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Abstract 16 

Areas of the Arctic Ocean are already experiencing seasonal variation in low pH/elevated pCO2 and are 17 

predicted to be the most affected by future ocean acidification (OA). Krill play a fundamental ecological role 18 

within Arctic ecosystems, serving as a vital link in the transfer of energy from phytoplankton to higher trophic 19 

levels. However, little is known of the chemical habitat occupied by Arctic invertebrate species, and of their 20 

responses to changes in seawater pH. Therefore, understanding krill’s responses to low pH conditions has 21 

important implications for the prediction of how Arctic marine communities may respond to future ocean 22 

change. Here, we present natural seawater carbonate chemistry conditions found in the late polar winter 23 

(April) in Kongsfjord, Svalbard (79° North) as well as the response of the Arctic krill, Thysanoessa inermis, 24 

exposed to a range of low pH conditions. Standard metabolic rate (measured as oxygen consumption) and 25 

energy metabolism markers (incl. adenosine triphosphate (ATP) and L-lactate) of T. inermis were examined. 26 

We show that after a 7 d experiment with T. inermis, no significant effects of low pH on MO2, ATP and L-27 

lactate were observed. Additionally we report carbonate chemistry from within Kongsfjord, which showed 28 

that the more stratified inner fjord had lower total alkalinity, higher dissolved inorganic carbon, pCO2 and 29 

lower pH than the well-mixed outer fjord. Consequently, our results suggest that overwintering individuals of 30 

T. inermis may possess sufficient ability to tolerate short-term low pH conditions due to their migratory 31 

behaviour, which exposes T. jnermis to the naturally varying carbonate chemistry observed within 32 

Kongsfjord, potentially allowing T. inermis to tolerate future OA scenarios.  33 

 34 

Keywords: Euphausiacea, Arctic Ocean, Kongsfjord, ocean acidification, ocean change, crustaceans.35 
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Introduction 36 

Specific ocean regions have been highlighted as high priority areas for research, as these are predicted to 37 

experience a widespread undersaturation of CaCO3, low pH and elevated pCO2 by mid- 21st century (Fabry et 38 

al. 2008; Steinacher et al. 2009). One such area of concern is the Arctic Ocean, where the largest change in 39 

pH (0.3-0.5 units) is expected to occur (Steinacher et al. 2009) and seasonal undersaturation of aragonite (Ω 40 

aragonite = < 0.7–1) with subsequent low pH and high pCO2 has been documented (Bates et al. 2009). Shelf 41 

regions of the Arctic are susceptible to changes in oceanic and atmospheric conditions, typically through the 42 

variation in Atlantic water intrusion and glacial meltwater (Cottier et al. 2005). Fjords are considered the link 43 

between ocean and land via cross-shelf exchange with fjord dynamics seen to actively respond to variation in 44 

these conditions. Thus, the properties of water masses in Arctic fjords, especially along the west coast of 45 

Svalbard make the area a particularly good indicator of change (Cottier et al. 2005). The Arctic fjord of 46 

Kongsfjord in West Svalbard (Norway) is a region that experiences seasonal variations in dominant water 47 

masses (Cottier et al. 2005). The fjord is influenced by Arctic and Atlantic currents, while receiving large 48 

amounts of freshwater from melting glaciers in the summer (Hop et al. 2002; Cottier et al. 2005; Buchholz et 49 

al. 2010). This combination of different water masses creates seasonal gradients of temperature, salinity, and 50 

density both vertically and horizontally throughout the fjord (Weslawski et al. 2000; Hop et al. 2002; Cottier 51 

et al. 2005).  52 

 53 

Despite the fact that Kongsfjord has been the site of many ocean acidification (OA) laboratory and mesocosm 54 

investigations (Findlay et al. 2010; Lischka and Riebesell 2012; Niehoff et al. 2013; Riebesell et al. 2013), 55 

there are limited studies that combine observations of natural conditions in seawater chemistry within the 56 

fjord, particularly pCO2 and pH, and relate these to an organism’s response to natural variation in pH/pCO2 57 

and future conditions (Fabry et al. 2009; Comeau et al. 2012; Aguilera et al. 2013; Lewis et al. 2013). As 58 

Kongsfjord experiences variations in water mass properties, animals within the pelagic realm are more likely 59 

to experience a range of seawater conditions (Hop et al. 2002; Buchholz et al. 2010; Comeau et al. 2012). In 60 

fact, pH at depth (200-300 m) in Kongsfjord has been recorded to range between 8.13 - 7.68 fluctuating over 61 

a monthly period (Lischka and Riebesell 2012). Additionally, the vast majority of Arctic low pH/elevated 62 

pCO2 studies have been carried out in summer, and therefore April (polar spring) OA studies using 63 

overwintering organisms in the Arctic are rare. Overwintering organisms may be particularly sensitive to 64 
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environmental changes, as low food availability may increase their sensitivity to stress (Comeau et al. 2012; 65 

Lischka and Riebesell 2012; Lewis et al. 2013).  66 

 67 

Krill are one of the most abundant first order consumers in Arctic ecosystems (Falk-Petersen et al. 2000; Hop 68 

et al. 2002).  As a dominant member of the zooplankton community, krill play a vital role in the transfer of 69 

energy between primary producers and higher trophic levels (Hop et al. 2002). High lipid content and 70 

abundance make krill an important prey item for fish, sea birds and marine mammals in the Arctic (Hop et al. 71 

