Synchrony affects Taylor’s law in theory and data: Supporting information

Daniel C. Reuman, Lei Zhao, Lawrence W. Sheppard, Philip C. Reid, Joel E. Cohen

Section S1 states the general framework for the main mathematical analysis. Section S2 carries out the main analysis, which covers the case that the \(Y_i \) (see main text for a definition of \(Y_i \)) are identically distributed but not necessarily independent. Section S3 analyzes (via the results of section S2) and simulates case studies of distributions \(Y = (Y_1, \ldots, Y_n) \) constructed by transforming multi-variate Gaussian random variables, and with identically distributed \(Y_i \). Section S4 considers case studies of distributions constructed by transforming Gaussian variables so that the resulting distributions have non-identically distributed \(Y_i \). Section S5 considers case studies using an alternate construction of \(Y \) with identically distributed \(Y_i \). Section S6 has plotting methods. Section S7 has details of data. Sections S8-S10 contain plots associated with sections S3-S5. Remaining sections have additional figures and tables.

Contents

S1 Framework for mathematical analysis of spatial Taylor’s law 4
S2 Mathematical analysis of the identically distributed case 6
S3 Cases: Distributions constructed using Gaussian copulas and identically distributed marginals 11
S4 Cases: Distributions constructed using Gaussian copulas and non-identically distributed marginals 14
S5 Cases: Distributions constructed using sums and identically distributed marginals 15
S6 Methods for the omnibus plots 20
S7 Data details 21
S8 Figures, distributions constructed using Gaussian copulas and identically distributed marginals 23
S9 Figures, distributions constructed using Gaussian copulas and non-identically distributed marginals 55
S10 Figures, distributions constructed using sums and identically distributed marginals 87
S11 Figures testing spatial Taylor’s law for empirical data 113
S12 Figures testing spatial Taylor’s law for randomized or partially sorted data 119
S13 Other figures 121
S14 Tables 124
List of Figures

S1 Omnibus plots, ID Gaussian copula approach, Poisson 23
S2 Omnibus plots, ID Gaussian copula approach, Poisson 24
S3 Omnibus plots, ID Gaussian copula approach, negative binomial 25
S4 Omnibus plots, ID Gaussian copula approach, negative binomial 26
S5 Omnibus plots, ID Gaussian copula approach, negative binomial 27
S6 Omnibus plots, ID Gaussian copula approach, negative binomial 28
S7 Omnibus plots, ID Gaussian copula approach, negative binomial 29
S8 Omnibus plots, ID Gaussian copula approach, negative binomial 30
S9 Omnibus plots, ID Gaussian copula approach, negative binomial 31
S10 Omnibus plots, ID Gaussian copula approach, negative binomial 32
S11 Omnibus plots, ID Gaussian copula approach, gamma 33
S12 Omnibus plots, ID Gaussian copula approach, gamma 34
S13 Omnibus plots, ID Gaussian copula approach, gamma 35
S14 Omnibus plots, ID Gaussian copula approach, gamma 36
S15 Omnibus plots, ID Gaussian copula approach, gamma 37
S16 Omnibus plots, ID Gaussian copula approach, gamma 38
S17 Omnibus plots, ID Gaussian copula approach, exponential 39
S18 Omnibus plots, ID Gaussian copula approach, exponential 40
S19 Omnibus plots, ID Gaussian copula approach, chi-squared 41
S20 Omnibus plots, ID Gaussian copula approach, chi-squared 42
S21 Omnibus plots, ID Gaussian copula approach, normal 43
S22 Omnibus plots, ID Gaussian copula approach, normal 44
S23 Omnibus plots, ID Gaussian copula approach, normal 45
S24 Omnibus plots, ID Gaussian copula approach, normal 46
S25 Omnibus plots, ID Gaussian copula approach, normal 47
S26 Omnibus plots, ID Gaussian copula approach, normal 48
S27 Omnibus plots, ID Gaussian copula approach, log-normal 49
S28 Omnibus plots, ID Gaussian copula approach, log-normal 50
S29 Omnibus plots, ID Gaussian copula approach, log-normal 51
S30 Omnibus plots, ID Gaussian copula approach, log-normal 52
S31 Omnibus plots, ID Gaussian copula approach, log-normal 53
S32 Omnibus plots, ID Gaussian copula approach, log-normal 54
S33 Omnibus plots, non-ID Gaussian copula approach, Poisson 55
S34 Omnibus plots, non-ID Gaussian copula approach, Poisson 56
S35 Omnibus plots, non-ID Gaussian copula approach, gamma 57
S36 Omnibus plots, non-ID Gaussian copula approach, gamma 58
S37 Omnibus plots, non-ID Gaussian copula approach, gamma 59
S38 Omnibus plots, non-ID Gaussian copula approach, gamma 60
S39 Omnibus plots, non-ID Gaussian copula approach, gamma 61
S40 Omnibus plots, non-ID Gaussian copula approach, gamma 62
S41 Omnibus plots, non-ID Gaussian copula approach, exponential 63
S42 Omnibus plots, non-ID Gaussian copula approach, exponential 64
S43 Omnibus plots, non-ID Gaussian copula approach, chi-squared 65
S44 Omnibus plots, non-ID Gaussian copula approach, chi-squared 66
S45 Omnibus plots, non-ID Gaussian copula approach, normal 67
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Omnibus plots, non-ID Gaussian copula approach, normal</td>
</tr>
<tr>
<td>69</td>
<td>Omnibus plots, non-ID Gaussian copula approach, normal</td>
</tr>
<tr>
<td>70</td>
<td>Omnibus plots, non-ID Gaussian copula approach, normal</td>
</tr>
<tr>
<td>71</td>
<td>Omnibus plots, non-ID Gaussian copula approach, normal</td>
</tr>
<tr>
<td>72</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>73</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>74</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>75</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>76</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>77</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>78</td>
<td>Omnibus plots, non-ID Gaussian copula approach, log-normal</td>
</tr>
<tr>
<td>79</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>80</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>81</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>82</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>83</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>84</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>85</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>86</td>
<td>Omnibus plots, non-ID Gaussian copula approach, negative binomial</td>
</tr>
<tr>
<td>87</td>
<td>Omnibus plots, sums approach, Poisson</td>
</tr>
<tr>
<td>88</td>
<td>Omnibus plots, sums approach, Poisson</td>
</tr>
<tr>
<td>89</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>90</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>91</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>92</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>93</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>94</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>95</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>96</td>
<td>Omnibus plots, sums approach, negative binomial</td>
</tr>
<tr>
<td>97</td>
<td>Omnibus plots, sums approach, gamma</td>
</tr>
<tr>
<td>98</td>
<td>Omnibus plots, sums approach, gamma</td>
</tr>
<tr>
<td>99</td>
<td>Omnibus plots, sums approach, gamma</td>
</tr>
<tr>
<td>100</td>
<td>Omnibus plots, sums approach, gamma</td>
</tr>
<tr>
<td>101</td>
<td>Omnibus plots, sums approach, gamma</td>
</tr>
<tr>
<td>102</td>
<td>Omnibus plots, sums approach, gamma</td>
</tr>
<tr>
<td>103</td>
<td>Omnibus plots, sums approach, exponential</td>
</tr>
<tr>
<td>104</td>
<td>Omnibus plots, sums approach, exponential</td>
</tr>
<tr>
<td>105</td>
<td>Omnibus plots, sums approach, chi-squared</td>
</tr>
<tr>
<td>106</td>
<td>Omnibus plots, sums approach, chi-squared</td>
</tr>
<tr>
<td>107</td>
<td>Omnibus plots, sums approach, normal</td>
</tr>
<tr>
<td>108</td>
<td>Omnibus plots, sums approach, normal</td>
</tr>
<tr>
<td>109</td>
<td>Omnibus plots, sums approach, normal</td>
</tr>
<tr>
<td>110</td>
<td>Omnibus plots, sums approach, normal</td>
</tr>
<tr>
<td>111</td>
<td>Omnibus plots, sums approach, normal</td>
</tr>
<tr>
<td>112</td>
<td>Omnibus plots, sums approach, normal</td>
</tr>
<tr>
<td>113</td>
<td>Figure testing TL for aphid data</td>
</tr>
<tr>
<td>114</td>
<td>Figure testing TL for CPR data</td>
</tr>
<tr>
<td>115</td>
<td>Figure testing TL for CalCOFI data</td>
</tr>
<tr>
<td>116</td>
<td>Figure testing TL for CalCOFI data</td>
</tr>
<tr>
<td>117</td>
<td>Figure testing TL for CalCOFI data</td>
</tr>
</tbody>
</table>
Suppose the population size or density in location \(i \) at time \(t \) is modeled by the non-negative real-valued random variable \(Y_i(t) \) for \(i = 1, \ldots, n \). Assume that the stochastic process \(Y(t) = (Y_1(t), \ldots, Y_n(t)) \) is stationary and ergodic. Roughly speaking, a “stationary” stochastic process is one whose joint probability distribution is not affected by shifts in time, so that mechanisms of population dynamics are not shifting in time. And an “ergodic” process is one for which statistical characteristics can be deduced from a single, sufficiently long realization of the process, so that, for instance, long-term statistical outcomes are independent of initial conditions. Precise definitions are in standard texts [Brillinger, 2001]. These are common features or assumptions of ecological models [Nisbet and Gurney, 1982, Caswell, 2001, Turchin, 2003]. Define the spatial sample mean and sample variance as the random variables \(m(t) = \frac{1}{n} \sum_{i=1}^{n} Y_i(t) \) and \(v(t) = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i(t) - \frac{1}{n} \sum_{j=1}^{n} Y_j(t))^2 = \frac{1}{n-1} \sum_{i=1}^{n} Y_i(t)^2 - \frac{n}{n-1} m(t)^2 \), which are also ergodic stationary stochastic processes. We are interested in the log(\(v \))-versus-log(\(m \)) scatter plot for a finite-duration realization of these processes (ignoring times \(t \) for which \(m(t) \) or \(v(t) \) was zero), and particularly in the slope and intercept of an ordinary linear regression through such a plot,

\[
b = \frac{\text{cov}(\ln(m(t)), \ln(v(t)))}{\text{var}(\ln(m(t)))},
\]

\[
\ln(a) = E(\ln(v(t))) - bE(\ln(m(t))).
\]

These are the basic quantities in spatial TL. The subscripts \(t \) indicate that the covariance, variance, and expected value (mean) are sample quantities computed through time for the finite-duration realization. By ergodicity of \(Y \) and consistency of the sample mean, variance, and covariance, for large samples, we instead consider

\[
b = \frac{\text{cov}(\ln(m), \ln(v))}{\text{var}(\ln(m))},
\]

\[
\ln(a) = E(\ln(v)) - bE(\ln(m)),
\]

where the covariance, variance, and expected value are computed for the marginal distributions of the processes \(m \) and \(v \) conditional on positive values of these quantities. We assume these quantities are finite.

Suppose the population correlations \(\rho_{ij} = \text{cor}(Y_i, Y_j) \) exist for all \(i, j = 1, \ldots, n \). These temporal correlations between populations represent spatial synchrony between locations \(i \) and \(j \) (again making use of ergodicity, and consistency of the sample covariance and variance). The synchrony \(\Omega = \frac{1}{n^2} \sum_{i,j} \rho_{ij} \) is an average correlation across all pairs of sampling locations (including comparisons of a location with itself, which give \(\rho_{ii} = 1 \)), and is commonly used in empirical studies. We will analyze the influence of \(\Omega \) on \(b \).
Ω is naturally interpretable as a measure of average synchrony for the following additional reasons. First, letting \(Z_i = Y_i / \sqrt{\text{var}(Y_i)} \), we have

\[
\Omega = \frac{1}{n^2} \sum_{ij} \text{cor}(Y_i, Y_j)
\]

\[
= \frac{1}{n^2} \sum_{ij} \text{cor}(Z_i, Z_j)
\]

\[
= \frac{1}{n^2} \sum_{ij} \text{cov}(Z_i, Z_j)
\]

\[
= \frac{1}{n^2} \text{cov} \left(\sum_i Z_i, \sum_j Z_j \right)
\]

\[
= \frac{1}{n^2} \text{cov} \left(\sum_i \frac{1}{\sqrt{n}} \sum_j Z_i \right)
\]

\[
= \frac{1}{n^2} \text{cov} \left(\sum_i \frac{1}{\sqrt{n}} \sum_j Z_i \right)
\]

\[
= \text{var} \left(\frac{1}{n} \sum_i Z_i \right)
\]

\[
= \frac{1}{n^2} \sum_i \text{var}(Z_i)
\]

where equation (10) is the variance of a mean divided by the mean of the variances. This well known measure of synchrony is readily interpretable as the extent to which oscillations in local (normalized) time series reinforce each other or cancel in the average time series. Second, equation (10) and the definition of Ω show that \(0 \leq \Omega \leq 1 \). The value 0 occurs when the variability in the \(Z_i \) exactly cancels, i.e., \(\text{var} \left(\frac{1}{n} \sum_i Z_i \right) = 0 \) and \(\frac{1}{n} \sum_i Z_i = \frac{1}{n} \sum_i E(Z_i) \), perfect asynchrony. The value 1 occurs when \(Z_i = Z_j \) for all \(i, j \), perfect synchrony. The summation \(\frac{1}{n(n-1)} \sum_{i \neq j} \rho_{ij} \) is an alternative measure of synchrony but may be less natural because it can take negative values (its minimum is \(-1/(n-1)\)). The difference between this measure and Ω is essentially in whether 0 should represent perfect asynchrony (independence) or perfect antisynchrony (cancellation).

To understand the relationship between synchrony and TL for large samples under assumptions of stationarity and ergodicity, it is sufficient to work with the marginal distribution \(Y_i \) instead of with the process \(Y(t) \). We therefore consider families of distributions of the form \(Y = (Y_1, \ldots, Y_n) \) such that for each \(i \), all members of the family have the same marginals \(Y_i \), and we consider how Ω and \(b \) covary through the family. In the theoretical development, marginals are kept constant to understand the influence of synchrony Ω in isolation from other potential influences on \(b \).

