in Spring-Summer season (the annual mean absolute dif-486

ference between in situ and satellite data was 0.4 mg/m3, compared to the larger 0.7487

mg/m3 mean absolute difference between PFTs DA and the in situ data). In the same sea-488

son there is a good match between satellite and in situ nanophytoplankton and dinoflag-489

ellates, but not a good consistency in diatoms and picophytoplankton (Figure 7). From490
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Figure 7. The Figure shows PFTs chlorophyll-a and nutrients (nitrate, phosphate and silicate) annual time

series (noDA, ChlTot DA, PFTs DA and in situ data) at the L4 location in 2010. The nutrient concentrations

are in mmol/m3 and the chlorophyll concentrations in mg/m3.

473

474

475
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Table 2. The bias corrected median absolute difference for the three nutrients (nitrate, phosphate and sil-

icate) in mmol/m3, CO2 fugacity (fCO2) in µbars (SOCAT data), total chlorophyll (ICES data) and three

phytoplankton size classes (Cefas data) in mg/m3. The columns show free run, ChlTot DA and PFTs DA.

469

470

471

variable noDA ChlTot PFTs

nitrate 3.61 3.63 4.24

phosphate 0.13 0.13 0.13

silicate 2.27 2.19 1.97

fCO2 21.3 23.5 23.1

total chlorophyll 0.94 0.81 0.9

microphytoplankton 0.39 0.33 0.32

nanophytoplankton 0.18 0.16 0.17

picophytoplankton 0.07 0.06 0.05

Figure 7 one can draw similar conclusions as from Figure 3 (showing time evolution on491

the whole NWE Shelf): 1. The model overestimates Spring blooms and underestimates492

Autumn blooms of the PFTs. 2. There is less seasonal variability in the in situ data than493

in the model data. 3. PFTs DA drives the model PFTs chlorophyll-a towards the EO data.494

Since the EO data are much closer to the in situ data than the model, DA also improves495

the match up with the PFT and total chlorophyll in situ data. It is interesting that there are496

large similarities between the annual patterns of the satellite data time series on the whole497

NWE Shelf (Figure 3) and in situ data time series at L4, except that: 1. Satellite data have498

the bloom peak in Autumn slightly later (1 month). This discrepancy between EO and in499

situ data has been observed for the L4 site by Smyth et al. [2009], but is not clearly vis-500

ible for 2010 (Figure 7). It can be potentially explained by the L4 satellite data errors501

caused by terrestrial CDOM and sediments (Smyth et al. [2009]; Groom et al. [2009]).502

2. The Autumn peak is more dominant at L4 for the situ data (see especially picophyto-503

plankton in Figure 7). There is a good match between the model and the in situ nutrients504

at L4 (Figure 7), where the main difference seems to be that the nitrate and phosphate505

minima are phase-shifted in the model by roughly 1 month. The 2010 chlorophyll and nu-506

trients in situ data have seasonal behavior similar to the L4 2004-2008 time series analysis507

from Widdicombe et al. [2010]. The L4 data also suggest that PFTs DA degrades silicate508

with respect to the reference run (the last panel in Figure 7).509

4 Summary and discussion510

This work demonstrates that both PFTs DA and ChlTot DA have substantial impact511

on the simulation of phytoplankton size-class chlorophyll, as well as of total chlorophyll512

distributions (Figures 1 - 4), when applied with an operational model in 5 day forecasting.513

Figures 1 - 3 demonstrate that the DA assimilated variables are very close to the EO satel-514

lite data. This is not because of large model-to-observational error ratio. The model errors515

used were typically around three times higher than observational errors, which is simi-516

lar to the NEMO-HadOCC DA set-up (Ford et al. [2012]) and our own tests showed that517

the DA results have been relatively insensitive to the errors. We ran the same DA set-up518