2002; Dahl et al. 2003). In addition to their role in the Arctic food web, euphausid species have been used as 72 

indicators of advection and warming in Kongsfjord and are considered good indicators of change due to their 73 

mid trophic level position (Buchholz et al. 2010). Therefore, understanding krill responses to OA is essential 74 

for predicting the future of Arctic ecosystems. In Kongsfjord zooplankton including krill, experience 75 

variations in seawater chemistry on a daily and seasonal basis due to changes in water mass dominance and 76 

migratory behaviour (Weslawski et al. 2000; Buchholz et al. 2010; Agersted et al. 2011). Large aggregations 77 

of krill, possibly due to hydrological forces such as estuarine circulation patterns, have been found in 78 

Kongsfjord at the glacier fronts during Arctic summer, June-August, (Weslawski et al. 1994, 2000; Hop et al. 79 

2002). Here, melt-water can significantly lower the pH of the seawater as a result of dilution (Azetsu-Scott et 80 

al. 2010).  81 

 82 

In general, crustaceans should be more tolerant to ocean acidification due to the fact that they inhabit areas 83 

with fluctuating environmental conditions; however, to date physiological studies have shown that polar 84 

species may struggle to compensate for changes set by low pH (Whiteley 2011; Thor and Dupont 2015; 85 

Bailey et al. 2017). Due to the potential tolerance level of crustaceans, it is necessary to understand organism 86 

behaviour, life history and ecology in relation to the environmental conditions in which they live to assess 87 

possible sensitivity in a changing Arctic ecosystem. Zooplankton, in particular those with migratory 88 

behaviours, may have evolved to withstand predicted Arctic conditions based on their exposure to a range of 89 

pCO2/pH conditions on a daily basis (Lewis et al. 2013), however, very few studies address both the natural 90 

and predicted future pH conditions when looking at organism response.  91 

 92 

Previous works have suggested that species and populations living in elevated pCO2 habitats (e.g. deep-sea, 93 

CO2 vents, upwelling zones) are more tolerant to elevated pCO2 conditions (> 900 μatm) than their 94 
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counterparts living in habitats with lower pCO2 (Maas et al. 2012; Calosi et al. 2013b; Pespeni et al. 2013). In 95 

particular, deep-sea copepods from the subarctic North Pacific were found to have a higher tolerance to 96 

mortality in high pCO2 conditions than shallow living subtropical copepods (Watanabe et al. 2006). Vertically 97 

migrating Arctic copepods have been shown to experience a range of pCO2 conditions (> 140 μatm) as they 98 

make daily movements, with a minimum pCO2 of 240 μatm in the surface waters and maximum pCO2 (564.2 99 

μatm) at depth (Lewis et al. 2013). Due to this movement and exposure to varying pCO2 conditions, elevated 100 

pCO2 (700 and 1000 μatm) had no significant effect on the mortality of adults of the copepods Calanus 101 

glacialis and Calanus hyperboreus in the high Canadian Arctic. In contrast, surface water dwelling adult 102 

copepods of Oithona similis experienced significant increases in mortality due to elevated pCO2 as they are 103 

exposed to a smaller range of pCO2 conditions (< 75 μatm) and vertical migrations are minimal in this species 104 

(Lewis et al. 2013).  105 

 106 

As a pelagic species that exhibits migratory behaviour, Arctic krill Thysanoessa inermis, is one of the most 107 

important zooplankton within Kongsfjord (Hop et al. 2006) and has a life span of three to four years in the 108 

Arctic with spawning taking place just after the start of the spring bloom (Falk-Petersen et al. 2000). Due to 109 

shortages of food availability in the winter months, krill have adapted to store large amounts of lipids as wax 110 

esters and triacylglycerols, taking advantage of the short intense periods of primary productivity to rapidly 111 

increase in weight from March to May (Sargent and Falk-Petersen 1981; Falk-Petersen et al. 2000). The large 112 

lipid reserves are enough to sustain body function in T. inermis throughout the winter with no food intake, 113 

with lipid stores reserved for either spring growth or reproduction (Sargent and Falk-Petersen 1981). 114 

 115 

In spite of being an integral part of Arctic ecosystems very little is known about krill responses to low 116 

pH/elevated pCO2 conditions with most studies centred on Antarctic and Northern Atlantic krill species. 117 

Moreover, most krill investigations related to OA have focused on egg hatching, development and mortality. 118 

A study on the physiological responses of the Antarctic krill, Euphausia superba, to elevated pCO2 showed an 119 

increase in ingestion rates, nutrient release rates and metabolic enzyme activity at 750 μatm (Saba et al. 2012). 120 

Kawaguchi et al. (2013) demonstrated that E. superba hatching rates were significantly affected at 1250 and 121 

1500 μatm of pCO2 and no hatching occurred at 1750 and 2000 μatm pCO2. In addition, development of E. 122 

superba was shown to be severely inhibited before gastrulation at 2000 μatm, though the krill appear to be 123 
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able to develop normally up to 1000 μatm, possibly as the result of adaptation to low pH/elevated pCO2 124 

conditions found in the natural environment (Kawaguchi et al. 2011).   125 

 126 

A physiological and biochemical approach is necessary to further our understanding of organism response to 127 

environmental change (Pörtner et al. 1999; Somero 2002). Evidence of physiological tolerance to low 128 

pH/elevated pCO2 based on exposure to environmental gradients has been observed in oxygen minimum 129 

zones. Shelled pteropods are considered to be particularly sensitive to OA due to their aragonite shells. 130 

However, metabolic rates and ammonia excretion, as indicators of physiological response, were measured in 131 

pteropod species after exposure to low pH/elevated pCO2 (1000 μatm) (Maas et al. 2012). Hyalocylis striata, 132 