To describe the intuition of the mathematical analyses that will be described in detail in section S2, we need a lemma, taken directly from Cohen and Xu [2015]. They cite Oehlert [1992] and Hosmer et al. [2008] pp. 355-358.

Lemma 1. Let \(X \) be a real-valued random variable with finite mean \(E(X) \) and finite variance \(\text{var}(X) \). If a real-valued function \(f \) of real \(x \) is twice differentiable at \(E(X) \), then the delta method gives

\[
f(X) \approx f(E(X)) + (X - E(X))f'(E(X))
\]

\[
E(f(X)) \approx f(E(X)) + \frac{f''(E(X))}{2} \text{var}(X)
\]

\[
\text{var}(f(X)) \approx [f'(E(X))]^2 \text{var}(X).
\]
We now use the lemma with $f(x) = \ln(x)$:

$$\ln(m) \approx \ln(E(m)) + \frac{m - E(m)}{E(m)}$$ \hspace{1cm} (14)

$$\ln(v) \approx \ln(E(v)) + \frac{v - E(v)}{E(v)}$$ \hspace{1cm} (15)

$$\text{var}(\ln(m)) = \frac{\text{var}(m)}{E(m)^2},$$ \hspace{1cm} (16)

where the approximation is good as long as m and v do not vary too much around $E(m)$ and $E(v)$, relative to the range of x for which first- and second-order Taylor expansions of $\ln(x)$ at $E(m)$ and $E(v)$ are good approximations. Therefore,

$$\frac{\text{cov}(\ln(m), \ln(v))}{\text{var}(\ln(m))} \approx \frac{E(m) \text{cov}(m, v)}{E(v) \text{var}(m)}.$$ \hspace{1cm} (17)

But $E(v) = \frac{1}{n-1} \sum_{i=1}^{n} E(Y_i^2) - \frac{n}{n-1} E(m^2)$ and $\text{var}(m) = E(m^2) - E(m)^2$, so $E(m^2) = \text{var}(m) + E(m)^2$ and $E(v) = \frac{1}{n-1} \sum_{i=1}^{n} E(Y_i^2) - \frac{n}{n-1} (\text{var}(m) + E(m)^2) = \frac{n}{n-1} (A - \text{var}(m))$ where $A = \frac{1}{n} \sum_{i=1}^{n} E(Y_i^2) - E(m^2)$.

Thus

$$\frac{\text{cov}(\ln(m), \ln(v))}{\text{var}(\ln(m))} \approx \frac{(n-1)E(m)}{n} \frac{\text{cov}(m, v)}{(A - \text{var}(m)) \text{var}(m)}.$$ \hspace{1cm} (18)

The first factor on the right of this approximation depends only on n and the marginals Y_i and not on their correlations. The quantity A also depends only on marginals. The quantity $\text{var}(m)$, however, equals $\frac{1}{n} \sum_{i,j} \text{cov}(Y_i, Y_j)$, which relates to synchrony Ω and is similar in form to Ω. The expression in (18) therefore provides the intuition behind our analysis: if synchrony (Ω or $\text{var}(m)$) changes and the marginals Y_i remain fixed, then (18) suggests that the slope b will be affected. Since the denominator of (18) is a \cap-shaped function of $\text{var}(m)$, b may be a \cup-shaped function of synchrony, decreasing as synchrony increases for small values of synchrony, and increasing again for larger values of synchrony. These are hypotheses rather than conclusions because $\text{cov}(m, v)$ in the numerator of (18) may also covary with synchrony.

S2 Mathematical analysis of the identically distributed case

S2.1 Setup of an identically distributed model

Assume the Y_i are all identically distributed (but not necessarily independent) with finite $E(Y_i) = M > 0$ and finite $\text{var}(Y_i) = V > 0$. Let $\mu_{ij} = E((Y_i - M)(Y_j - M))$, $\mu_{ijk} = E((Y_i - M)(Y_j - M)(Y_k - M))$, $\mu_{ijkl} = E((Y_i - M)(Y_j - M)(Y_k - M)(Y_l - M))$, and assume these are all finite. Then $\rho_{ij} = \text{cor}(Y_i, Y_j) = \frac{\mu_{ij}}{\sqrt{\mu_{ii} \mu_{jj}}}$.

Also define $\rho_{ijk} = \frac{\mu_{ijk}}{\sqrt{\mu_{iij} \mu_{jj} \mu_{kk}}}$, as in section S1, define $m = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $v = \frac{1}{n-1} \sum_{j=1}^{n} (Y_j - \frac{1}{n} \sum_{i=1}^{n} Y_i)^2 = \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 - \frac{n}{n-1} m^2$ to be the spatial sample mean and variance, and define $\Omega = \frac{1}{n^2} \sum_{ij} \rho_{ij}$ as synchrony.

We aim to understand the influence of ρ_{ij} and Ω on the quantities

$$b = \frac{\text{cov}(\ln(m), \ln(v))}{\text{var}(\ln(m))},$$ \hspace{1cm} (19)

$$\ln(a) = E(\ln(v)) - bE(\ln(m)).$$ \hspace{1cm} (20)

The following analytic development uses as a guide and generalizes the analysis in the supporting information of Cohen and Xu [2015]. The important generalization here is that we no longer assume independence (across space) of the random variables representing populations. Cohen and Xu [2015] also had unequal numbers of sites n_j measured for each time j, but we assume $n_j = n$ for all j.
S2.2 Preparatory lemmas

Lemma 2. For the random variable \(m \) and \(f(x) = \ln(x) \), the approximations from the delta method are

\[
\ln(m) \approx \ln(M) + \frac{m - M}{M} \tag{21}
\]
\[
E(\ln(m)) \approx \ln(M) - \frac{1}{2M^2}V\Omega \tag{22}
\]
\[
\text{var}(\ln(m)) \approx \frac{V\Omega}{M^2} \tag{23}
\]

where \(\Omega = \frac{1}{n^2} \sum_{ij} \rho_{ij} \).

Proof. In the formulas of lemma 1, let \(X = m \) and \(f(x) = \ln(x) \). Then \(f'(x) = \frac{1}{x} \), \(f''(x) = -\frac{1}{x^2} \), \(E(m) = M \), and \(\text{var}(m) = \frac{1}{n^2} \sum_{ij} \mu_{ij} = V\Omega \). Plugging into the formulas gives the desired results. \(\blacksquare \)

If \(\rho_{ij} = 0 \) for all \(i \neq j \) then \(\Omega = \frac{1}{n} \) and the results of lemma 2 reduce to those of lemma 1 of Cohen and Xu [2015] with \(n_j \) set to \(n \) for all \(j \).

Lemma 3. For the random variable \(v \) and \(f(x) = \ln(x) \), we have

\[
E(v) = \frac{nV(1 - \Omega)}{n - 1} \tag{24}
\]
\[
\ln(v) \approx \ln(E(v)) + \frac{v - E(v)}{E(v)} \tag{25}
\]
\[
E(\ln(v)) \approx \ln(E(v)) - \frac{(n - 1)^2 \text{var}(v)}{2n^2V^2(1 - \Omega)^2} \tag{26}
\]
\[
\text{var}(\ln(v)) \approx \frac{(n - 1)^2 \text{var}(v)}{n^2V^2(1 - \Omega)^2} \tag{27}
\]
\[
\text{var}(v) = \frac{n^2 \sum_{ij} \mu_{ij} - 2n \sum_{ijk} \mu_{ijk} + \sum_{ijkl} \mu_{ijkl}}{n^2(n - 1)^2} - (E(v))^2. \tag{28}
\]

Proof.

\[
E(v) = \frac{1}{n - 1} \sum_{i=1}^{n} E(Y_i^2) - \frac{n}{n - 1} E(m^2) \tag{29}
\]
\[
= \frac{1}{n - 1} \sum_{i=1}^{n} (V + M^2) - \frac{n}{n - 1} (\text{var}(m) + M^2) \tag{30}
\]
\[
= \frac{1}{n - 1} \sum_{i=1}^{n} (V + M^2) - \frac{n}{n - 1} (V\Omega + M^2) \tag{31}
\]
\[
= \frac{n}{n - 1} (V + M^2) - \frac{n}{n - 1} (V\Omega + M^2) \tag{32}
\]
\[
= \frac{Vn(1 - \Omega)}{n - 1}. \tag{33}
\]

Now plugging into one of the formulas of lemma 1 with \(X = v \) and \(f(x) = \ln(x) \) gives the approximate equations for \(\ln(v) \), \(E(\ln(v)) \), and \(\text{var}(\ln(v)) \) in terms of \(\text{var}(v) \). To work out \(\text{var}(v) \) in terms of the moments and co-moments of the \(Y_i \), note

\[
\text{var}(v) = E(v^2) - E(v)^2 \tag{34}
\]
\[
= E(v^2) - \left(\frac{nV(1 - \Omega)}{n - 1} \right)^2. \tag{35}
\]
Define $Z_i = Y_i - M$. Then

$$v = \frac{1}{n-1} \sum_{i=1}^{n} Z_i^2 - \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} Z_i \right)^2$$

(36)

$$= \frac{n \sum_{i=1}^{n} Z_i^2 - (\sum_{i=1}^{n} Z_i)^2}{n(n-1)}.$$

(37)

Squaring this and taking the expectation gives

$$E(v^2) = \frac{n^2 E((\sum_{i=1}^{n} Z_i^2)^2) - 2n E((\sum_{i=1}^{n} Z_i^2)(\sum_{i=1}^{n} Z_i)^2) + E((\sum_{i=1}^{n} Z_i)^4)}{n^2(n-1)^2}$$

(38)

$$= \frac{n^2 \sum_{ij} \mu_{ij} - 2n \sum_{ijk} \mu_{ijk} + \sum_{ijkl} \mu_{ijkl}}{n^2(n-1)^2}.$$

(39)

Plugging this into (35) gives the result for $\text{var}(v)$. □

If the Y_i are independent, then the results of lemma 3 reduce to those of lemma 2 of Cohen and Xu [2015] with n_j set to n for all j.

The approximations of lemmas 2 and 3 are better when the spreads of the random variables m and v are small relative to the curvature of the natural logarithm at $E(m)$ and $E(v)$, respectively. Typically, larger values of n will reduce the spread, but this spread will not necessarily decline to zero in the limit of large n. So approximations will not necessarily become arbitrarily good for larger n. For instance, $\text{var}(m) = V\Omega = \frac{V}{n^2} \sum_{ij} \rho_{ij}$. If $\rho_{ij} = \rho$ for all $i \neq j$, this expression reduces to $\text{var}(m) = \frac{V}{n^2}(n+n(n-1)\rho) = V\left(\frac{1}{n} + \frac{n-1}{n} \rho\right)$, which goes to $V\rho$ as n goes to infinity.

The delta method approximations (21) and (25) are considered “good” when $\sqrt{\text{var}(m)}$ and $\sqrt{\text{var}(v)}$ are smaller than a value proportional to one over the square root of the curvature of the natural logarithm at $E(m)$ and $E(v)$, respectively. The proportionality constant used here controls the “goodness” threshold desired. The curvature of $\ln(x)$ is asymptotically $1/x^2$ for large x, so comparing $\sqrt{\text{var}(m)}$ and $\sqrt{\text{var}(v)}$ to $E(m)$ and $E(v)$, respectively, indicates the quality of the delta method approximations. We have formulas for all these quantities. Approximations are asymptotically perfect in any limit which causes the ratios $\sqrt{\text{var}(m)}/E(m) = \sqrt{V\Omega}/M$ and $\sqrt{\text{var}(v)}/E(v)$ to decline to zero.

Lemma 4. The covariance of m and v is

$$\text{cov}(m, v) = \frac{1}{n(n-1)} \left(\Sigma_{ij} \mu_{ij} - \frac{1}{n} \Sigma_{ijk} \mu_{ijk} \right).$$

(40)

Proof. In the iid case, the result is $\text{cov}(m, v) = \frac{\mu_3}{n}$, as proved (though not originally) by Zhang [2007] and cited by Cohen and Xu [2015] (their lemma 3). The quantity μ_{iii} does not depend on i because the Y_i are identically distributed. Cohen and Xu [2015] denote this quantity μ_3. The beginning of the proof of Zhang [2007] also holds in our non-independent case: $\text{cov}(m, v) = \frac{1}{n(n-1)} (I_1 - I_2)$, where I_1 and I_2 are defined by Zhang [2007] as

$$I_1 = E(\Sigma_{i=1}^{n} Z_i \Sigma_{j=1}^{n} Z_j^2)$$

(41)

$$I_2 = \frac{1}{n} E(\Sigma_{i=1}^{n} Z_i (\Sigma_{j=1}^{n} Z_j)^2)$$

(42)

where $Z_i = Y_i - M$. We then compute

$$I_1 - I_2 = \Sigma_{ij} E(Z_i Z_j^2) - \frac{1}{n} \Sigma_{ijk} E(Z_i Z_j Z_k),$$

(43)

and therefore (40) holds. This expression reduces to the earlier result of Cohen and Xu [2015] in the iid case. □
Theorem 5. Given the definitions and assumptions listed in section S2.1, and with the expression for \(\text{var}(v) \) given in lemma 3,

\[
b \approx \tilde{b} = \left(\frac{M \mu_{iii}}{V^2} \right) \left(\frac{\Sigma_{ij} \rho_{ijj} - \frac{1}{n} \Sigma_{ijk} \rho_{ijk}}{n^2(1 - \Omega) \Omega} \right)
\]

\[
= \left(\frac{M \mu_{iii}}{V^2} \right) \left(\frac{n - 1}{n^2(1 - \Omega) \Omega} \right) \left(\frac{1}{n - 1} \Sigma_{ij} \rho_{ijj} - \frac{1}{n(n - 1)} \Sigma_{ijk} \rho_{ijk} \right)
\]

\[
= M \left(\frac{E \left(\sum_i (Y_i - M) \sum_j (Y_j - M)(Y_j - m) \right)}{V^2} \right)
\]

\[
\ln(a) \approx \ln \left(\frac{nV(1 - \Omega)}{n - 1} \right) - \frac{(n - 1)^2 \text{var}(v)}{2n^2V^2(1 - \Omega)^2} - \tilde{b} \left(\ln(M) - \frac{1}{2M^2V\Omega} \right).
\]

Approximations are better, respectively asymptotically perfect, when the delta method approximations (21) and (25) are better, respectively asymptotically perfect, and this occurs as described in the text following lemma 3.