(with the same background and observational errors), but without keeping the phytoplank-519

ton internal stochiometric ratios fixed (only phytoplankton chlorophyll was updated). The520

scheme still substantially improved the assimilated fields, however the final distributions521
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were much further from the assimilated satellite data (see Supporting Information (1)). For522

example, the total chlorophyll bias (with respect to the EO) was nearly five times higher523

for ChlTot DA when DA changed the stochiometric ratios than when it did not. This is524

because the changed stochiometric ratios create internal imbalances and in the period be-525

tween two assimilation steps these imbalances drive the assimilated state away from the526

EO. By preserving the model background stochiometry during the analysis update we sta-527

bilize the model dynamics and the DA gradually drives the analysis state close to the EO528

data.529

Figure 3 shows that the model chlorophyll has distinctive maxima during the Spring530

bloom, whereas the EO data (and similarly the DA outputs) have lower seasonal variabil-531

ity with the maxima in the Autumn. The model bias has a seasonal signature (Figure 3),532

with the model underestimating EO chlorophyll values in the Autumn and Winter and533

overestimating them in the Spring-Summer period. We have shown that the EO satellite534

data seasonality is largely consistent with the in situ data seasonality in the L4 region535

(Figure 7, see also Smyth et al. [2009]). The DA impact on PFTs and total chlorophyll536

values is spatially most substantial in the Southern North Sea (Figures 1 - 2).537

The model (free run) has a very small negative total chlorophyll bias, which hides538

much larger biases in PFTs concentrations (see Figure 5). This immediately points out539

the need to correct PFTs chlorophyll. ChlTot DA impacts PFTs chlorophyll, but it fails540

to improve the model skill in PFTs (Figure 5). This is because ChlTot DA redistributes541

the total chlorophyll-a increments into functional types using the model functional type-542

to-total chlorophyll ratio at a specific spatio-temporal point. Unlike ChlTot DA, PFTs DA543

substantially improves the model representation of PFTs chlorophyll. The forecasting run544

degrades the PFTs DA reanalysis bias and absolute differences by moving their values545

towards the values of the free run. However within the 5-day forecasting period PFTs546

DA always outperforms the free run (see Figure 5). PFTs DA increases the total chloro-547

phyll negative bias of the free run (Figure 5). This is because the sum of bias corrected548

EO PFTs chlorophyll-a gives smaller values of total chlorophyll (for 2010 on average549

by 0.073 mg/m3) than the bias corrected EO total chlorophyll (which is assimilated by550

ChlTot DA). The most substantial impact of PFTs DA is the large decrease in dinoflagel-551

lates concentrations. This is a consequence of a large mismatch in the EO and the model552

concentrations of dinoflagellates, mentioned already in Ciavatta et al. [2018]. Improving553

dinoflagellate estimates, their representation and their associated errors by both model and554

the satellite algorithms (Brewin et al. [2017]), is a major challenge which needs to be ad-555

dressed in the future.556

Similarly to Figure 5, Figure 6 shows that the PFTs DA substantially improves the557

model 5 day forecasting skill (on the NWE Shelf) for all the phytoplankton functional558

types, as well as for the total phytoplankton chlorophyll-a. Plot A in Figure 6 shows that559

PFTs DA outperforms both ChlTot DA and the free run in forecasting the raw data (sum560

of climatology and anomaly) of all the PFTs chlorophyll within the 5 day forecasting pe-561

riod. The PFTs DA and ChlTot DA total chlorophyll forecasting skills are comparable.562

Surface chlorophyll has relatively small anomalies compared to the chlorophyll monthly563

climatology (see Figure 3). This means most of the model skill in forecasting the raw data564

(see Figure 6 plot A) depends on its skill to represent the PFTs chlorophyll climatology.565

However, PFTs DA also outperforms the free run for all the assimilated variables in fore-566

casting the anomalies (see Figure 6, plot C). The comparison with the skill of the persis-567

tence has negative values (see Figure 6, plots B and D) for both raw data and anomalies,568

which means the PFTs DA forecast skill mostly originates from the persistence of the re-569

analysis. Negative persistence skill means it is more useful to predict future chlorophyll570

distributions by assuming the status quo (based on reanalysis), than running the model.571

This might be a consequence of the fact that the univariate DA scheme changes phyto-572

plankton concentrations, while keeping the other variables (especially nutrients) intact.573

The model is therefore “off-balance” and the forecasting simulation moves away from574
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Figure 8. The DA updates to the diatom (mg/m3) and silicate (mmol/m3) concentrations. The Figure

shows (upper panels) the annual spatial median concentration of the PFTs DA minus the free run, and the

same differences between ChlTot DA and the free run (bottom panels). In most of the regions the updates to

silicate are visibly anti-correlated with the updates to diatoms.