Clio pyramidata, Cavolinia longirostris and Creseis virgule migrate naturally into oxygen minimum zones 133 

with high pCO2 and showed no effect of low pH/elevated pCO2 (Maas et al. 2012). Conversely, low 134 

pH/elevated pCO2 and temperature negatively affected whole organism and cellular physiology of Littorina 135 

littorea when considering complex responses to environmental change such as metabolic rates, adenylate 136 

energy nucleotide concentrations and end-product metabolite concentrations (Melatunan et al. 2011).  137 

 138 

This study aims to investigate whole-organism and cellular physiological responses to exposure to low 139 

pH/elevated pCO2 of overwintering individuals of an under-studied, yet ecologically important Arctic krill 140 

species from a fjord environment that would be expected to have naturally variable carbonate chemistry. 141 

There has been no investigation to date where an integrated whole and cellular organism level approach (i.e. 142 

the characterization of metabolic rates in addition to cellular aerobic and anaerobic metabolite accumulation) 143 

has been used to examine Arctic krill under low pH/elevated pCO2 conditions. By investigating overwintering 144 

T. inermis’ short-term biological responses to low pH/ elevated pCO2 conditions we hypothesize that krill 145 

may be able to withstand short-term changes in pH due to their migratory behaviour and pre-exposure to a 146 

range of pH conditions. This study provides insight into the future of krill in Arctic ecosystems during a 147 

potentially vulnerable stage of their life history.  148 

 149 

Methods 150 

Study area and field work 151 

Kongsfjord is located on the west coast of Spitsbergen, Svalbard, Norway 79°N, 12° E (Fig. 1). It is an open 152 

Arctic fjord that is approximately 30 km long and 10 km wide, with depths in some areas reaching > 300 m.  153 
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Krill were collected from the centremost area of Kongsfjord (78°56’963 N 12°02’358 E) on April 22, 2014 154 

using the Kings Bay boat, Tiesten. Mesopelagic trawls were conducted for 30 min using a 200-m WP2 155 

zooplankton net, traveling an average speed of 1.5 kn. The net was trawled horizontally in depths ranging 156 

from 60 to 200 m. Krill were collected at depth (1.6 ± 0.03 °C), carefully and quickly removed from the net 157 

then transferred to sealed buckets containing seawater. Once back in Ny-Ålesund, the krill were transferred to 158 

a holding tank for one day to acclimatize to the laboratory setting then distributed randomly to the 159 

experimental tanks, where they were left for another day in ambient conditions (temperature 3.0 ± 0.2 °C, 160 

pHtotal 8.03 ± 0.005, dissolved oxygen 105.7 ± 0.3 %, salinity 35 ± 0.0) before CO2 bubbling was started. The 161 

water in both the holding and experimental tanks was continuously pumped into the laboratory from the 162 

middle of Kongsfjord at 80 m depth. During this time, a sub-sample of the krill was taken for identification 163 

purposes. Krill were identified as adult individuals of T. inermis (3.1-61.3 mg WW), as abdominal spines 164 

were present, according to Kathman et al. (1986), Mauchline (1980), Nemoto (1966) and Boden et al. (1955). 165 

Water samples were collected on board the Kings Bay boat, Tiesten, on April 25th, 2014 at five stations 166 

throughout the fjord (Online Resource 1) for determining the natural conditions that the krill were 167 

experiencing at the time of the experiment. Conductivity, temperature and depth were recorded using a SAIV 168 

A/S CTD (Model SD204, Bergen, Norway) to create a profile of the water column at each station. 10-L 169 

Niskin bottles were lowered to depths ranging from the surface to 300 m (Online Resource 1) for water 170 

sample collection for alkalinity and dissolved inorganic carbon measurements. Water samples were stored in 171 

50-mL glass bottles and treated with 20 µL of mercuric chloride (HgCl2) for preservation for future analysis 172 

following standard protocols of Dickson et al. (2007) 173 

 174 

Ocean acidification experiment  175 

The seven-day laboratory experiment used a range of pH (four) conditions as suggested by (Dupont and 176 

Pörtner 2013), similar to the approach used by Christen et al. (2013) to cover both present and future levels of 177 

seawater pH and pCO2 in order to acquire a greater predictive ability on pH-dependent responses. The chosen 178 

range also follows future scenarios predicted for the Arctic Ocean as a decrease by 0.3 to 0.5 pH units could 179 

occur over the next century (Caldeira and Wickett 2003). The target pH levels (total scale, pHtotal, calculated 180 

in CO2SYS version 2.1, Lewis and Wallace 1998) for the experiment were: a control pHtotal of 8.00 as this 181 

was the ambient pH of the fjord water that was pumped into the Kings Bay Laboratory; and target treatment 182 
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levels of 7.75, 7.65 and 7.35 (equivalent to pCO2 levels of 750, 1000 and 2000 μatm respectively), mimicking 183 

both fjord conditions and future scenarios. The second lowest target pH of 7.65 (1000 μatm pCO2) is 184 

reflective of winter conditions within Kongsfjord (Lischka and Riebesell 2012), while the lowest pH 185 

treatment of 7.35 was chosen as a future value not presently observed within Kongsfjord, in order to test T. 186 

inermis’ response to low pH beyond what they are currently exposed to. However, note that the measured 187 

values were slightly different (7.96, 7.70, 7.65 and 7.28) from the target pH values and we used the measured 188 

means in further discussion and analysis. Pure CO2 was bubbled into header tanks and regulated by pH 189 

controllers (Aqua Digital pH 201, Precise Instruments, J & K Aquatics Ltd, North Petherton, UK). Each 190 

header tank fed water via black gas impermeable tubing into three replicate 5-L containers with each replicate 191 

housing 30 adult krill. Thysanoessa inermis is a known herbivore within Kongsfjord (Falk-Petersen et al. 192 