The first factor of (44) is the iid result for \(b \) of Cohen and Xu [2015]. In the iid case, \(\rho_{ij} = 0 \) for all \(i \neq j \), and \(\rho_{ijk} = 0 \) whenever \(i, j \) and \(k \) are not all equal, and (44) reduces to

\[
b \approx \left(\frac{M \mu_{iii}}{V^2} \right) \frac{n - \frac{1}{n} n\frac{n}{n - 1}}{n^2(1 - \frac{1}{n}) \frac{3}{n}} = \frac{M \mu_{iii}}{V^2}
\]

which is the result of Cohen and Xu [2015]. This result holds for weaker assumptions than the full independence assumed by Cohen and Xu [2015], namely, \(\rho_{ij} = 0 \) for \(i \neq j \), \(\rho_{ijk} = 0 \) for \(i, j, k \) not all equal.

The denominator of the second factor of (44) depends only on synchrony, and therefore suggests how synchrony affects the TL slope. The iid result of Cohen and Xu [2015] shows that third-order moments and co-moments are also involved when they are non-zero.

Equation (45) emphasizes the separate effects of synchrony (\(\Omega \)) and the third-order co-moments, as follows. If \(\rho_{ij} = 0 \) for all \(i \neq j \) (no synchrony) then the second factor in (45) is 1. If \(\rho_{ijk} = 0 \) whenever \(i, j, k \) are not all equal, then the third factor in (45) is 1. So the second factor gives the effects of synchrony on TL slope and the third factor gives the effects of higher moments. The second factor of (45) has its minimum for \(\Omega = \frac{1}{2} \). So (45) may suggest that TL slope may be shallower for larger values of synchrony up to \(\Omega = \frac{1}{2} \), and then for \(\Omega > \frac{1}{2} \), TL slope should get steeper again. However, this will hold only if the \(\rho_{ijk} \) do not change simultaneously to counteract the effects of \(\Omega \), which they can (see Results and below for examples).

Equation (46) offers an alternative interpretation and is in some ways more intuitive because only two subscript indices appear explicitly instead of the three in (44) and (45). The expression \(\sum_i (Y_j - M)(Y_j - m) \) is proportional to a hybrid form of the sample variance: typically sample variance uses \(M \) in both factors or \(m \) in both factors, whereas this expression uses one of each.

Our theorem provides some simple intuition about why higher synchrony reduced the spatial TL slope \(b \). Independent draws \(y_1, \ldots, y_n \) from a right-skewed probability density function \(\psi(y) \) will tend to produce larger sample variances when they produce larger sample means [Cohen and Xu, 2015] because the probability mass in the right portion of the distribution is more “spread out” than that in the left portion. For instance, as a simplified illustration, consider \(n \) independent draws conditional on all values being smaller than the median \(M_d \) of \(\psi(y) \); compared to \(n \) independent draws conditional on all values being bigger than \(M_d \). This is the same as drawing instead from the distributions \(\psi_<(y) \) or \(\psi_>(y) \), where the subscripts refer to density functions that are proportional to \(\psi(y) \) below (respectively, above) \(M_d \),
but that have been set to zero above (respectively, below) \(M_d \). The right skew of \(\psi(y) \) means that not only the mean but also the variance of \(\psi(y) \) should be less than the mean and variance, respectively, of \(\psi(y) \). This thought experiment shows that synchrony mitigates the influence of higher means on higher variances by forcing the points \(y_1, \ldots, y_n \) to be positively correlated, reducing the variance of the sample when the mean is larger. If the range of variation of the sample mean is small (e.g., because the variability of the sample mean decreases as the sample size increases), the log(variance)-versus-log(mean) plot should be linear as a tangent approximation to whatever the smooth underlying non-linear relation may be, as Cohen and Xu [2015] pointed out.

Proof. Starting with the numerator of (19), by lemmas 2 and 3, we have

\[
\text{cov} (\ln(m), \ln(v)) \approx \text{cov} \left(\ln(M) + \frac{m - M}{M}, \ln \left(\frac{nV(1 - \Omega)}{n - 1} \right) + \frac{v - \frac{nV(1 - \Omega)}{n - 1}}{nV(1 - \Omega)} \right) \tag{49}
\]

\[
\approx \text{cov} \left(\frac{m - M}{M}, \frac{v - \frac{nV(1 - \Omega)}{n - 1}}{nV(1 - \Omega)} \right) \tag{50}
\]

\[
= \frac{n - 1}{M n V (1 - \Omega)} \text{cov} \left(m - M, v - \frac{nV(1 - \Omega)}{n - 1} \right) \tag{51}
\]

\[
= \frac{n - 1}{M n V (1 - \Omega)} \text{cov}(m, v). \tag{52}
\]

By lemma 4, this is

\[
\text{cov}(\ln(m), \ln(v)) \approx \frac{\Sigma_{ij} \mu_{ijj} - \frac{1}{n} \Sigma_{ijk} \mu_{ijk}}{M n^2 V (1 - \Omega)}. \tag{53}
\]

The denominator of (19) was given in lemma 2, so

\[
b \approx \frac{\Sigma_{ij} \mu_{ijj} - \frac{1}{n} \Sigma_{ijk} \mu_{ijk}}{M n^2 V (1 - \Omega) \text{var}(\ln(m))} \tag{54}
\]

\[
\approx \frac{M (\Sigma_{ij} \mu_{ijj} - \frac{1}{n} \Sigma_{ijk} \mu_{ijk})}{n^2 V^2 (1 - \Omega) \Omega} \tag{55}
\]

\[
= \left(\frac{M}{V^2} \right) \left(\frac{\Sigma_{ij} \mu_{ijj} - \frac{1}{n} \Sigma_{ijk} \mu_{ijk}}{n^2 (1 - \Omega) \Omega} \right) \tag{56}
\]

\[
= \left(\frac{M \mu_{iii}}{V^2} \right) \left(\frac{\Sigma_{ij} \rho_{ijj} - \frac{1}{n} \Sigma_{ijk} \rho_{ijk}}{n^2 (1 - \Omega) \Omega} \right), \tag{57}
\]

giving (44). Then (45) follows by algebraic manipulation and (46) follows from

\[
\sum_{ij} \mu_{ijj} - \frac{1}{n} \sum_{ijk} \mu_{ijk} = \frac{1}{n} \sum_{ij} \mu_{ijj} - \frac{1}{n} \sum_{ijk} \mu_{ijk} = \frac{1}{n} \sum_{ijk} (\mu_{ijj} - \mu_{ijk}). \tag{58}
\]

But

\[
\mu_{ijj} - \mu_{ijk} = \text{E} \left((Y_i - M)(Y_j - M)^2 - (Y_j - M)(Y_k - M) \right) \tag{59}
\]

\[
= \text{E} ((Y_i - M)(Y_j - M)(Y_j - M) - (Y_k - M)) \tag{60}
\]

\[
= \text{E} ((Y_i - M)(Y_j - M)(Y_j - Y_k)). \tag{61}
\]
Therefore
\[
\sum_{ij} \mu_{ij} - \frac{1}{n} \sum_{ijk} \mu_{ijk} = \frac{1}{n} \sum_{ijk} (\mu_{ij} - \mu_{ijk}) = \frac{1}{n} \sum_{ij} (Y_i - M) \sum_j (Y_j - M) \frac{1}{n} \sum_k (Y_j - Y_k) = \frac{1}{n} \sum_i (Y_i - M) \sum_j (Y_j - M)(Y_j - m).
\] (62)

Plugging this in to (56) gives (46). The expression for \(\ln(a)\) follows by plugging results of lemmas 2 and 3 into (20).

S3 Cases: Distributions constructed using Gaussian copulas and identically distributed marginals

We want to construct a multivariate random variable \((Y_1, \ldots, Y_n)\) such that the \(Y_i\) are identically distributed with some given distribution, and such that we can control the correlation between \(Y_i\) and \(Y_j\), for all \(i \neq j\), with a parameter, \(\rho\). One of many ways to do this follows. Let \(X = (X_1, \ldots, X_n)\) be a multivariate normal random variable with mean \((0, \ldots, 0)\) and covariance matrix with diagonal entries 1 and off-diagonal entries \(\rho \geq 0\). We let \(Y_i = \varphi(X_i)\), where \(\varphi\) is a transformation that transforms a standard normal variable to one distributed as desired. By construction the \(Y_i\) are identically distributed, and larger values of \(\rho\) mean larger values of \(\text{cor}(Y_i, Y_j)\), which is common to all pairs \(i, j\) with \(i \neq j\). This amounts to controlling the dependence among the \(Y_i\) using Gaussian copulas. Simulating draws from \((Y_1, \ldots, Y_n)\) is straightforward and reasonably efficient within any computing system containing a multivariate random normal distribution sampler (e.g., the R programming language, which has the function rmvnorm in the package mvtnorm). Simulations were thus used to evaluate the relationship between mean-variance relationships (e.g., TL) and synchrony for \(Y\) Poisson, negative binomial, gamma, exponential, chi-squared, normal, and log-normal distributions. Plots were generated as described in section S6, see figures S1 on page 23 to S32 on page 54. These are discussed in batches by marginal distribution family below. There are multiple parameterizations of the negative binomial and gamma distributions. For the negative binomial distribution, we used \(\psi(k) = \binom{k+r-1}{k} (1-p)^{r} p^{k}\). For the gamma distribution, we used \(\psi(x) = \frac{\beta^\alpha x^{\alpha-1} \exp(-\beta x)}{\Gamma(\alpha)}\), for shape and rate parameters \(\alpha\) and \(\beta\). For Poisson and negative binomial marginals (figures S1 on page 23 through S10 on page 32), although substantial curvature and heteroskedasticity and noticeable granularity in \(\log(v)\)-versus-\(\log(m)\) plots were evident for marginal distributions with small means, TL was typically otherwise approximately valid, i.e., \(\log(v)\)-versus-\(\log(m)\) were reasonably linear. There was a general tendency for \(b\) to be smaller for larger values of \(\rho\).

For \(Y_i\) a gamma distribution (or other continuous distributions - see below), approximate partially analytic results can also be obtained using (56). The moments \(M, V, \text{ and } \mu_{ii}\) are well known in this case. The moments \(\mu_{ij}, \mu_{iij}\) and \(\mu_{ijk}\), for \(i, j, k\) distinct, were computed numerically by evaluating the integrals corresponding to their definitions, for instance,
\[
\mu_{ijk} = \text{E}((Y_i - M)(Y_j - M)(Y_k - M)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\varphi(x_i) - M)(\varphi(x_j) - M)(\varphi(x_k) - M) \Psi(x_i, x_j, x_k) dx_i dx_j dx_k, \tag{66}
\]
where \(\Psi\) is the pdf of \(X\). This calculation used the function cuhre in the R2Cuba package in the R programming language. That function reports estimates of error in its computations, which were retained.
and propagated through subsequent algebraic manipulations to yield estimates of the resulting error in calculating (56). Typically errors were very small. A similar approach could not easily have been used for the Poisson or negative binomial distributions (above), because the performance of the R2Cuba package for non-continuous pdfs was not expected to be sufficient.

For gamma marginals (figures S11 on page 33 to S16 on page 38), the approximation (56) always captured the decline in the slope b with larger values of ρ. The approximation was quantitatively accurate for larger values of α and smaller values of ρ. Statistically significant curvature or heteroskedasticity were sometimes evident in $\log(v)$-versus-$\log(m)$ for smaller values of α and larger values of ρ, but curvature was a much smaller feature of $\log(v)$-versus-$\log(m)$ plots than was the overall trend. In all cases the slope b was markedly smaller for larger values of ρ.

Results for distributions with exponential marginals (figures S17 on page 39 to S18 on page 40) were similar to the gamma results in all respects, except that modest, statistically significant curvature or heteroskedasticity was detectable for all values of the exponential parameter λ considered, except at the lowest values of ρ. The approximation (56) always captured the decline in the slope b with larger values of ρ, but it was quantitatively accurate only for the smallest values of ρ.

Results for distributions with chi-squared marginals (figures S19 on page 41 to S20 on page 42) were similar to the gamma results in all respects, except that modest, statistically significant curvature or heteroskedasticity of the $\log(v)$-versus-$\log(m)$ relationship was detectable for all values of the chi-squared parameter ρ considered, except at the lowest values of ρ. The approximation (56) always captured the decline in the slope b with larger values of ρ, but it was quantitatively accurate only for the smallest values of ρ.