582

583

584

585

the reanalysis state faster than the chlorophyll dynamics. The model simulation degrades575

fields slowly compared to the reference run skill (as discussed before), however it still de-576

grades them faster than the observed field dynamics (at least within the 5 day forecasting577

period). To conclude, the reanalysis can be a better predictor of the 5-day future state than578

the reinitialized model simulation. However, both the reanalysis and the 5-day forecast579

substantially outperform the skill of the reference simulation. This proves that using PFTs580

DA for operational applications is of substantial value.581

The most regularly distributed validation in situ data with the largest statistical sig-586

nificance were fCO2 SOCAT data (around 10000 data-points). The comparison with the587

SOCAT data has shown that the model underestimates CO2 fugacity (having 11.3% lower588

value than in situ data). The DA has a large positive impact on CO2 fugacity and im-589

proves the CO2 fugacity bias by more than 50% (more PFTs DA than ChlTot DA). It590

is possible that this is because correcting phytoplankton biomass has an impact on the591

primary production and consequently affects the model representation of the carbon cy-592

cle (e.g Ciavatta et al. [2018]). Based on the ICES data it was shown (see Table 1) that593
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the model typically overestimates nutrients, in particular it overestimates nitrate by al-594

most 200%. The DA moderately lowers nitrate bias by 5%. Given the spatio-temporal595

biases of the in situ data it is hard to estimate the confidence intervals, but a simplified596

analysis based on calculating the 95% confidence interval for a representative sample of597

the same size (than the size of the nitrate ICES data-set) suggested the effect of DA on598

nitrate is not statistically significant. The same is true for phosphate, where the model599

bias fluctuates between 1.3-3.5% of the phosphate value. This means that model repre-600

sents phosphate levels with a very good accuracy, possibly within the systematic error of601

the measurements. (Note that Table 2 suggests that the model does not represent equally602

well phosphate spatio-temporal distributions.) Interestingly the ChlTot DA and PFTs DA603

have very different impact on silicate. The model free run overestimates silicate values by604

roughly 50%. The bias is substantially improved by ChlTot DA (lowered by 25%), but de-605

graded by PFTs DA (increased by 40%). Since diatoms are silicate users, the impact of606

DA on silicate is mainly related to how DA changes the concentrations of diatoms. We607

calculated the differences in diatoms concentrations between each of the assimilative runs608

(i.e PFTs DA and ChlTot DA) and the free run at the in situ data locations. At the same609

locations we calculated the same differences in silicate concentrations. The impact of DA610

on diatoms was anti-correlated with its impact on silicate at the in situ locations, with611

Spearman coefficients equal to -0.44 (Pfts DA) and -0.27 (ChlTot DA). Since there were612

around 1300 in situ data-points the result is statistically significant, with p values less than613

10−20. The silicate and diatoms are anti-correlated because diatoms are controlling the614

concentration of silicate (top-down control). Figure 8 shows that ChlTot DA substantially615

increases concentrations of diatoms (see also Figure 5) and the increased concentrations616

of diatoms then take up more silicate and lower its concentrations. The model dynamics617

in response to PFTs DA increased the silicate bias at the in situ locations because it low-618

ered diatoms concentrations on those sites (-0.44 Spearman coefficient). However, Figures619

5 and 8 show that overall PFTs DA did not lower the diatoms concentrations on the NWE620

shelf. This suggests that the increase in silicate bias by PFTs DA could be specific to the621

in situ spatio-temporal locations. However, this still points out an issue of the model. The622

model is overestimating silicate (Table 1), while it is representing accurately the levels of623

diatoms (see Figure 5). Under such conditions the model representation of silicate can-624

not be improved by correcting diatoms. There is a reason other than diatoms for why the625

model overestimates silicate and the problem needs to be better understood in the future.626