2000) and diatom Thalassiosira weissflogii has been used as a food source in laboratory settings in previous 193 

experiments (Pinchuk and Hopcroft 2006; Dalpadado et al. 2008; Agersted et al. 2011). In the evening, krill 194 

were fed approximately 1000 cells mL-1 (16.7 µL per container) of Instant Algae Diatoms, T. weissflogii 195 

(Batch #14053 CCMP 1051/ TW sp.) to mimic the amount of food available in the fjord at the time of the 196 

experiment (AWIPEV Underwater Observatory, https://cosyna-nodes.shinyapps.io/svl_ferrybox/). Krill were 197 

also consistently kept in the dark to mimic natural fjord conditions until data collection was carried out. 198 

Temperature, salinity, dissolved oxygen and pH was recorded using a hand-held probe (SevenGo Pro, 199 

Mettler-Toledo, Columbus, OH, USA) daily in the header tanks and calibrated every other day. While, water 200 

samples for alkalinity (TA and DIC) were taken from the replicate tanks on the third, sixth and seventh day to 201 

limit the number of times tank lids were opened. The water samples were then treated with 20 µL of mercuric 202 

chloride (HgCl2) to preserve for future analysis. pH was converted to total scale from pH measured on the 203 

NBS scale using CO2SYS (version 2.1, Lewis and Wallace 1998) so as to be compared to fjord pHtotal that 204 

was calculated based on TA and DIC analysis.  205 

 206 

Seawater chemistry 207 

Seawater samples collected from the laboratory experiments were analysed for total alkalinity (TA). Total 208 

alkalinity was measured by Hydrochloric (0.08 M) acid-titration using a seawater gran titrator (AS-ALK2, 209 

Apollo Sci-Tech Inc., Bogart, GA, USA) and a pH bench top meter (ORION 3 STAR, Thermo Fisher 210 

Scientific Inc., Waltham, MA, USA). Total alkalinity was measured in the seawater samples in duplicates of 211 

12 mL. Water samples collected from Kongsfjord were analysed for both TA and dissolved inorganic carbon 212 
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(DIC). Dissolved inorganic carbon was measured using a DIC analyser and CO2 detector (AS-C3 and a LI-213 

COR LI-7000 CO2/H2O Analyzer, Apollo Sci-Tech Inc., Bogart, GA, USA). For both TA and DIC, Certified 214 

Reference Materials (Dickinson Laboratory, University of California, Batch 137) were used to assess 215 

precision. Once values for TA and DIC were recorded, CO2SYS (Lewis and Wallace 1998) version 2.1 was 216 

used to calculate the values of pCO2 for the laboratory samples along with pCO2 and pH for the fjord seawater 217 

samples. The constants used for CO2SYS were from Mehrbach et al. (1973) (refitted by Dickson and Millero 218 

(1987)). Water column profiles of temperature and salinity in Kongsfjord were constructed using SAIV A/S 219 

CTD (Model SD204, Bergen, Norway) data along with measured TA, DIC and calculated pH, pCO2 in Ocean 220 

Data View (Version 4.6.2).  221 

 222 

Determination of standard metabolic rate 223 

Oxygen consumption rates (MO2) of  T. inermis were determined at the end of the 7 d exposure period and 224 

used as a proxy for standard metabolic rate, following the methods by Melatunan et al. (2011) and Donohue et 225 

al. (2012). Due to the small size of the krill, and in order to carry out individual tests, blacked-out screw cap 226 

micro-centrifuge tubes (1.5 mL) were used as respirometry chambers. Centrifuge tubes have been previously 227 

used as a gas tight (O2) chamber over a 48 h period (Terai et al. 2002). Each tube was filled with double 228 

filtered (pore size 0.4 μm) water, to reduce the amount of background respiration within the chambers, taken 229 

from each individual krill’s designated treatment to maintain the same pH level. Each filled chamber, while 230 

fully submerged, was swabbed with a cotton bud to remove any trapped air bubbles before the krill were 231 

placed into the chamber. Krill individuals were gently inserted into the micro-centrifuge tubes using a 232 

modified pipette that was cut to make the opening large enough for the krill, and then the tubes were quickly 233 

sealed. All these operations were undertaken under water. Once closed, the chambers were placed in a 234 

continuous-flow water bath on top of a magnetic stirrer plate. Each chamber contained a magnetic flea (0.5 235 

mL) under a fine plastic mesh (0.5 mL) held within each cap of the tube to ensure appropriate mixing of the 236 

water, in order to maintain conditions homogeneous within the chamber. The amount of seawater in each 237 

chamber was calculated, taking into account the volume of the stirrer, mesh and individual krill using volume 238 

displacement. Each MO2 trial (five in total) had 12 krill individuals, one from each container, and three blank 239 

chambers to measure background respiration. Oxygen concentration in the chamber (µmol L-1) was measured 240 

approximately every 4 min during the 15 min incubation period, following a 10 min resting period to allow 241 

krill to recover from being inserted into the respirometry chambers. The length of incubation was determined 242 
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by preliminary tests such that the krill did not experience hypoxic conditions (< 80 % saturation) so as to not 243 

cause undue stress (Storch et al. 2009). O2 measurements were recorded using an O2 meter with a non-244 

invasive fiber optic cable (Fibox 4 PSt 3, Pre Sens, Regensburg, Germany) that was placed on top of a 245 

prefixed oxygen sensor dot (Sensor Spots, Pre Sens) within each chamber.  MO2 was calculated using the 246 

delta of the O2 level at the beginning and at the end of the incubation trial, minus the background respiration 247 

from the blanks. After each trial, krill were removed from the chambers, gently blotted then rapidly weighed; 248 

the cephalothorax and abdomen were separated, and individually frozen with liquid nitrogen. The abdomen 249 

was preserved for future biochemical assays. The krill were stored in Eppendorf tubes at -80 °C in the Kings 250 