For Y_i a normal or log-normal distribution, the moments M, V, μ_{iii}, μ_{ij}, μ_{iij} and μ_{ijk} for i, j, k distinct are known in closed form, facilitating approximate analytic results via (56). These moments for Y_i a normal distribution are in standard statistics texts, and lead to $b \approx 0$ via equation (56). For the log-normal distribution obtained using $\varphi(x) = \exp(\mu + \sigma x)$, it is well-known that $M = \exp(\mu + \sigma^2/2)$, $V = (\exp(\sigma^2) - 1)\exp(2\mu + \sigma^2)$, and $\mu_{iii} = \exp(3\mu + 3\sigma^2/2)(\exp(\sigma^2) - 1)^2(\exp(\sigma^2) + 2)$. Letting $Z_i = \mu + \sigma Y_i$, it is also well known that the moment generating function for $Z = (Z_1, \ldots, Z_n)$ is $M_Z(t_n) = E(\exp(t_n^T Z)) = \exp(t_n^T \mu + \frac{1}{2}t_n^T \Sigma t_n)$, where t_n is an n-dimensional vector of non-negative integers, $\bar{\mu} = (\mu, \ldots, \mu)$, a superscript T denotes transpose, and Σ is the covariance matrix of Z (an n-by-n matrix with diagonal entries σ^2 and off-diagonal entries $\sigma^2 \rho$). Applying the earlier expression for $E(Y_i) = M = \exp(\mu + \sigma^2/2)$ and using the moment generating function,

$$
\mu_{ij} = E((Y_i - E(Y_i))(Y_j - E(Y_j)))
$$

$$
= E(Y_iY_j) - E(Y_i)E(Y_j)
$$

$$
= E(Y_iY_j) - \exp(2\mu + \sigma^2)
$$

$$
= E(\exp(Z_i)\exp(Z_j)) - \exp(2\mu + \sigma^2)
$$

$$
= E(\exp(Z_i + Z_j)) - \exp(2\mu + \sigma^2)
$$

$$
= E(\exp((\epsilon_i + \epsilon_j)^T Z)) - \exp(2\mu + \sigma^2)
$$

$$
= \exp((\epsilon_i + \epsilon_j)^T \bar{\mu} + \frac{1}{2}(\epsilon_i + \epsilon_j)^T \Sigma (\epsilon_i + \epsilon_j)) - \exp(2\mu + \sigma^2)
$$

$$
= \exp(2\mu + \sigma^2)[\exp(\sigma^2 \rho) - 1],
$$

where ϵ_i is the n-dimensional vector consisting of all zeros except for a 1 in the ith component. We use
the same techniques to calculate μ_{ijk}. For i, j, k distinct and skipping algebraic manipulations, we have

$$
\mu_{ijk} = E((Y_i - E(Y_i))(Y_j - E(Y_j))(Y_k - E(Y_k)))
= E(Y_i Y_j Y_k) - E(Y_i Y_j)E(Y_k) - E(Y_i Y_k)E(Y_j) - E(Y_j Y_k)E(Y_i) + 2E(Y_i)E(Y_j)E(Y_k)
= E(Y_i Y_j Y_k) - 3E(Y_i Y_j)E(Y_k) + 2\exp(3\mu + 3\sigma^2/2)
= E(Y_i Y_j Y_k) - 3\exp((e_i + e_j)^T \mu + \frac{1}{2}(e_i + e_j)^T \Sigma(e_i + e_j)) \exp(\mu + \sigma^2/2) + 2\exp(3\mu + 3\sigma^2/2)
= E(Y_i Y_j Y_k) - 3\exp(2\mu + \sigma^2 + \rho \sigma^2) \exp(\mu + \sigma^2/2) + 2\exp(3\mu + 3\sigma^2/2),
$$

where

$$
E(Y_i Y_j Y_k) = E(\exp(Z_i + Z_j + Z_k))
= \exp((e_i + e_j + e_k)^T \mu + \frac{1}{2}(e_i + e_j + e_k)^T \Sigma(e_i + e_j + e_k))
= \exp(3\mu + (3\sigma^2 + 6\rho \sigma^2)/2).
$$

Combining gives $\mu_{ijk} = \exp(3\mu + (3\sigma^2 + 6\rho \sigma^2)/2) - 3\exp(2\mu + \sigma^2 + \rho \sigma^2) \exp(\mu + \sigma^2/2) + 2\exp(3\mu + 3\sigma^2/2)$. Using the same approach, it is straightforward to compute, for $i \neq j$, $\mu_{ijj} = \exp(3\mu + 5\sigma^2/2 + 2\rho \sigma^2) - 2\exp(3\mu + 3\sigma^2/2 + \rho \sigma^2) - \exp(3\mu + 5\sigma^2/2) + 2\exp(3\mu + 3\sigma^2/2)$. This leads to

$$
b \approx \left(\frac{1}{n\Omega}\right) \left(\frac{\exp(\sigma^2(\rho + 1)) - 2\exp(2\rho \sigma^2) - n + \exp(2\sigma^2) + n\exp(2\rho \sigma^2)}{(\exp(\sigma^2) - 1)(\exp(\sigma^2) + 2)}\right),
$$

the first factor of which indicates that b decreases as Ω increases as long as the numerator of the second factor does not modify or eliminate that apparent relationship.

Results for distributions with normal marginals (figures S21 on page 43 through S26 on page 48) always showed no relationship between $\log(v)$ and $\log(m)$. The value $b \approx 0$ was always obtained, as expected.

Results for distributions with log-normal marginals (figures S27 on page 49 through S32 on page 54) always supported TL (the $\log(v)$)-versus-$\log(m)$ relationship was always approximately linear, with statistical tests generally failing to reject the hypotheses of linearity and homoskedasticity), and b was smaller for larger values of ρ. For $\sigma = 0.1$, (56) was a qualitatively and quantitatively good approximation. For $\sigma = 0.5$, equation (56) qualitatively reflected the same dependence of b on ρ as simulations, but was not quantitatively accurate. For larger values of σ, (56) was neither qualitatively nor quantitatively accurate.

We carried out independent tests of the accuracy of the delta method approximations for the continuous distributions considered above using the ideas in the text immediately preceding lemma 4. As explained there, the delta method approximations were considered “good” when $\sqrt{\text{var}(m)} = \sqrt{V \Omega}$ and $\sqrt{\text{var}(v)}$ are smaller than values proportional to $E(m) = M$ and $E(v)$, respectively, where the level of “goodness” required is determined by the choice of the constant of proportionality. We used proportionality constant 0.5, requiring $\sqrt{V \Omega} \leq M/2$ and $\sqrt{\text{var}(v)} \leq E(v)/2$ for the approximation to be deemed adequate. All the quantities in these inequalities are simple functions of the moments already computed as described in the previous paragraphs, except for $\text{var}(v)$. Rather than using lemma 3 to approximate $\text{var}(v)$, which would have required that we compute fourth-order moments numerically, we used the sample variance of all sample variances computed in the numeric analysis (see section S6). A second, numeric method of assessing the accuracy of the delta method approximations was also used, described in section S6. Results of assessing the accuracy of delta method approximations are shown on plots in sections S8 and S10, as described in section S6.
S4 Cases: Distributions constructed using Gaussian copulas and non-
identically distributed marginals

As in section S3, we constructed a multivariate random variable \(Y = (Y_1, \ldots, Y_n) \) using techniques that amount to the use of Gaussian copulas, but we no longer required that the \(Y_i \) are identically distributed. We did require that they all come from the same family of distributions, e.g., they are all normally distributed, or all gamma distributed, etc.

Letting \(X = (X_1, \ldots, X_n) \) be a multivariate normal random variable with mean \((0, \ldots, 0)\) and covariance matrix with diagonal entries 1 and off-diagonal entries \(\rho \), we let \(Y_i = \varphi_i(X_i) \), where \(\varphi_i \) are transformations that produce the desired marginal distributions. The parameter \(\rho \) controls the degree of synchrony. Simulations were used to evaluate the effects of synchrony on \(\log(v) \)-versus-\(\log(m) \) relationships for \(Y_i \) obeying gamma, normal, exponential, log-normal, chi-squared, Poisson, and negative binomial distributions.

The initial general procedure for gamma, normal, exponential, and log-normal marginals was to consider \(Y \) such that \(Y_i \) is distributed in the same way as \(f_iY \) for \(f_i > 0 \) for \(i = 2, \ldots, n \). For each of these families of distributions, requiring that \(Y_1 \) is in the family is sufficient to guarantee that \(Y_i \) is also in the family. This is not true for the negative binomial, Poisson, or chi-squared families. They are treated in different ways, described below.

For gamma distributions, for a variety of different \(Y_1 \), we used \(f_i = 1 + (i - 1)/4 \) (results in figures S35 on page 57 through S40 on page 62). For exponential distributions, for a variety of different \(Y_1 \), we used \(f_i = i \) (results in figure S41 on page 63 through S42 on page 64). We also used \(f_i = i \) for normal distributions (results in figures S45 on page 67 through S50 on page 72) and for log-normal distributions (results in figures S51 on page 73 through S56 on page 78).

In all cases, TL was qualitatively validated: although more than 5% of tests for heteroskedasticity or curvature often rejected their null hypotheses with 95% confidence, curvature and heteroskedasticity were modest, and visually undetectable in most \(\log(v) \)-versus-\(\log(m) \) plots. In all cases, TL slope initially decreased as \(\rho \) increased from 0. For larger values of \(n \), this initial decrease was steeper. For \(\rho \gg 0 \), \(\log(v) \)-versus-\(\log(m) \) simulations clustered very tightly around a linear regression line, i.e., residuals were very small.

For all the distributions, in the limit as \(\rho \to 1 \), we approach the case \(Y_i = f_iY_1 \). In this case, \(m = \text{mean}_i(Y_i) = \text{mean}_i(f_iY_1) = Y_1\text{mean}_i(f_i) \), and \(v = \text{var}_i(Y_i) = \text{var}_i(f_iY_1) = Y_1^2\text{var}_i(f_i) \). Therefore, \(\log(v) = 2\log(Y_1) + \log(\text{var}_i(f_i)) \), \(\log(m) = \log(Y_1) + \log(\text{mean}_i(f_i)) \), and \(\log(v) = 2\log(m) - 2\log(\text{mean}_i(f_i)) + \log(\text{var}_i(f_i)) \). Thus in the limit as \(\rho \to 1 \), we expect a perfect TL, with slope 2, as the plots cited above showed: middle panels in plots showed TL slopes approaching 2, while TL root mean square errors approached zero, as \(\rho \) approached 1. Sometimes the TL slope approached 2 from above, sometimes from below. Sometimes the overall pattern of dependence of TL slope on \(\rho \) was \(\cup \)-shaped, i.e., exhibiting an initial decrease, followed by a minimum, followed by an increase. Sometimes the overall pattern was a monotonic decline.

For the negative binomial distribution, it is not true that if \(Y_1 \) is in the family, then \(f_iY_1 \) is in the family for a positive constant \(f_i \). To provide examples with negative binomial marginals, we constructed negative binomial distributions \(Y_i \) with means \(\mu_i \) and standard deviations \(\sigma_i \) such that \(\mu_i = f_i\mu_1 \) and \(\sigma_i = f_i\sigma_1 \) for positive constants \(f_i \), \(i = 2, \ldots, n \). For a variety of negative binomial distributions \(Y_1 \) (with parameters \(r_1 \) and \(p_1 \)) in separate runs, we used the well-known formulas for the mean and standard deviation of a negative binomial distribution, \(\mu_1 = \frac{r_1p_1}{1-p_1} \) and \(\sigma_1 = \sqrt{\frac{r_1p_1}{(1-p_1)^2}} \). We then assigned \(\mu_i = \mu_1 + (i - 1)/4 \) for \(i = 2, \ldots, n \) when \(n = 25 \), and \(\mu_i = \mu_1 + (i - 1)/16 \) for \(i = 2, \ldots, n \) when \(n = 100 \), implicitly defining the \(f_i = \mu_i/\mu_1 \). We then defined \(\sigma_i = f_i\sigma_1 \), and let \(Y_i \) be the negative binomial distribution with mean \(\mu_i \) and standard deviation \(\sigma_i \), for \(i = 1, \ldots, n \). It is straightforward to show that there is exactly one such a negative binomial distribution. Results are in figures S57 on page 79 to S64 on page 86.

It is not possible to have Poisson or chi-squared distributions \(Y_i \) with \(\mu_i = f_i\mu_1 \) and \(\sigma_i = f_i\sigma_1 \). This would make \(\mu_i \) proportional to \(\sigma_i \). But for the Poisson family, \(\mu_i = \lambda_i \) and \(\sigma_i = \sqrt{\lambda_i} \), so \(\sigma_i = \sqrt{\mu_i} \), and for
the chi-squared family, $\mu_i = k_i$ and $\sigma_i = \sqrt{2k_i}$, so $\sigma_i = \sqrt{2\mu_i}$, showing that proportionality does not occur in these families. If Y_1 is a chi-squared distribution, and therefore is also a gamma distribution, then f_Y is a gamma distribution; but it is not necessarily also a chi-squared distribution. We nevertheless tried Poisson distributions with a variety of choices for λ_1 and with $\lambda_i = \lambda_1 + i - 1$. Results are in figures S33 on page 55 to S34 on page 56. We also tried chi-squared distributions with a variety of choices for k_1 and with $k_i = k_1 + i - 1$. Results are in figures S43 on page 65 to S44 on page 66.

For Poisson and chi-squared examples, TL was a reasonable approximation, and the slope b declined steeply as ρ increased from 0 and continued to decline across the whole range of ρ. Negative binomial examples often strongly violated the linear hypothesis of TL for larger values of ρ.

S5 Cases: Distributions constructed using sums and identically distributed marginals

We applied the well-known “common elements” method [Fischer, 1933] of constructing a multivariate random variable (Y_1, \ldots, Y_n) such that the Y_i are identically distributed according to some specified distribution, and such that $\text{cor}(Y_i, Y_j) = \rho$ for $i \neq j$. For several common distributions, we defined independent random variables X, X_i, for $i = 1, \ldots, n$ and let $Y_i = X + X_i$. Because X is a summand in all the Y_i, the Y_i are correlated as desired. The approach leads to analytic results about the relationship between the log(v)-versus-log(m) relationship and synchrony.