Perhaps unexpectedly, the in situ ICES data showed that DA increases the total627

chlorophyll bias (more substantial for PFTs DA than for ChlTot DA). The effective over-628

lap between the in situ total chlorophyll data and the OC-CCI EO data (considered up to629

the optical depth of 10 m) was roughly 20% (however, over 50% in situ measurements630

were from less than 10 m deep). The observed match-ups (Table 1) between satellite and631

in situ total chlorophyll have shown that the satellite data have negative bias with respect632

to the in situ data; in situ data are larger by 0.45 mg/m3, on average. This suggests that633

the two total chlorophyll datasets are not entirely consistent. This is quite possibly a con-634

sequence of the spatio-temporal difference between the highly localized in situ measure-635

ments and the 7-km resolution of the EO composites. The larger EO negative bias towards636

in situ data (−0.45 mg/m3) then possibly degraded the relatively smaller negative model637

bias (−0.2mg/m3) towards in situ data.638

The comparison of model phytoplankton functional types pigments with Cefas (in639

situ) data-set was inconclusive (Table 1 and Table 2). The model concentrations showed640

negative biases with respect to in situ data (consistent with the total chlorophyll ICES641

data-set), but no clear impact of DA on model skill was observed. However, it needs to642

be emphasized that the Cefas in situ data-set had only 56 relevant data-points and it only643

contained relevant data from August 2010. The evidence is therefore too limited to justify644

any broader conclusions.645
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We also analysed DA skill in the specific L4 location. There was a good match dur-646

ing Spring-Summer period between in situ data and the EO for total chlorophyll, chloro-647

phyll in nanophytoplankton and dinoflagellates (see Figure 7). The comparison with satel-648

lite data showed a worse match for chlorophyll in picophytoplankton and diatoms. The649

2010 in situ time series presented in Figure 7 have more similarity with the median NWE650

Shelf EO time series (see Figure 3) than with the L4 satellite data. This could be ex-651

plained by large satellite errors at the L4 location (especially in the Autumn-Winter sea-652

son). Interestingly, Figure 7 shows that in the L4 location the model represents nutrients653

with no significant biases. The main difference between model and in situ nutrient data654

is a 1 month shift in the seasonal dynamics (for nitrate and phosphate). This is probably655

linked to the large Spring bloom in the model time series. Interestingly also L4 data sug-656

gest that the PFTs DA degrades to some degree silicate (the bottom left panel of Figure657

7).658

5 Concluding remarks659

This work shows that assimilating PFTs chlorophyll substantially improves oper-660

ational model forecasting on the NWE Shelf. The model represents accurately the total661

chlorophyll levels. However, the small total chlorophyll bias hides large biases in PFTs662

chlorophyll, which cannot be corrected through ChlTot DA. The representation of PFTs663

chlorophyll is substantially improved by PFTs DA. The PFTs DA reanalysis skill is de-664

graded by the forecasting run, but it remains much better than the skill of the free run665

within the 5-day forecast period. DA substantially improves representation of pCO2. It666

does not have significant impact on nutrients, but work is being carried out on developing667

a suitable multivariate balancing algorithm between phytoplankton functional types and668

the ERSEM variables of interest. Such a balancing scheme is expected to improve the co-669

herence between phytoplankton biomass and dissolved nutrient concentrations to further670

slow down the model skill deterioration in the forecasting run.671

Despite the advantages of the method, we stress that further research is needed to672

improve the understanding and representation of plankton functional types and related bio-673

geochemical process in marine models (Shimoda and Arhonditsis [2016]). For example,674

our application does not account for calcification within the nano-plankton group (e.g coc-675

colitophores), or mixotrophy by dinoflagellates, which are certainly relevant processes in676

the North Atlantic (e.g. Gregg and Casey [2004]), but remain open challenges in current677

operational models (e.g. Anderson [2005]; Flynn et al. [2012]; Yool et al. [2013]; Aumont678

et al. [2015]).679
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