Bay Marine Lab freezer until the samples were shipped on dry ice to Plymouth University where they were 251 

stored again at -80 °C until biochemical analyses were carried out.  252 

 253 

Biochemical assays 254 

The abdominal muscles of experimental krill were used for the biochemical assays. The tissue samples were 255 

weighed then prepared using 12 parts of 0.9 M perchloric acid to one part tissue sample. After the acid was 256 

introduced, the sample was sonicated (Misonix Microson Ultrasonic Cell Disruptor XL 2000, Qsonica LLC, 257 

Newtown, CT, USA) for 10 s. The sample solution was then centrifuged (Centrifuge 5418, Eppendorf AG, 258 

Hamburg, Germany) in a controlled temperature room (4 °C) for 10 min at 14,000 rpm after which the 259 

supernatant was removed and three parts of potassium carbonate (K2CO3) to one part of the tissue sample was 260 

added. The supernatant and K2CO3 solution was again centrifuged for 10 min. The supernatant was removed, 261 

placed into a new Eppendorf tube and then stored at -80 °C until biochemical analysis was conducted.  262 

 263 

ATP concentration was determined using a commercial luciferase reagent kit (BioThema, Handen, Sweden, 264 

ATP Kit SL, 144-041).  This reagent is a sustained light reagent where certain concentrations of luciferase 265 

and luciferin will lead to an output of light in the presence of ATP, where the rate of light output is 266 

proportional to the concentration of ATP present. Derived from the kit instruction sheet the method uses an 267 

internal standard as the rate of light output is dependent on the enzymatic activity of the luciferase which can 268 

be affected by several factors in ATP extracts like phosphate (Lundin 2000). Luminescence was measured 269 

using a luminometer (Pi-102, Hygiena LLC, Camarillo, CA, USA) using the slope of the reaction with the 270 

presence and absences of the internal ATP standard was used to determine ATP concentration.  271 

 272 
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L-lactate concentration was determined using a commercial kit (Trinity Biotech PLC, Bray, Co Wicklow, 273 

Ireland) in a 96 well plate format, using a plate reader (Versa Max Microplate, Molecular Devices Corp., 274 

Sunnyvale, CA, USA). Concentrations of L-lactate were determined using a standard curve. Absorbance was 275 

read at 540 nm.  276 

 277 

Statistical analysis 278 

Lactate data was transformed using log10 to meet the assumptions of normality of distribution and 279 

homogeneity of variances while all other parameters (MO2 and ATP) met this assumption without 280 

transformation. Fitted line regressions were used to investigate the consistency of laboratory seawater 281 

chemistry. First, a general linear model (GLM) was run for each biological parameter against pH treatment as 282 

a fixed factor, tank as a random nested variable within a specific pH treatment and body mass as a covariate to 283 

ascertain whether our replicate tanks per treatment had any significant effect on the selected parameters. Tank 284 

had no significant effect on krill biology (GLM ANOVA, MO2: F(8,25) = 1.72, p = 0.144; ATP: F(8,26) = 285 

1.21, p = 0.333; L-lactate: F(8,15) = 0.29, p = 0.958) and thus this term was removed from subsequent 286 

analyses. To account for the difference in krill body mass between treatments an individual sample approach 287 

was used (see (Bennett 1987; Calosi et al. 2013c).  A GLM was run for each biological parameter (MO2, ATP 288 

and L-lactate) with pH/pCO2 treatment as a fixed factor and body mass as a covariate. After which the 289 

residuals, the remaining variability not explained by body mass, from the previous analysis were used to 290 

investigate the effect of seawater chemistry (pH/pCO2) on the biological parameter investigated using a GLM 291 

again, as suggested by Bennett (1987). All statistical analysis was conducted using Minitab 17.  292 

 293 

Results 294 

Seawater chemistry 295 

Laboratory conditions 296 

Laboratory seawater pH conditions were comparable to the target pH treatment values originally set and were 297 

distinct across treatments (Fitted line regression, F(1,46) = 309.53, p =0.000; Table 1). Total alkalinity (TA) 298 

measurements from the laboratory samples were consistent across all pH treatments (Fitted line regression 299 

F(1,46) = 0.02, p = 0.883; Table 1). 300 

 301 

Kongsfjord conditions 302 
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On average, fjord seawater was cooler and slightly fresher (T < -0.56 °C; S < 34.81) in the inner fjord, and 303 

warmer and more saline (T > 1.72 °C; S > 35.13) in the outer fjord. While the inner fjord waters were more 304 

stratified, with temperature (Fig. 2a) and salinity (Fig. 2b) both increasing with depth; the outer fjord was well 305 

mixed, with temperature and salinity remaining stable throughout the water column. Total alkalinity (TA) 306 

(Figure 3a) was lowest (< 2248.9 μmol kg-1) at 30 m in the inner fjord, while the outer fjord was divided with 307 

an area of high TA (> 2341.0 μmol kg-1) from the surface down to 150 m, after which TA decreased. 308 