To generate Poisson-distributed Y_i with parameters $E(Y_i) = \lambda$ for all i, let X and X_i for $i = 1, \ldots, n$ be independent Poisson random variables with parameters $E(X) = \text{var}(X) = \lambda\rho$ and $E(X_i) = \text{var}(X_i) = \lambda(1 - \rho)$, respectively. Defining $Y_i = X + X_i$, it is well-known that Y_i is Poisson distributed, because the summands are independent, and $E(Y_i) = E(X) + E(X_i) = \lambda\rho + \lambda(1 - \rho) = \lambda$, as desired. Also, for $i \neq j$,

$$\text{cor}(Y_i, Y_j) = \frac{\text{cov}(Y_i, Y_j)}{\lambda} = \frac{\text{cov}(X + X_i, X + X_j)}{\lambda} = \frac{E(X)}{\lambda} = \rho,$$

as desired. Simulating draws from (Y_1, \ldots, Y_n) is straightforward and computationally efficient.

To evaluate the formulas of theorem 5, we need the moments M, V, μ_{ij}, μ_{iii}, μ_{ijj}, and μ_{ijk} for i, j, and k distinct. By construction, $M = V = \lambda$ and $\mu_{ij} = \rho\lambda$. The third central moment of a Poisson distribution of mean λ is well known, $\mu_{iii} = \lambda$. The moments

$$\mu_{ijj} = \rho$$

$$\mu_{ijk} = \rho$$

were computed by starting with the definitions $\mu_{ijj} = E((Y_i - \lambda)(Y_j - \lambda)^2)$ and $\mu_{ijk} = E((Y_i - \lambda)(Y_j - \lambda)(Y_k - \lambda))$, substituting $Y_i = X_i + X$, and using the Matlab symbolic mathematics toolbox.

Plugging the moments into (56) and simplifying gives

$$b \approx \left(\frac{M\mu_{iii}}{V^2} \right) \left(\frac{1}{n\Omega} \right) = \frac{1}{n\Omega},$$

which decreases with increasing Ω. The decline of b with increasing Ω is more rapid for larger values of n.

We assessed the accuracy of the delta method approximations analytically. As explained in the text immediately preceding lemma 4, we say that the delta method approximations are “good” when $\sqrt{\text{var}(m)} = \sqrt{V\Omega}$ and $\sqrt{\text{var}(v)}$ are smaller than values proportional to $E(m) = M = \lambda$ and $E(v)$, respectively, where the level of “goodness” required is determined by the choice of the constant of proportionality. We used proportionality constant 0.5, requiring $\sqrt{V\Omega} \leq M/2$ and $\sqrt{\text{var}(v)} \leq E(v)/2$ for the approximation to be deemed adequate. The first inequality becomes $\Omega \leq \lambda/4$ and the second becomes $\text{var}(v) \leq E(v)^2/4$. To analyze the second inequality, we produced analytic expressions for the moments
\(\mu_{iii} \), \(\mu_{ijj} \), \(\mu_{iiij} \), \(\mu_{ijjk} \) and \(\mu_{ijkl} \) (for \(i, j, k, l \) distinct) appearing in (28) for \(\text{var}(v) \), beginning from the definitions of these quantities, and using the Matlab symbolic mathematics toolbox. Moments were

\[
\begin{align*}
\mu_{iii} &= \lambda(3\lambda + 1) \\
\mu_{ijj} &= \lambda(2\lambda\rho^2 + \rho + \lambda) \\
\mu_{iiij} &= \lambda\rho(3\lambda + 1) \\
\mu_{ijjk} &= \lambda\rho(\lambda + 2\lambda\rho + 1) \\
\mu_{ijkl} &= \lambda\rho(3\lambda\rho + 1).
\end{align*}
\]

We plugged these into (28) and simplified, obtaining \((\lambda(1 - \rho)(n + 2\lambda n - 2\lambda n\rho - 1))/(n(n - 1)) \leq (\lambda(1 - \rho))^2/4 \) as an explicit form of the inequality \(\text{var}(v) \leq E(v)^2/4 \). For verification, we also assessed the accuracy of the delta method approximations numerically, as described in section S6.

Plots for Poisson examples are in figures S65 on page 87 to S66 on page 88. We conclude that 1) the analytic approximation illustrates the overall shape of the relationship between \(b \) and \(\Omega \), 2) larger values of synchrony \(\Omega \) decreased values of the slope \(b \) of the \(\log(v) \)-versus-\(\log(m) \) relationship, 3) the slope \(b \) goes to zero for large \(\Omega \), and 4) the decrease in \(b \) with increasing \(\Omega \) happens faster for larger \(n \), as predicted by the analytic results.

However, additional observations eclipsed these. Simulations often did not obey TL for \(\Omega > 0 \): the relationship between \(\log(v) \) and \(\log(m) \) was, for many parameters, nonlinear and/or heteroskedastic. The above conclusions pertain to the \(\log(v) \)-versus-\(\log(m) \) relationship, which was often not described by TL (which postulates linearity). The example \(\log(v) \)-versus-\(\log(m) \) plots in figures S65 on page 87 to S66 on page 88 show that values of \(\Omega > 0 \) modified the TL pattern that occurs for \(\Omega = 0 \) by smearing points rightward in \(\log(v) \)-versus-\(\log(m) \) space, decreasing \(b \).

The same analytic strategy was applied to other distributions. Let \(X \) be negative binomially distributed with parameters \(r_X = pr \) and \(p \), and let the \(X_i \) be independent (with respect to each other and \(X \)) negative binomials with parameters \(r_i = r - r_X = r(1 - \rho) \) and \(p \). Defining \(Y_i = X + X_i \), it is known that \(Y_i \) is negative binomial with parameters \(r_X + r_i = r \) and \(p \), as desired; it is also easy to show, since the variance of a negative binomial with parameters \(r \) and \(p \) is \(pr/(1 - p)^2 \), that \(\text{cor}(Y_i, Y_j) = \rho \), as desired. Simulating draws from \((Y_1, \ldots, Y_n) \) is straightforward and computationally efficient. Standard formulas for negative binomial moments provide

\[
\begin{align*}
M &= pr/(1 - p) \\
V &= pr/(p - 1)^2 \\
\mu_{iii} &= (pr(p + 1))/(1 - p)^3 \\
\mu_{iiii} &= pr(4p + 3pr + p^2 + 1)/(p - 1)^4.
\end{align*}
\]

Additional moments were computed by starting with their definitions, inserting \(Y_i = X_i + X \), and using the Matlab symbolic mathematics toolbox,

\[
\begin{align*}
\mu_{ij} &= (pr\rho)/(p - 1)^2 \\
\mu_{ijk} &= (pr\rho(p + 1))/(1 - p)^3 \\
\mu_{ijj} &= (pr\rho(p + 1))/(1 - p)^3 \\
\mu_{iiij} &= pr(p^2\rho + 2rp\rho^2 + 4pr\rho + rp + \rho)/(p - 1)^4 \\
\mu_{iiii} &= pr\rho(4p + 3pr + p^2 + 1)/(p - 1)^4 \\
\mu_{ijjk} &= pr\rho(4p + pr + p^2 + 2pr\rho + 1)/(p - 1)^4 \\
\mu_{ijkl} &= pr\rho(4p + p^2 + 3pr\rho + 1)/(p - 1)^4.
\end{align*}
\]
where \(i, j, k, l \) are distinct. These formulas were substituted into (56) and the result was algebraically simplified to

\[
b \approx \left(\frac{M \mu_{iii}}{V^2} \right) \left(\frac{1}{n\Omega} \right) = \frac{p + 1}{n\Omega},
\]

which again displays a decreasing dependence on synchrony, with a faster decrease for larger values of \(n \).

The above expressions were also substituted into \(\text{var}(m) \leq \mathbb{E}(m)^2/4 \) and \(\text{var}(v) \leq \mathbb{E}(v)^2/4 \) to obtain the following constraints required for adequate accuracy of the delta method approximations:

\[
\frac{pr(n \rho - \rho + 1)}{n(p - 1)^2} \leq \left(\frac{pr}{2(1 - p)} \right)^2 \tag{105}
\]

\[
\frac{pr(1 - \rho)(n - 4p + 4np + np^2 - p^2 + 2npr - 2npr \rho - 1)}{n(n - 1)(p - 1)^4} \leq \left(\frac{pr(1 - \rho)}{2(p - 1)^2} \right)^2. \tag{106}
\]

The same numeric and plotting code (see section S6) that was applied to the Poisson distribution was also applied to the negative binomial. Figures S67 on page 89 to S74 on page 96 lead to similar conclusions about the relationship between \(b \) and \(\Omega \), but, as in the Poisson case, simulations often did not obey TL for \(\Omega > 0 \), and larger values of \(\Omega \) destroyed the TL pattern by smearing points right in \(\log(v) \)-versus-\(\log(m) \) space instead of modifying the slope while preserving linearity.

The same analytic strategy was applied to the gamma distribution. Let \(X \) be gamma distributed with shape and rate parameters \(\rho \alpha \) and \(\beta \), and let the \(X_i \) be independent (with respect to each other and \(X \)) gammas with parameters \(\alpha(1 - \rho) \) and \(\beta \). It is known that that \(Y_i = X + X_i \) is gamma distributed, with shape parameter equal to the sum of the shape parameters of \(X \) and \(X_i \), \(\alpha \), and rate parameter equal to the common rate parameter for the summands, \(\beta \). It is straightforward to see that \(\text{cor}(Y_i, Y_j) = \rho \) for \(i \neq j \), as desired. Simulating draws from \((Y_1, \ldots, Y_n)\) is again straightforward and computationally efficient. Moments were from standard formulas or were computed by inserting \(Y_i = X + X_i \) into the moment definitions and computing:

\[
M = \frac{\alpha}{\beta} \tag{107}
\]

\[
V = \frac{\alpha}{\beta^2} \tag{108}
\]

\[
\mu_{ij} = \frac{2\alpha}{\beta^3} \tag{109}
\]

\[
\mu_{iii} = 2\alpha/\beta^3 \tag{110}
\]

\[
\mu_{ijk} = 2\alpha/\beta^3 \tag{111}
\]

\[
\mu_{ijj} = 2\alpha/\beta^3 \tag{112}
\]

\[
\mu_{iiii} = \frac{3\alpha(\alpha + 2)}{\beta^4} \tag{113}
\]

\[
\mu_{iiij} = \frac{\alpha(2\alpha^2 + 6\rho + \alpha)}{\beta^4} \tag{114}
\]

\[
\mu_{iiii} = \frac{3\alpha(\alpha + 2)}{\beta^4} \tag{115}
\]

\[
\mu_{iijk} = \frac{\alpha(2\rho + 6)}{\beta^4} \tag{116}
\]

\[
\mu_{ijkl} = \frac{3\alpha(\alpha + 2)}{\beta^4}. \tag{117}
\]

In these formulas, \(i, j, k \) and \(l \) are distinct. The moments were substituted into (56) and the result was algebraically simplified to give

\[
b \approx \left(\frac{M \mu_{iii}}{V^2} \right) \left(\frac{1}{n\Omega} \right) = \frac{2}{n\Omega}, \tag{118}\]

which again displays a decreasing dependence on synchrony, with a faster decrease for larger values of \(n \). The above expressions were also substituted into \(\text{var}(m) \leq \mathbb{E}(m)^2/4 \) and \(\text{var}(v) \leq \mathbb{E}(v)^2/4 \) to obtain the
constraints required for adequate accuracy of the delta method approximations:

\[
\frac{\alpha(n\rho - \rho + 1)}{\beta^2 n} \leq \frac{\alpha^2}{4\beta^2} \quad (119)
\]
\[
\frac{2\alpha(1 - \rho)(3n + \alpha n - \alpha n\rho - 3)}{\beta^4 n(n-1)} \leq \left(\frac{\alpha(1 - \rho)}{2\beta^2}\right)^2. \quad (120)
\]

The same numeric and plotting code (section S6) yielded outputs in figures S75 on page 97 to S80 on page 102.

It is well known that the exponential and chi-squared distributions are special cases of the gamma distribution, therefore these cases were explored with the same formulas and plotting code described above, with outputs in figures S81 on page 103 to S84 on page 106. The same conclusions about the dependence of \(b\) on \(\Omega\) as for the Poisson and negative binomial distributions hold here. However, as in those cases, simulations often did not obey TL for \(\Omega > 0\), and increasing synchrony destroyed TL by smearing points toward the right in log(\(v\))-versus-log(\(m\)) space, producing smaller values of \(b\).

The same analytic strategy was applied to the normal distribution (parameters \(\mu\), the mean, and \(\sigma\), the standard deviation). The results were, for distinct \(i, j, k\),

\[
M = \mu \quad (121)
\]
\[
V = \sigma^2 \quad (122)
\]
\[
\mu_{ij} = \rho \sigma^2 \quad (123)
\]
\[
\mu_{iii} = 0 \quad (124)
\]
\[
\mu_{ijk} = 0 \quad (125)
\]
\[
\mu_{iij} = 0 \quad (126)
\]
\[
\mu_{iiii} = 3\sigma^4 \quad (127)
\]
\[
\mu_{iiij} = \sigma^4(2\rho^2 + 1) \quad (128)
\]
\[
\mu_{iiij} = 3\rho \sigma^4 \quad (129)
\]
\[
\mu_{iijk} = \rho \sigma^4(2\rho + 1) \quad (130)
\]
\[
\mu_{ijkl} = 3\rho^2 \sigma^4 \quad (131)
\]
\[
b \approx 0, \quad (132)
\]

subject to the requirements

\[
\frac{\sigma^2(n\rho - \rho + 1)}{n} \leq \mu^2 / 4 \quad (133)
\]
\[
\frac{2\sigma^4(\rho - 1)^2}{n-1} \leq \sigma^4(1 - \rho)^2 / 4 \quad (134)
\]

for the delta method approximations to be adequate. This result reflects the fact, evident from (56), that TL slope is zero whenever there is no skewness in the common marginal distribution \(Y_i\). Plots for the normal distribution are in figures S85 on page 107 to S90 on page 112.

The following result encompasses the examples described above and illuminates them.