Dissolved inorganic carbon (DIC) (Fig. 3b) was highest (> 2172.4 μmol kg-1) in an area between 10-80 m in 309 

the inner fjord while the outer fjord was more stratified but had overall lower DIC. pH was lowest (pHtotal < 310 

8.0) between 10-80 m in the inner fjord, while the outer fjord was distinctly divided, with highest pH (pHtotal > 311 

8.2) found from the surface to 150 m, after which pH decreased with depth (Fig. 3c). pCO2 was highest (> 312 

404.9 μatm) at 30 m in the inner fjord with more stratified waters, while the outer fjord had two distinct areas 313 

where pCO2 was lowest (< 268.6 μatm) down to 150 m, then increased with depth (Fig. 3d).  314 

 315 

Krill physiological responses 316 

Seawater pH had no significant effect on the residual of the biological parameters versus individuals body 317 

mass: i.e. the remaining unexplained variability in the biological parameter after accounting for body mass, of 318 

MO2, ATP and log10-lactate (Table 2; Table 3). Krill survival averaged 87.8, 90, 81.1, and 87.8 % on day 3 319 

and 62.2, 60, 63.3 and 57.8 % on day 7 for pH treatments 8.06, 7.79, 7.65 and 7.38 respectively.  320 

 321 

Discussion 322 

To our knowledge, this study is the first to examine the short-term biological responses of overwintering 323 

Arctic krill to ocean acidification (OA) in relation to natural conditions found in Arctic fjord seawater 324 

chemistry. Overall, we found no significant physiological impacts of OA on overwintering individuals of 325 

T.inermis from the Arctic fjord of Kongsfjord.  326 

 327 

Global change has the potential to impact Kongsfjord in a number of ways. In the outer fjord there will be a 328 

large influence from changing oceanographic conditions, such as an increased penetration of warmer, more 329 

saline Atlantic water (Willis et al. 2006); while the inner fjord could be exposed to increased river run-off and 330 

melt from the large tidal glaciers (Svendsen et al. 2002).  Similar to previous studies carried out in April 331 

(Cottier et al. 2005; Willis et al. 2006), the presence of a warmer, more saline, well-mixed water column 332 
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throughout most of Kongsfjord, with a stratified water column of colder fresher water in the inner fjord, 333 

indicates a large influence of Atlantic water (AW), or modified-Atlantic water (MAW) within the fjord. The 334 

stratified inner fjord could be the remains of trapped Arctic water as well as an input of fresh melt-water.  335 

 336 

The carbonate chemistry data presented here are comparable to previously reported results from within 337 

Kongsfjord. Total alkalinity (TA) measured between 200- 300 m depth has been reported to range from 2295 338 

– 2334 μmol kg-1. Additionally, pH recorded at this depth ranged from 8.13 – 7.68, whereas pCO2 ranged 339 

from a low of 309 - 979 μatm (Lischka and Riebesell 2012). This data is also comparable to those from the 340 

MAW and AW masses in the Fram Strait, located between Greenland and Svalbard, for TA (2297 ± 5 and 341 

2325 ± 7 μmol kg-1, respectively) and dissolved inorganic carbon (DIC: 2148 ± 5 and 2120 ± 20 μmol kg-1, 342 

respectively) (Anderson et al. 1998; Jeansson et al. 2011). Total alkalinity was lowest at the stations near the 343 

glacial front, and highest in the outer fjord, suggesting a freshwater dilution of TA. In contrast, DIC was 344 

highest near the glacier front likely because of remineralisation of organic matter releasing CO2 and thus 345 

increasing DIC, as a result of movements of glaciers or icebergs stirring up organic matter (Feely et al. 2010). 346 

The benthic organic matter in Kongsfjord is regulated singularly by zooplankton grazing (Hop et al. 2002). 347 

CO2 released during respiratory remineralisation causes a decrease in pH (Shadwick et al. 2013), which is 348 

evidenced here in the inner fjord with an area of lower pH and higher pCO2. Changes in water mass 349 

dominance, Arctic versus Atlantic, are a usual occurrence in Kongsfjord and are most likely to influence the 350 

pelagic system (Hop et al. 2002). Zooplankton like T. inermis are advected to the glacial front where they are 351 

exposed to fresh meltwater and subsequent low pH (Hop et al. 2002) and shifts in zooplankton community 352 

composition have been linked to water mass advection in Kongsfjord (Willis et al. 2006).  353 

 354 

With respect to OA, an organisms’ habitat and consequent exposure to a range of pCO2 conditions has been 355 

shown to lead to a greater tolerance to such stress (Watanabe et al. 2006; Maas et al. 2012; Calosi et al. 356 

2013a; Lewis et al. 2013; Pespeni et al. 2013; Lucey et al. 2015). Specifically, this has also been observed in 357 

crustaceans that are regularly exposed to variable environmental conditions through behaviour and life history 358 

characteristics (Watanabe et al. 2006; Lewis et al. 2013), as well as physiological adaptation (Turner et al. 359 

2016). In detail, deep-living copepods from the subarctic North Pacific were found to be more tolerant to high 360 

pCO2 than their sub-tropical counterparts, which could be attributed to variable pCO2 conditions in the 361 

subarctic ocean (Watanabe et al. 2006). Adult Calanus spp. in the high Canadian Arctic exposed to a range of 362 
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pCO2 conditions during daily vertical migrations were less sensitive to high pCO2 conditions than surface 363 

water dwelling O. similis (Lewis et al. 2013). Our work further corroborates this, as we show that low pH 364 

does not significantly affect T. inermis’ physiology when considering individuals’ metabolic rates and 365 

metabolite concentrations. This tolerance to low pH could be due to either phenotypic plasticity or adaptation 366 

to the naturally variable pH found within the fjord.  367 

 368 

Metabolic activity for T. inermis reported in our study are comparable to mean respiration rates reported for 369 

T. inermis collected in Hornsund (Svalbard, Norway) and incubated at similar temperatures (4 °C) 370 

(Huenerlage and Buchholz 2015). In addition, T. inermis metabolic activity is similar but slightly lower than 371 

those previously reported for the krill Meganyctiphanes norvegica (19.9 - 92.9 mol O2 g-1 h-1 DW) at 372 

ambient pH and comparable temperatures (Mayzaud 1973; Sameoto 1976; Båmstedt 1979; Hirche 1984; 373 

Saborowski et al. 2002). Thysanoessa inermis metabolic rate might be expected to be slightly lower than that 374 

of M. norvegica due to interspecific differences as well as geographic location, T. inermis is found living in 375 

overall colder habitats (Clarke and Peck 1991; Clarke 1998). In addition, total lipid percentages for M. 376 

norvegica, span 20-50% of their dry mass in the Fram Strait with T. inermis in Kongsfjord within that range 377 

but slightly lower at 21-42% dry mass (Falk-Petersen et al. 2000). The similar metabolic rate compared to 378 

other studies, suggests that the krill in our experiments were not unduly stressed by handling prior to 379 

incubation or the relatively short-term incubation we employed in our study.  Mean metabolic rate was 380 

comparable across all pH treatments, indicating that krill exposed to low pH for a short time period (7 d) were 381 

able to maintain metabolic rates comparable to those previously reported for animals in ambient pH seawater. 382 

Daily and seasonal variability (AWIPEV Underwater Observatory (only monitors surface waters, node 383 

located at 11 m depth), https://cosyna-nodes.shinyapps.io/svl_ferrybox/) of fjord carbonate chemistry in 384 

combination with the migratory behaviour of T. inermis could provide them with a pre-exposure that has 385 

given the species an advantage to cope with changes in environmental pH. The ability to maintain metabolic 386 

rates at low pH (7.95, 7.80, 7.61) has been observed in other species, including the Arctic copepod 387 

Pseudocalanus acuspes from Kongsfjord, although the combination of low pH and prey concentration 388 

affected metabolic rates significantly (Thor and Oliva 2015). Additionally, exposure to elevated pCO2 over a 389 

2 month period had no detrimental effects on the oxygen consumption rate of early life stages of the Arctic 390 

copepod, C. glacialis (Bailey et al. 2017). The ability to maintain metabolic rates at low pH has been 391 

https://cosyna-nodes.shinyapps.io/svl_ferrybox/
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observed in non-Arctic species, like the deep-sea pteropods of the Pacific, which migrate into elevated pCO2 392 

oxygen minimum zones (Maas et al. 2012).  393 

 394 

The ATP concentrations observed here were lower than values previously reported for M. norvegica (Skjoldal 395 

and Båmstedt 1977; Ventura 2006). This difference could be due to interspecific differences, as well as 396 

differences in methodology and the timing of our sampling: i.e. we sampled krill prior to the onset of the 397 

spring bloom, as herbivorous species these krill will reach peak ATP levels during the spring bloom (Skjoldal 398 

and Båmstedt 1977). Importantly, the mean ATP concentrations reported here show that there was very little 399 

energy commitment being made by T. inermis during this time, potentially an indication of their 400 

overwintering state.  401 

 402 

Like metabolic rate, mean ATP concentration and mean L-lactate concentration were also consistent across 403 

pH treatments, indicating that the krill are able to maintain aerobic metabolism and that energy metabolism 404 

was not compromised at different pH levels: i.e. maintenance of metabolic rates came at no apparent energetic 405 

cost as there was no observable differences in ATP concentration or evidence supporting an increase in 406 

anaerobic metabolism. In contrast, Antarctic krill, E. superba, exposed to elevated pCO2 (672 µatm) 407 

conditions for just 24 h, showed an increase in nutrient release rates and metabolic activity that are associated 408 

with the maintenance of internal acid-base equilibrium (Saba et al. 2012). One explanation for these different 409 

responses is the different length of experimental exposure between our study (7 d) and that of Saba et al. 410 

(2012) (24 h). The metabolic response, and subsequent increased ingestion found by Saba et al. (2012) could 411 

plausibly be that responses recorded following a short-term exposure (several hours) to low pH/elevated pCO2 412 

are not maintained over a longer period of exposure (i.e. several days as tested here or weeks to months), as 413 

shown by Sperfeld et al. (2014) and Suckling et al. (2015). Long-term metabolic rate adjustments in response 414 

to low pH and increased temperature were observed in the Antarctic sea urchin, Sterechinus neumayeri, where 415 

adults took 6-8 months to acclimatize to experimental conditions but showed no measurable effect of low pH 416 

and increased temperature on metabolic rates after this period (Suckling et al. 2015).  Indeed Sperfeld et al. 417 

(2014) exposed Nyctiphanes couchii, a Northern Atlantic krill species, to elevated CO2 conditions for 5 418 

weeks, and found no consistent detrimental impacts of near future elevated pCO2 (< 1,100 µatm) on growth or 419 

their exoskeleton, although survival decreased and the frequency of moult-related deaths increased above 420 

1,100 µatm.  421 
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 422 

Furthermore, it is also important to consider that the susceptibility to OA may be associated with differences 423 

in lifestyle, life-history stage, as well as the ability to compensate for changes in the environment (Whiteley 424 