Proposition 6. Let \(P \subseteq [0, 1)\) and suppose we have independent random variables \(X(\rho), X_i(\rho)\) for \(\rho \in P\) and \(i = 1, \ldots, n\) such that for each \(\rho\) the \(X_i(\rho)\) for \(i = 1, \ldots, n\) are identically distributed. Let \(Y_i(\rho) = X(\rho) + X_i(\rho)\) and assume \(\text{cor}(Y_i(\rho), Y_j(\rho)) = \rho \) and \(\text{E}(Y_i(\rho)) = M \) and \(\text{var}(Y_i(\rho)) = V \) for all \(\rho\) and \(i \neq j\), for constants \(M\) and \(V\). Let \(m(\rho) = \text{mean}_i(Y_i(\rho))\) and \(v(\rho) = \text{var}_i(Y_i(\rho))\) be the sample mean and variance. Then \(\text{E}(v(\rho))\) decreases and \(\text{var}(m(\rho))\) increases as \(\rho\) increases. Furthermore,

\[
b(\rho) \approx \frac{M(n-1)\mu_3^{(X_i(\rho))}}{n^2 V^2 (1 - \Omega(\rho)) \Omega(\rho)} \quad (135)
\]
where \(b(\rho) \) and \(\Omega(\rho) \) are the TL slope and synchrony defined previously, and \(\mu_3^{(X_i(\rho))} \) is the third central moment of \(X_i(\rho) \). If \(\mu_3^{(X_i(\rho))} \) is proportional to \(1 - \rho \) then \(b(\rho) \) is approximately proportional to \(\frac{1}{\Omega(\rho)} \).

Proof. We omit the explicit dependence of \(X, X_i, Y_i, \) etc. on \(\rho \). Using the independence of the \(X, X_i \) and the assumption that the \(X_i \) for \(i = 1, \ldots, n \) are identically distributed for any given \(\rho \),

\[
\text{cor}(Y_i, Y_j) = \frac{\text{cov}(Y_i, Y_j)}{\sqrt{\text{var}(Y_i)\text{var}(Y_j)}}
\]

is proportional to \(1 - \rho \).

\[
\text{var}(X) = \rho V, \quad (136)
\]

so \(\text{var}(X) = \rho V \). Also by independence, \(V = \text{var}(Y_i) = \text{var}(X + X_i) = \text{var}(X) + \text{var}(X_i) \), so \(\text{var}(X_i) = V - \rho V = V(1 - \rho) \). Thus \(\text{E}(v) = \text{E}(\text{var}(Y_i)) = \text{E}(\text{var}_i(X + X_i)) = \text{E}(\text{var}_i(X)) = \text{var}(X_i) = V(1 - \rho) \), which decreases as \(\rho \) increases. Next,

\[
\text{var}(m) = \text{var}(\text{mean}_i(Y_i))
\]

is proportional to \(1 - \rho \).

\[
\text{var}(m) = \text{var}(\text{mean}_i(X + X_i))
\]

is proportional to \(1 - \rho \).

\[
\text{var}(m) = \text{var}(X + \text{mean}_i(X_i))
\]

is proportional to \(1 - \rho \).

\[
\text{var}(m) = \text{var}(X) + \frac{1}{n^2} \sum_{i=1}^{n} \text{var}(X_i)
\]

is proportional to \(1 - \rho \).

\[
\text{var}(m) = \frac{V}{n} ((n - 1)\rho + 1),
\]

which increases as \(\rho \) increases.

Combining (19) and (52),

\[
b \approx \frac{n - 1}{MnV(1 - \Omega)} \frac{\text{cov}(m,v)}{\text{var}(\text{ln}(m))}.
\]

By lemma 2, this becomes

\[
b \approx \frac{M(n - 1)\text{cov}(m,v)}{nV^2(1 - \Omega)\Omega}.
\]

But

\[
\text{cov}(m,v) = \text{cov}(X + \text{mean}_i(X_i), \text{var}_i(X_i))
\]

where \(m_{X_i} = \text{mean}_i(X_i) \) and \(v_{X_i} = \text{var}_i(X_i) \). Because the \(X_i \) are independent and identically distributed, it is known [Zhang, 2007, Cohen and Xu, 2015] that \(\text{cov}(m_{X_i}, v_{X_i}) = \frac{\mu_3^{(X_i)}}{n} \). Therefore \(\text{cov}(m,v) = \frac{\mu_3^{(X_i)}}{n} \), and combining this expression with (147) gives (135). The last statement of the theorem follows because

\[
1 - \Omega = 1 - \frac{1}{n^2} \sum_{ij} \text{cor}(Y_i, Y_j)
\]

is proportional to \(1 - \rho \).
Theorem 6. Let \(X_i \) be independent random variables and let the \(X_i \) be identically distributed. Let \(Y_i = X_i + X_i \). Then \(\mu_{ij} = \mu_{ijk} \) for all \(i, j, k \) distinct.

Proof. Using the definitions
\[
\begin{align*}
\mu_{ij} &= E((Y_i - E(Y_i))(Y_j - E(Y_j))) \\
\mu_{ijk} &= E((Y_i - E(Y_i))(Y_j - E(Y_j))(Y_k - E(Y_k)))
\end{align*}
\]
and substituting \(Y_i = X + X_i \) and using the Matlab symbolic manipulation toolbox, we get
\[
\begin{align*}
\mu_{ij} &= 2E(X)^3 - 3E(X^2)E(X) + E(X^3) \\
\mu_{ijk} &= 2E(X)^3 - 3E(X^2)E(X) + E(X^3).
\end{align*}
\]

S6 Methods for the omnibus plots

For all distributions \(Y \) considered, simulation-based results were generated and plotted, and for some of them approximate analytic or semi-analytic results were also plotted. The assumption of TL that the \(\log(v) \)-versus-\(\log(m) \) relationship is linear was also tested. An omnibus plot summarizing these results was generated for each example considered. Components of the plot are described here.

Simulation-based results. Given a random vector \(Y(\rho) = (Y_1(\rho), \ldots, Y_n(\rho)) \) for a fixed \(\rho \), 5000 independent realizations were generated in 50 blocks of \(N = 100 \) realizations each. For each realization, the sample mean, \(m \), and the sample variance, \(v \), were computed, producing 50 blocks of 100 pairs \((m, v) \). For each of a few example values of \(\rho \) (e.g., 0, 0.1, 0.5, 0.9), \(\log(v) \) was plotted as a function of \(\log(m) \) using all 5000 pairs \((m, v) \) except those for which either \(m \) or \(v \) was 0. The plots were placed at the top of the omnibus plot. Axes were the same on all top panels within a plot, to facilitate comparison. Axes number labels are only shown on alternate top panels within a plot.

For each block separately, the slope \(b \) was computed through ordinary linear regression of \(\log(v) \) against \(\log(m) \), again omitting pairs for which \(m \) or \(v \) was 0. The value of \(\Omega \) was also computed for each block (separately) as the average Pearson correlation coefficient between realizations of \(Y_i \) and \(Y_j \) in that block, the average being computed over pairs \(i \) and \(j \), including cases with \(i = j \) (which necessarily produced a correlation of 1). The average (across blocks) \(b \) value was plotted against the average (across blocks) \(\Omega \) value, as \(\rho \) ranged from 0 to 0.9 in increments of 0.1, with error bars plotted for both quantities based on standard deviations (across blocks). For each block, residuals of the \(\log(v) \)-versus-\(\log(m) \) regression were
computed and used to generate a root mean squared error (RMSE). The mean (across blocks) RMSE was plotted against Ω. Both b and RMSE were plotted against Ω in the central panel of the omnibus plot.

Analytic results. When possible (e.g., figures S11 on page 33 through S32 on page 54), the approximation (56) was computed for each value of ρ, either analytically or semi-analytically (here “semi-analytic” refers to calculations for which the constituent moments of (56) were calculated numerically, though with negligible error, see, e.g., (66)), and plotted against ρ in red on the central panel of the omnibus plot. Whether the approximation (56) could be computed depended on whether the moments in that expression could be evaluated either analytically or numerically. Calculation of moments from samples was not used because it is unreliable for reasonable numbers of samples for some of the required moments and distributions. How we evaluated moments, when available, is described on a case-by-case basis in sections above. When the inequalities $\sqrt{\text{var}(m)} \leq E(m)/2$ and $\sqrt{\text{var}(v)} \leq E(v)/2$ were satisfied (see section S3), a red downward-pointing triangle was superimposed on the point, indicating an independent validation of the approximations underlying (56) for that point. The quality of the delta-method approximations underlying (56) was also evaluated numerically by testing the quality of the approximations (21) and (25). When the correlations of the left and right sides of those formulas, across all 5000 samples from Y, were greater than 0.75, a red upward-pointing triangle was superimposed on the point.

Assumptions of Taylor’s law. For each value of ρ, the fraction of 5000 samples from Y producing $m = 0$ was plotted on the bottom panel of the omnibus plot, as was the fraction of samples producing $v = 0$. Samples with either $m = 0$ or $v = 0$ were omitted from the estimation and testing of Taylor’s law. The log(v)-versus-log(m) relationship is conditional on positive m and v.

TL postulates a linear relationship between log(v) and log(m), so linearity was evaluated. For each block, the linear relationship log(v) = $b\log(m) + c$ was tested against a quadratic alternative, log(v) = $a\log(m)^2 + b\log(m) + c$ using a standard F-test, and the p-value was recorded. The fraction of blocks for which this p-value was less than 0.05 was plotted against Ω on the bottom panel of the omnibus plot. When this value substantially exceeded the type-I error rate of 0.05, significant curvature existed in the log(v)-versus-log(m) relationship. This curvature could be modest (assessed visually through the example panels at the top of the omnibus plot) even when significant.

Homoskedasticity of the log(v)-versus-log(m) relationship was also tested. For each block, absolute residuals from the regression log(v) = $b\log(m) + c$ were computed and regressed against predictions of the same linear model. The p-value was recorded for the test of the null hypothesis that the slope of this latter regression was 0, a non-zero slope indicating heteroskedasticity. The fraction of blocks for which this p-value was less than 0.05 was plotted against ρ on the bottom panel of the omnibus plot. When this value substantially exceeded 0.05, significant heteroskedasticity existed in the log(v)-versus-log(m) relationship.

S7 Data details

Rothamsted Insect Survey (RIS) runs a network of suction traps that sample flying aphids [Macaulay et al., 1988, Harrington, 2014, Bell et al., 2015]. Daily aphid counts are collected throughout the flight season for many species at multiple locations. Twenty species (table S1) and 11 locations (table S2) were selected in advance of any analyses. Species were selected for their commonness (necessary for analyses of synchrony) and their importance as pests and as models for studies of population dynamics. Locations were selected for long duration of operation. The total count for a species over all days for a year was taken as the count for that species and year. RIS suction trap locations were chosen decades ago to give optimal coverage of the UK, subject to resource limitations. Nevertheless, relative to the whole UK, there are some gaps in the network of 11 traps we used, in Wales, Northern Ireland, and central southern England. After processing, time series were annual, from 1976 through 2010. See Sheppard et al. [2015] for additional details.

The Continuous Plankton Recorder (CPR) survey, now operated by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS), has sampled the seas around the UK and elsewhere for plankton abundances
since before World War II, using a sampling device towed behind commercial ships [Batten et al., 2003, Beaugrand and Reid, 2003, Raitsos et al., 2013]. The device is towed at about 7 m depth. Water is filtered through a moving band of silk, which is later cut into sections representing samples of 3 cubic meters of sea water over 10 nautical miles, thereby producing spatiotemporal data through repeat tows. Minimal changes have been made to the sampling device and analysis procedure over the history of the survey, to ensure consistency [Batten et al., 2003]. The resulting database contains estimates of the abundance of more than 500 taxa on a very large number of transects. We examined 22 phytoplankton and zooplankton taxa (table S1), selected prior to any analyses for their common occurrence and their importance for marine ecosystems. Samples are typically taken along standard routes approximately once a month, but precise times and locations are irregular, being influenced by ship availability and weather. Samples were compiled into 26 annual time series for 2 × 2 degree areas of sea around the UK. Time series were from 1958 through 2013.

The California Cooperative Oceanic Fisheries Investigations (CalCOFI) has surveyed the California Current System off southern California since 1949 on a monthly-to-quarterly basis. Chlorophyll-a has been regularly measured since 1984 [Mantayla et al., 2008]. Time series from spring sampling for the 28 years from 1984 to 2011 were used (average of March-May sampling). Eighteen of 73 sampling stations were omitted, including 7 coastal stations and another 11 stations which are too shallow or have too many gaps in the time series. The remaining 55 sites were divided into four groups based on distance from shore, with group 1 near to shore (average 87.7 km) and group 4 far from shore (average 539.3 km). For each site and sampling occasion, chlorophyll samples were drawn from 0, 10, 20, 30, 50, 75, 100, 125, 150, and 200 m depths. Samples were filtered through Whatman GF/F filters and cold-extracted in a 90% acetone solution in the dark and under refrigeration and then measured fluorometrically using an acidification technique. Sampling and measuring protocols are described in detail on the CalCOFI website (http://calcofi.org/ccpublications/calcofi-methods.html).

CalCOFI data can be downloaded from their website. SAHFOS and RIS data can be obtained by contacting those institutes and going through their long-established data sharing procedures.
Figure S1: Omnibus plots (see section S6) for identically distributed Poisson marginals under the set up of section S3, for \(n = 25 \), for \(\lambda = 1 \) (A), \(\lambda = 5 \) (B), \(\lambda = 10 \) (C), and \(\lambda = 50 \) (D).
Figure S2: Omnibus plots (see section S6) for identically distributed Poisson marginals under the set up of section S3, for \(n = 100 \), for \(\lambda = 1 \) (A), \(\lambda = 5 \) (B), \(\lambda = 10 \) (C), and \(\lambda = 50 \) (D).
Figure S3: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 25$ and $p = 0.2$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S4: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 25$ and $p = 0.4$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S5: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 25$ and $p = 0.6$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S6: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for \(n = 25 \) and \(p = 0.8 \), for \(r = 1 \) (A), \(r = 5 \) (B), \(r = 10 \) (C), and \(r = 50 \) (D).
Figure S7: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 100$ and $p = 0.2$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S8: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 100$ and $p = 0.4$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S9: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 100$ and $p = 0.6$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S10: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S3, for $n = 100$ and $p = 0.8$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S11: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S3, for $n = 25$ and $\beta = 0.5$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S12: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S3, for $n = 25$ and $\beta = 1$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S13: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S3, for $n = 25$ and $\beta = 2$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S14: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S3, for \(n = 100 \) and \(\beta = 0.5 \), for \(\alpha = 1 \) (A), \(\alpha = 2 \) (B), \(\alpha = 4 \) (C), and \(\alpha = 8 \) (D).
Figure S15: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S3, for $n = 100$ and $\beta = 1$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S16: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S3, for $n = 100$ and $\beta = 2$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S17: Omnibus plots (see section S6) for identically distributed exponentially distributed marginals under the set up of section S3, for $n = 25$, for $1/\lambda = 1$ (A), $1/\lambda = 5$ (B), $1/\lambda = 10$ (C), and $1/\lambda = 50$ (D).
Figure S18: Omnibus plots (see section S6) for identically distributed exponentially distributed marginals under the set up of section S3, for $n = 100$, for $1/\lambda = 1$ (A), $1/\lambda = 5$ (B), $1/\lambda = 10$ (C), and $1/\lambda = 50$ (D).
Figure S19: Omnibus plots (see section S6) for identically distributed chi-squared marginals under the set up of section S3, for $n = 25$, for $k = 1$ (A), $k = 5$ (B), $k = 10$ (C), and $k = 50$ (D).
Figure S20: Omnibus plots (see section S6) for identically distributed chi-squared marginals under the setup of section S3, for \(n = 100 \), for \(k = 1 \) (A), \(k = 5 \) (B), \(k = 10 \) (C), and \(k = 50 \) (D).
Figure S21: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S3, for \(n = 25 \) and \(\sigma = 0.1 \), for \(\mu = 5 \) (A), \(\mu = 10 \) (B), \(\mu = 15 \) (C), and \(\mu = 20 \) (D).
Figure S22: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S3, for $n = 25$ and $\sigma = 0.5$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S23: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S3, for $n = 25$ and $\sigma = 1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S24: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S3, for $n = 100$ and $\sigma = 0.1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S25: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S3, for $n = 100$ and $\sigma = 0.5$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S26: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S3, for $n = 100$ and $\sigma = 1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S27: Omnibus plots (see section S6) for identically distributed log-normal marginals under the set up of section S3, for $n = 25$ and $\sigma = 0.1$, for $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S28: Omnibus plots (see section S6) for identically distributed log-normal marginals under the set up of section S3, for $n = 25$ and $\sigma = 0.5$, for $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S29: Omnibus plots (see section S6) for identically distributed log-normal marginals under the set up of section S3, for $n = 25$ and $\sigma = 1$, for $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S30: Omnibus plots (see section S6) for identically distributed log-normal marginals under the set up of section S3, for $n = 100$ and $\sigma = 0.1$, for $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S31: Omnibus plots (see section S6) for identically distributed log-normal marginals under the set up of section S3, for $n = 100$ and $\sigma = 0.5$, for $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S32: Omnibus plots (see section S6) for identically distributed log-normal marginals under the set up of section S3, for $n = 100$ and $\sigma = 1$, for $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S33: Omnibus plots (see section S6) for non-identically distributed Poisson marginals under the set up of section S4, for $n=25$ and Y_1 with $\lambda = 1$ (A), $\lambda = 5$ (B), $\lambda = 10$ (C), and $\lambda = 50$ (D).
Figure S34: Omnibus plots (see section S6) for non-identically distributed Poisson marginals under the set up of section S4, for \(n = 100 \) and \(Y_1 \) with \(\lambda = 1 \) (A), \(\lambda = 5 \) (B), \(\lambda = 10 \) (C), and \(\lambda = 50 \) (D).
Figure S35: Omnibus plots (see section S6) for non-identically distributed gamma marginals under the set up of section S4, for $n = 25$ and Y_1 with $\beta = 0.5$ and $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S36: Omnibus plots (see section S6) for non-identically distributed gamma marginals under the set up of section S4, for $n = 25$ and Y_1 with $\beta = 1$ and $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S37: Omnibus plots (see section S6) for non-identically distributed gamma marginals under the set up of section S4, for $n = 25$ and Y_1 with $\beta = 2$ and $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S38: Omnibus plots (see section S6) for non-identically distributed gamma marginals under the set up of section S4, for $n = 100$ and Y_1 with $\beta = 0.5$ and $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S39: Omnibus plots (see section S6) for non-identically distributed gamma marginals under the set up of section S4, for $n = 100$ and Y_1 with $\beta = 1$ and $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S40: Omnibus plots (see section S6) for non-identically distributed gamma marginals under the set up of section S4, for $n = 100$ and Y_1 with $\beta = 2$ and $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S41: Omnibus plots (see section S6) for non-identically distributed exponentially distributed marginals under the set up of section S4, for $n = 25$ and Y_1 with $1/\lambda = 1$ (A), $1/\lambda = 5$ (B), $1/\lambda = 10$ (C), and $1/\lambda = 50$ (D).
Figure S42: Omnibus plots (see section S6) for non-identically distributed exponentially distributed marginals under the set up of section S4, for \(n = 100 \) and \(Y_1 \) with \(1/\lambda = 1 \) (A), \(1/\lambda = 5 \) (B), \(1/\lambda = 10 \) (C), and \(1/\lambda = 50 \) (D).
Figure S43: Omnibus plots (see section S6) for non-identically distributed chi-squared distributed marginals under the set up of section S4, for \(n = 25 \) and \(Y_1 \) with \(k = 1 \) (A), \(k = 5 \) (B), \(k = 10 \) (C), and \(k = 50 \) (D).
Figure S44: Omnibus plots (see section S6) for non-identically distributed chi-squared distributed marginals under the set up of section S4, for \(n = 100 \) and \(Y_1 \) with \(k = 1 \) (A), \(k = 5 \) (B), \(k = 10 \) (C), and \(k = 50 \) (D).
Figure S45: Omnibus plots (see section S6) for non-identically distributed normal marginals under the set up of section S4, for $n = 25$ and Y_1 with $\sigma = 0.1$ and $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
A, B

Figure S46: Omnibus plots (see section S6) for non-identically distributed normal marginals under the setup of section S4, for $n = 25$ and Y_1 with $\sigma = 0.5$ and $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S47: Omnibus plots (see section S6) for non-identically distributed normal marginals under the set up of section S4, for \(n = 25 \) and \(Y_1 \) with \(\sigma = 1 \) and \(\mu = 5 \) (A), \(\mu = 10 \) (B), \(\mu = 15 \) (C), and \(\mu = 20 \) (D).
Figure S48: Omnibus plots (see section S6) for non-identically distributed normal marginals under the set up of section S4, for \(n = 100 \) and \(Y_1 \) with \(\sigma = 0.1 \) and \(\mu = 5 \) (A), \(\mu = 10 \) (B), \(\mu = 15 \) (C), and \(\mu = 20 \) (D).
Figure S49: Omnibus plots (see section S6) for non-identically distributed normal marginals under the set up of section S4, for $n = 100$ and Y_1 with $\sigma = 0.5$ and $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S50: Omnibus plots (see section S6) for non-identically distributed normal marginals under the set up of section S4, for $n = 100$ and Y_1 with $\sigma = 1$ and $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S51: Omnibus plots (see section S6) for non-identically distributed log-normal marginals under the set up of section S4, for $n = 25$ and Y_1 with $\sigma = 0.1$ and $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S52: Omnibus plots (see section S6) for non-identically distributed log-normal marginals under the set up of section S4, for $n = 25$ and Y_1 with $\sigma = 0.5$ and $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S53: Omnibus plots (see section S6) for non-identically distributed log-normal marginals under the set up of section S4, for $n = 25$ and Y_1 with $\sigma = 1$ and $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S54: Omnibus plots (see section S6) for non-identically distributed log-normal marginals under the set up of section S4, for $n = 100$ and Y_i with $\sigma = 0.1$ and $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S55: Omnibus plots (see section S6) for non-identically distributed log-normal marginals under the set up of section S4, for $n = 100$ and Y_1 with $\sigma = 0.5$ and $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S56: Omnibus plots (see section S6) for non-identically distributed log-normal marginals under the set up of section S4, for $n = 100$ and Y_1 with $\sigma = 1$ and $\mu = -1$ (A), $\mu = 0$ (B), $\mu = 1$ (C), and $\mu = 2$ (D).
Figure S57: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 25$ and Y_1 with $p = 0.2$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S58: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 25$ and Y_1 with $p = 0.4$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S59: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 25$ and Y_1 with $p = 0.6$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S60: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 25$ and Y_1 with $p = 0.8$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S61: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 100$ and Y_1 with $p = 0.2$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S62: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 100$ and Y_1 with $p = 0.4$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S63: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 100$ and Y_1 with $p = 0.6$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S64: Omnibus plots (see section S6) for non-identically distributed negative binomial marginals under the set up of section S4, for $n = 100$ and Y_1 with $p = 0.8$ and $r = 5$ (A), $r = 10$ (B), $r = 50$ (C).
Figure S65: Omnibus plots (see section S6) for identically distributed Poisson marginals under the set up of section S5, for $n = 25$, for $\lambda = 1$ (A), $\lambda = 5$ (B), $\lambda = 10$ (C), and $\lambda = 50$ (D).
Figure S66: Omnibus plots (see section S6) for identically distributed Poisson marginals under the set up of section S5, for $n = 100$, for $\lambda = 1$ (A), $\lambda = 5$ (B), $\lambda = 10$ (C), and $\lambda = 50$ (D).
Figure S67: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 25$ and $p = 0.2$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S68: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 25$ and $p = 0.4$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S69: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 25$ and $p = 0.6$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S70: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 25$ and $p = 0.8$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S71: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 100$ and $p = 0.2$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S72: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 100$ and $p = 0.4$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S73: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 100$ and $p = 0.6$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S74: Omnibus plots (see section S6) for identically distributed negative binomial marginals under the set up of section S5, for $n = 100$ and $p = 0.8$, for $r = 1$ (A), $r = 5$ (B), $r = 10$ (C), and $r = 50$ (D).
Figure S75: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S5, for $n = 25$ and $\beta = 0.5$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S76: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S5, for \(n = 25 \) and \(\beta = 1 \), for \(\alpha = 1 \) (A), \(\alpha = 2 \) (B), \(\alpha = 4 \) (C), and \(\alpha = 8 \) (D).
Figure S77: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S5, for $n = 25$ and $\beta = 2$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S78: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S5, for $n = 100$ and $\beta = 0.5$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S79: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S5, for \(n = 100 \) and \(\beta = 1 \), for \(\alpha = 1 \) (A), \(\alpha = 2 \) (B), \(\alpha = 4 \) (C), and \(\alpha = 8 \) (D).
Figure S80: Omnibus plots (see section S6) for identically distributed gamma marginals under the set up of section S5, for $n = 100$ and $\beta = 2$, for $\alpha = 1$ (A), $\alpha = 2$ (B), $\alpha = 4$ (C), and $\alpha = 8$ (D).
Figure S81: Omnibus plots (see section S6) for identically distributed exponentially distributed marginals under the set up of section S5, for $n = 25$, for $1/\lambda = 1$ (A), $1/\lambda = 5$ (B), $1/\lambda = 10$ (C), and $1/\lambda = 50$ (D).
Figure S82: Omnibus plots (see section S6) for identically distributed exponentially distributed marginals under the set up of section S5, for $n = 100$, for $1/\lambda = 1$ (A), $1/\lambda = 5$ (B), $1/\lambda = 10$ (C), and $1/\lambda = 50$ (D).
Figure S83: Omnibus plots (see section S6) for identically distributed chi-squared marginals under the set up of section S5, for $n = 25$, for $k = 1$ (A), $k = 5$ (B), $k = 10$ (C), and $k = 50$ (D).
Figure S84: Omnibus plots (see section S6) for identically distributed chi-squared marginals under the set up of section S5, for \(n = 100 \), for \(k = 1 \) (A), \(k = 5 \) (B), \(k = 10 \) (C), and \(k = 50 \) (D).
Figure S85: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S5, for $n = 25$ and $\sigma = 0.1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S86: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S5, for $n = 25$ and $\sigma = 0.5$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S87: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S5, for $n = 25$ and $\sigma = 1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S88: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S5, for $n = 100$ and $\sigma = 0.1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S89: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S5, for \(n = 100 \) and \(\sigma = 0.5 \), for \(\mu = 5 \) (A), \(\mu = 10 \) (B), \(\mu = 15 \) (C), and \(\mu = 20 \) (D).
Figure S90: Omnibus plots (see section S6) for identically distributed normal marginals under the set up of section S5, for $n = 100$ and $\sigma = 1$, for $\mu = 5$ (A), $\mu = 10$ (B), $\mu = 15$ (C), and $\mu = 20$ (D).
Figure S91: Plots of $\log_{10}(\text{variance})$ versus $\log_{10}(\text{mean})$ and results of statistical tests of whether data conformed to TL for 20 species of aphid from the UK (Methods). The value p_q tests linearity of the regression against a quadratic alternative; p_{het} tests for heteroskedasticity. Panels correspond to species listed in Table S1, in the same order.
Figure S92: As for figure S91, but for plankton groups in the seas around the UK.
Figure S93: As for figure S91, but for chlorophyll-a abundances at different depths at sampling stations in the closest category to the shore (Methods).
Figure S94: As for figure S91, but for chlorophyll-a abundances at different depths at sampling stations in the second closest category to the shore (Methods).
Figure S95: As for figure S91, but for chlorophyll-a abundances at different depths at sampling stations in the third closest category to the shore (Methods).
Figure S96: As for figure S91, but for chlorophyll-a abundances at different depths at sampling stations in the farthest category from the shore (Methods).
Figure S97: Statistical tests indicating whether the randomized or partially sorted data sets used in figure 3 in the main text conformed to TL. For each resampled/sorted dataset (Methods), conformity to TL was tested by testing linearity and homoskedasticity of the log_{10}(variance)-versus-log_{10}(mean) pattern for that randomization (as in figures S91-S11). Shown are the fraction of tests rejecting the null hypothesis (of linearity or homoskedasticity) with 95% confidence; thus when values substantially exceed 0.05, linearity or homoskedasticity were less acceptable hypotheses. See, however, figure S98. Positive values on the x-axis show numbers of random rows within which time series were randomized. Negative values on the x-axis show numbers of random rows within which time series were randomized. Positive values show numbers of random rows within which time series were sorted. Thus the x-axis corresponds to strength of synchrony. Panels correspond to data sets in the same pattern as main text figure 3.
Figure S98: The $\log_{10}($variance$)$-versus-$\log_{10}($mean$)$ pattern for sorted time series. Sorting time series (Methods) produced the most synchronous resampled data sets we considered, but these resampled data sets were among the worst we considered in conformity to TL (figure S97, right side of each panel). Nevertheless, these plots show TL may be a useful approximation for some purposes even for these cases.
Figure S99: Same as main text figure 2, except points are numbered to identify aphid species, plankton groups, and depths, using the numbers of table S1.
Figure S100: Points in figure 3 in the main text are averages over randomizations/sortings. This plot shows the individual randomizations/sortings. Colors correspond to numbers of rows within which time series were randomized or sorted, negative numbers of rows in figure legends corresponding to randomization and positive values to sorting. Panels correspond to data sets in the same pattern as main text figure 3.
Figure S101: Temperature and nutrient depth gradients in near-shore, far-from-shore, and intermediate sampling stations for the CalCOFI data. Error bars give standard deviations across time and sampling location. Grey bars a put on by eye to approximately indicate the steepest part of the thermocline.
S14 Tables