2011). For instance, krill embryonic development and larvae were found to become impacted by pCO2 425 

elevated above 1000 µatm (Kawaguchi et al. 2011, 2013), and gravid females were found to be more sensitive 426 

to elevated CO2 than non-gravid krill (Saba et al. 2012), while the sub-adults from Sperfeld et al. (2014) and 427 

adults in this study suggest these stages are potentially more tolerant to elevated CO2.  428 

 429 

Our findings suggest that exposure to natural gradients in seawater chemistry (pH, pCO2) has resulted in the 430 

ability to tolerate at least short-term exposure to low pH in overwintering individuals of T. inermis. 431 

Nonetheless, limited food availability during the winter months along with a potential demand for more food 432 

to compensate for the negative effects of low pH could still represent a challenge for Arctic krill in the future. 433 

Furthermore, warming, along with acidification, poses a serious threat to Arctic ecosystems, and hence future 434 

work should also include T. inermis’s response to multiple stressors. Future OA studies at high latitudes 435 

should consider conducting long-term exposure to low pH/elevated pCO2 (Rodríguez-Romero et al. 2015; 436 

Thor and Dupont 2015; Suckling et al. 2015; Lucey et al. 2016). However, logistics and a short field season 437 

might present a problem in conducting longer-term experiments.  438 

 439 
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Figure legends  632 
 633 

Fig. 1 The red box highlights the lLocation of Kongsfjord on the west coast of Spitsbergen, Svalbard, Norway 634 

79°N, 12°E. Map was created using Ocean Data View 4.6.2 635 

 636 

Fig. 2 Kongsfjord water column profiles for all five sampling stations: a) Temperature (°C), b) Salinity. 637 

Water column figures were created using Ocean Data View 4.6.2 638 

 639 

Fig. 3 Kongsfjord water column profiles for all five sampling stations: a) Total Alkalinity (μmol kg-1), b) 640 

Dissolved Inorganic Carbon (μmol kg-1), c) calculated pHtotal, d) calculated pCO2 (μatm). CO2SYS 641 

calculations were preformed using constants from Mehrbach et al. (1973) refit by Dickson and Millero 642 

(1987). Water column figures were created using Ocean Data View 4.6.2   643 
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Table 1 Values (Mean ± SD) for laboratory seawater chemistry per target pH treatment: pH (NBS scale), Temperature (°C), Salinity and Total 

Alkalinity (TA) were measured. pHtotal and pCO2 values were calculated using CO2SYS  

Target  

pH N 
Measured  

pH (NBS) 

 

pHtotal  

 

Temperature 

(°C) 

 

Salinity 

 

Total Alkalinity 

(μmol kg-1) 

 

pCO2 

(μatm) 

8.12 9 8.06 ± 0.06a 7.96 ± 0.06a 4.4 ± 0.2 34.81 ± 0.0 2386.5 ± 14.5a 488.4 ± 82.2a 

7.85 9 7.79 ± 0.06b 7.70 ± 0.07b 4.6 ± 0.3 34.81 ± 0.0 2391.4 ± 18.4a 1010.5 ± 219.6b 

7.75 9 7.75 ± 0.10b 7.65 ± 0.10b 4.5 ± 0.3 34.81 ± 0.0 2390.8 ± 13.7a 1049.4 ± 282.8b 

7.45 9 7.38 ± 0.06c 7.28 ± 0.06c 4.5 ± 0.1 34.81 ± 0.0 2386.2 ± 13.0a 2647.2 ± 455.7c 

Superscripts represent differences among pH treatments based on a fitted line regression and a post hoc Tukey test (α=0.05): a,b,c p = 0.000 

 

Table 2 Values (Mean ± SD, (N)) for the biological parameters measured in the Arctic krill Thysanoessa inermis at different pH conditions treatment  

pHtotal  O2  

(μmol h-1 g-1 WW) 

O2  

(μmol h-1 g-1 DW*) 

ATP  

(μmol g-1) 

Lactate  

(mmol L-1) 

Body Mass  

(g) 

7.96 6.9 ± 4.8 (8) 27.4 ± 19.3 (8) 0.052 ±0.037 (8) 1.084 ± 0.276 (8) 0.009 ± 0.003 (8) 

7.70 4.6 ± 2.6 (12) 18.2 ± 10.6 (12) 0.060 ±0.041 (12) 0.810 ± 0.485 (7) 0.019 ± 0.020 (12) 

7.65 4.1 ± 2.7 (10) 16.2 ± 10.9 (10) 0.037 ±0.026 (10) 0.708 ± 0.192 (7) 0.010 ± 0.003 (10) 

7.28 4.9 ± 5.1 (8) 19.4 ± 20.3 (8) 0.052 ±0.039 (8) 0.763 ± 0.673 (6) 0.020 ± 0.018 (8) 

*Dry weight was assumed to be 25% of the wet weight as per Saborowski et al 2002 
 

 1 
Table 3 Summary of the statistical results for the general linear models of the residual of the biological parameters versus individuals body mass: i.e. the 

remaining unexplained variability in the biological parameter after accounting for body mass. Residual MO2, ATP and Log10-Lactate of Thysanoessa 

inermis tested against pH as a fixed factor. df-degrees of freedom, Adj. MS- adjusted mean of squares, F- F ratio and p-probability level 

Biological Parameter df Adj. MS F p 

Residual MO2 3 0.000013 0.02 0.995 

Residual ATP  3 0.000000 1.13 0.352 

Residual Log-Lactate 3 0.02836 0.68   0.573 
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