<table>
<thead>
<tr>
<th>Aphids</th>
<th>UK seas</th>
<th>CalCOFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Species name</td>
<td>Index</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Apple-grass aphid</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bird cherry-oat aphid</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Black bean aphid</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Blackberry-cereal aphid</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Blackcurrant-sowthistle aphid</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Corn leaf aphid</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Currant-lettuce aphid</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Damson-hop aphid</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Grain aphid</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Green spruce aphid</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Leaf-curving plum aphid</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Mealy cabbage aphid</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Mealy plum aphid</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>Pea aphid</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Peach-potato aphid</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Potato aphid</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>Rose-grain aphid</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>Shallot aphid</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>Sycamore aphid</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>Willow-carrot aphid</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>Temora longicornis</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>Thalassiosira spp</td>
<td>22</td>
</tr>
</tbody>
</table>

Table S1: Indices used in plots to refer to specific aphid species, plankton groups, or sampling depths.
<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Operation dates through 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broom’s Barn</td>
<td>52.26</td>
<td>0.57</td>
<td>22/3/1965 - end</td>
</tr>
<tr>
<td>Hereford</td>
<td>52.125</td>
<td>-2.637</td>
<td>12/7/1971 - end</td>
</tr>
<tr>
<td>Newcastle</td>
<td>55.213</td>
<td>-1.682</td>
<td>21/5/1965 - end, excluding 2009</td>
</tr>
<tr>
<td>Preston</td>
<td>53.854</td>
<td>-2.763</td>
<td>29/4/1971 - end</td>
</tr>
<tr>
<td>Rothamsted</td>
<td>51.807</td>
<td>-0.356</td>
<td>29/4/1964 - end</td>
</tr>
<tr>
<td>Starcross</td>
<td>50.628</td>
<td>-3.454</td>
<td>5/2/1970 - 21/12/2008</td>
</tr>
<tr>
<td>Writtle</td>
<td>51.733</td>
<td>0.427</td>
<td>22/5/1975 - 29/7/1991; 1/1/1992 - end</td>
</tr>
<tr>
<td>Wye</td>
<td>51.185</td>
<td>0.939</td>
<td>30/11/1966 - end, excluding 2009</td>
</tr>
</tbody>
</table>

Table S2: Sampling sites used. Operating dates given in day/month/year format. Edinburgh is the combination of two very nearby sites, East Craigs and Gogarbank. East Craigs operating dates were 3/4/1969 to 2/10/1971 and 1/1/1972 to 30/12/2005. Gogarbank operating dates were 18/5/2004 to 13/12/2009. Data for Edinburgh were taken from 1/1/2006 forward from Gogarbank. This table was taken from Sheppard et al. [2015].
Analytic results: Appendices S1 and S2

Summary: Results apply when the Y_i are identically distributed. b depends on Ω approximately as equation (44). The approximation will be worse for larger Ω. b should decrease sharply as Ω increases from 0. Skewness of Y_i is necessary in the identically distributed case to get $b \neq 0.$

Distribution

<table>
<thead>
<tr>
<th>Distribution</th>
<th>TL holds?</th>
<th>b depends on Ω?</th>
<th>$b \downarrow$ as $\Omega \uparrow$ from 0</th>
<th>$b \uparrow$ as $\Omega \uparrow$ further</th>
<th>eq. (44) a good approximation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson, figs S1-S2</td>
<td>large λ, yes; small λ, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>NA</td>
</tr>
<tr>
<td>neg. binom., figs S3-S10</td>
<td>yes, except for larger p and Ω</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>NA</td>
</tr>
<tr>
<td>gamma, figs S11-S16</td>
<td>yes, but approx'y for small α and large Ω</td>
<td>yes</td>
<td>yes</td>
<td>sometimes no; sometimes slightly</td>
<td>qualitatively, yes; better for small Ω</td>
</tr>
<tr>
<td>exponential, figs S17-S18</td>
<td>small Ω, yes; large Ω, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>sometimes no; sometimes slightly</td>
<td>qualitatively, yes; better for small Ω</td>
</tr>
<tr>
<td>chi-squared, figs S19-S20</td>
<td>large k, yes; small k, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>sometimes no; sometimes slightly</td>
<td>qualitatively, yes; better for large k</td>
</tr>
<tr>
<td>normal, figs S21-S26</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>log-normal, figs S27-S32</td>
<td>yes, except when σ is large and Ω small</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>only for small σ</td>
</tr>
</tbody>
</table>

Numeric results for Y_i identically distributed, Gaussian copula: Appendix S3 and figs S1 through S32

<table>
<thead>
<tr>
<th>Distribution</th>
<th>TL holds?</th>
<th>b depends on Ω?</th>
<th>$b \downarrow$ as $\Omega \uparrow$ from 0</th>
<th>$b \uparrow$ as $\Omega \uparrow$ further</th>
<th>eq. (44) a good approximation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson, figs S1-S2</td>
<td>large λ, yes; small λ, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>NA</td>
</tr>
<tr>
<td>neg. binom., figs S3-S10</td>
<td>yes, except for larger p and Ω</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>NA</td>
</tr>
<tr>
<td>gamma, figs S11-S16</td>
<td>yes, but approx'y for small α and large Ω</td>
<td>yes</td>
<td>yes</td>
<td>sometimes no; sometimes slightly</td>
<td>qualitatively, yes; better for small Ω</td>
</tr>
<tr>
<td>exponential, figs S17-S18</td>
<td>small Ω, yes; large Ω, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>sometimes no; sometimes slightly</td>
<td>qualitatively, yes; better for small Ω</td>
</tr>
<tr>
<td>chi-squared, figs S19-S20</td>
<td>large k, yes; small k, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>sometimes no; sometimes slightly</td>
<td>qualitatively, yes; better for large k</td>
</tr>
<tr>
<td>normal, figs S21-S26</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>log-normal, figs S27-S32</td>
<td>yes, except when σ is large and Ω small</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>only for small σ</td>
</tr>
</tbody>
</table>

Numeric results for Y_i non-identically distributed, Gaussian copula: Appendix S4 and figs S33 through S64

<table>
<thead>
<tr>
<th>Distribution</th>
<th>TL holds?</th>
<th>b depends on Ω?</th>
<th>$b \downarrow$ as $\Omega \uparrow$ from 0</th>
<th>$b \uparrow$ as $\Omega \uparrow$ further</th>
<th>eq. (44) a good approximation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson, figs S3-S34</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>NA</td>
</tr>
<tr>
<td>neg. binom., figs S5-S64</td>
<td>small Ω, yes; large Ω often no</td>
<td>yes</td>
<td>yes</td>
<td>usually no; sometimes yes</td>
<td>qualitatively, yes; better for small Ω</td>
</tr>
<tr>
<td>gamma, figs S35-S40</td>
<td>small Ω, yes; large Ω, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>NA</td>
</tr>
<tr>
<td>exponential, figs S41-S42</td>
<td>small Ω, yes; large Ω, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>NA</td>
</tr>
<tr>
<td>chi-squared, figs S43-S44</td>
<td>small Ω, yes; large Ω, approx'y</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>NA</td>
</tr>
<tr>
<td>normal, figs S45-S50</td>
<td>yes, except for $\sigma = 1, \mu = 5$</td>
<td>yes</td>
<td>yes</td>
<td>no, except for $\sigma = 1, \mu = 5$</td>
<td>NA</td>
</tr>
<tr>
<td>log-normal, figs S51-S56</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>NA</td>
</tr>
</tbody>
</table>

Numeric results for Y_i identically distributed, construction based on sums (common elements): Appendix S5 and figs S65 through S90

<table>
<thead>
<tr>
<th>Distribution</th>
<th>TL holds?</th>
<th>b depends on Ω?</th>
<th>$b \downarrow$ as $\Omega \uparrow$ from 0</th>
<th>$b \uparrow$ as $\Omega \uparrow$ further</th>
<th>eq. (44) a good approximation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson, figs S65-S66</td>
<td>large λ yes; small λ no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>neg. binom., figs S67-S74</td>
<td>large r approx'y; small r no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>better for large r</td>
</tr>
<tr>
<td>gamma, figs S75-S80</td>
<td>only for smallest and largest Ω</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes, but better for larger α</td>
</tr>
<tr>
<td>exponential, figs S81-S82</td>
<td>only for smallest Ω</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>qualitatively</td>
</tr>
<tr>
<td>chi-squared, figs S83-S84</td>
<td>only for small Ω or large k</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>qualitatively</td>
</tr>
<tr>
<td>normal, figs S85-S90</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table S3: Summary of analytic and numeric results. Color indicates hyperlinks that, when clicked inside a pdf viewer, will lead directly to the relevant material. A summary of randomization and empirical results is in table S14.
Empirical results

Main text, and main text fig. 2

<table>
<thead>
<tr>
<th>Data set</th>
<th>TL holds?</th>
<th>(b) depends on (\Omega)?</th>
<th>(b_{\text{marg}}) depends on (\Omega)?</th>
<th>(b_{\text{sync}}) depends on (\Omega)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphid data</td>
<td>yes, except 1 species</td>
<td>(b \downarrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{marg}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
<td>(b_{\text{sync}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
</tr>
<tr>
<td>SAHFOS data</td>
<td>yes</td>
<td>(b \downarrow) as (\Omega \uparrow), non-signif’ly</td>
<td>(b_{\text{marg}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
<td>(b_{\text{sync}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
</tr>
<tr>
<td>CalCOFI gp. 1</td>
<td>yes, except 1 depth</td>
<td>(b \downarrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{marg}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
<td>(b_{\text{sync}} \downarrow) as (\Omega \uparrow), signif’ly</td>
</tr>
<tr>
<td>CalCOFI gp. 2</td>
<td>yes</td>
<td>(b \downarrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{marg}} \downarrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{sync}} \downarrow) as (\Omega \uparrow), signif’ly</td>
</tr>
<tr>
<td>CalCOFI gp. 3</td>
<td>yes for 5 and no for 5 depths</td>
<td>(b \uparrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{marg}} \uparrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{sync}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
</tr>
<tr>
<td>CalCOFI gp. 4</td>
<td>yes</td>
<td>(b \uparrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{marg}} \uparrow) as (\Omega \uparrow), signif’ly</td>
<td>(b_{\text{sync}} \downarrow) as (\Omega \uparrow), non-signif’ly</td>
</tr>
</tbody>
</table>

Randomization results

Main text, and main text fig. 3, figs S07 through S100

<table>
<thead>
<tr>
<th>Data set</th>
<th>TL holds?</th>
<th>(b) depends on (\Omega)?</th>
<th>(b \downarrow) as (\Omega \uparrow) from 0</th>
<th>(b \uparrow) as (\Omega \uparrow) further</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphid data</td>
<td>low sync., yes; high sync., approx’ly</td>
<td>yes</td>
<td>yes</td>
<td>no, except modestly for 1 case</td>
</tr>
<tr>
<td>SAHFOS data</td>
<td>low sync., yes; high sync., approx’ly</td>
<td>yes</td>
<td>yes</td>
<td>no, except modestly for 1 case</td>
</tr>
<tr>
<td>CalCOFI gp. 1</td>
<td>low sync., yes; high sync., approx’ly</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>CalCOFI gp. 2</td>
<td>low sync., yes; high sync., approx’ly</td>
<td>yes</td>
<td>yes</td>
<td>no, except modestly for 1 case</td>
</tr>
<tr>
<td>CalCOFI gp. 3</td>
<td>approx’ly</td>
<td>yes</td>
<td>yes</td>
<td>no, except modestly for a few cases</td>
</tr>
<tr>
<td>CalCOFI gp. 4</td>
<td>approx’ly</td>
<td>yes</td>
<td>yes, except 1 case</td>
<td>no, except a few cases</td>
</tr>
</tbody>
</table>

Table S4: Summary of randomization and empirical results. Color indicates hyperlinks that, when clicked inside a pdf viewer, will lead directly to the relevant material. For the empirical part of the table, TL was considered to hold except when linearity or homoskedasticity was rejected with 99% confidence. A summary of analytic and numeric results is in table S14.

