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Oceanic phytoplankton respond rapidly to a complex spectrum of climate-driven

perturbations, confounding attempts to isolate the principal causes of observed changes.

A dominant mode of variability in the Earth-climate system is that generated by the

El Niño phenomenon. Marked variations are observed in the centroid of anomalous

warming in the Equatorial Pacific under El Niño, associated with quite different alterations

in environmental and biological properties. Here, using observational and reanalysis

datasets, we differentiate the regional physical forcing mechanisms, and compile a global

atlas of associated impacts on oceanic phytoplankton caused by two extreme types of

El Niño. We find robust evidence that during Eastern Pacific (EP) and Central Pacific

(CP) types of El Niño, impacts on phytoplankton can be felt everywhere, but tend to be

greatest in the tropics and subtropics, encompassing up to 67% of the total affected

areas, with the remaining 33% being areas located in high-latitudes. Our analysis also

highlights considerable and sometimes opposing regional effects. During EP El Niño,

we estimate decreases of −56 TgC/y in the tropical eastern Pacific Ocean, and −82

TgC/y in the western Indian Ocean, and increase of +13 TgC/y in eastern Indian Ocean,

whereas during CP El Niño, we estimate decreases −68 TgC/y in the tropical western

Pacific Ocean and−10 TgC/y in the central Atlantic Ocean. We advocate that analysis of

the dominant mechanisms forcing the biophysical under El Niño variability may provide a

useful guide to improve our understanding of projected changes in the marine ecosystem

in a warming climate and support development of adaptation and mitigation plans.

Keywords: El Niño variability, ENSO, climate, ocean-color, ESA climate change initiative, phytoplankton

INTRODUCTION

Phytoplankton, the microscopic vegetal cells living at the surface of the oceans, yield globally
and annually some fifty billion tons of organic carbon through primary production (Longhurst
et al., 1995), contributing to the oceanic uptake of ∼25% of the carbon dioxide (CO2) emitted
to the atmosphere every year (Le Quéré et al., 2015). The rates of primary production are
not uniformly distributed across the ocean domain: the most highly productive oceanic regions
are found at high-latitudes and in coastal upwelling systems. Oceanic primary producers are
under the control of physical forcing on a broad spectrum of scales, and the forcing will be
modified under climate change. In the latest assessment report (AR5), the Intergovernmental Panel
on Climate Change (IPCC) has recognized “medium evidence” for the response of the highly
productive oceanic regions to recent warming (especially since the 1970s) and “low confidence”
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in the understanding of how equatorial upwelling systems might
change in response to El Niño variability (Hoegh-Guldberg et al.,
2014).

El Niño activity is characterized by anomalous warming of
Sea Surface Temperature (SST) in the tropical Pacific, linked to
a perturbation of atmospheric circulation patterns known as the
SouthernOscillation. This ocean-atmosphere coupling, called the
El Niño Southern Oscillation (ENSO), is a dominant mode of
variability in the Earth-climate system with a typical frequency of
2–7 years (McPhaden et al., 2006; Cai et al., 2015). Each El Niño
event is unique, exhibiting differences in surface and subsurface
water temperature amplitude, duration, and spatial patterns
(Capotondi et al., 2015). As an aid to classify El Niño events, the
location of maximum anomalous SST warming observed during
boreal winter has been used to delineate two extreme types of
El Niño (Trenberth and Stepaniak, 2001; Larkin and Harrison,
2005; Ashok et al., 2007; Yu and Kao, 2007; Ashok and Yamagata,
2009; Kao and Yu, 2009; Kug et al., 2009; Lee and McPhaden,
2010; Takahashi et al., 2011; Cai et al., 2015; Capotondi et al.,
2015). The Eastern-Pacific (EP) El Niño, also referred to as the
“typical” or canonical El Niño, is characterized by maximum
anomalous SST warming in the eastern tropical Pacific. In
contrast, the Central-Pacific (CP) El Niño, variously referred to as
El Niño Modoki (a Japanese word meaning pseudo), warm-pool
El Niño, or dateline El Niño, is characterized by weak anomalous
SST warming along the western coast of South America and
maximum anomalous SSTwarming in the central tropical Pacific.
The climatic perturbations generated by these two types of El
Niño are induced through different atmospheric teleconnections:
both have been associated with changes in temperature and
rainfall patterns over the continental U.S. (Yu et al., 2012; Yu and
Zou, 2013), in storm tracks in the SouthernHemisphere (Kao and
Yu, 2009) and in cyclone trajectories in the North Atlantic (Kim
et al., 2009). Since the beginning of the 1900s, two most extreme
EP and CP El Niño events (in terms of amplitude of maximum
SST anomalies in the Eastern and Central Pacific regions) have
occurred within the last 20 years, in 1997/1998 and 2009/2010
respectively (Capotondi et al., 2015). The latest 2015/2016 El
Niño has been reported with comparable magnitude of SST
anomalies to the 1982/1983 and 1997/1998 events but with more
limited intensity in the Eastern Pacific region (Paek et al., 2017;
L’Heureux et al., in press).

Contrasting influence of the extreme El Niño events of
1997/1998 and 2009/2010 on oceanic phytoplankton has been
characterized in the tropical Pacific domain (Gierach et al.,
2012; Radenac et al., 2012). In this region, ENSO is recognized
as the main driver of inter-annual phytoplankton variability.
Tropical, as well as extra-tropical, influences of ENSO and
ENSO Modoki have been demonstrated using statistical analyses
based on a range of indices applied to ocean-color remote-
sensing observations (Yoder and Kennelly, 2003; Behrenfeld
et al., 2006; Chavez et al., 2011; Vantrepotte and Mélin, 2011;
Messié and Chavez, 2012, 2013; Racault et al., 2012, 2017; Couto
et al., 2013; Raitsos et al., 2015). One of the most widely-used
environmental indices to characterize influence of ENSO on
ocean biology is the Multivariate ENSO Index (MEI). This index
is based on combined analysis of fields of sea level pressure,

surface winds, SST, surface air temperature, and cloudiness for
the entire Tropical Pacific domain (Wolter and Timlin, 1993).
Due to this broad domain and multivariate statistical approach,
the MEI encompasses the whole continuum of ENSO events
(from most extreme SST anomalies located in the Central to
Eastern Pacific regions), but as a result, the index does not
allow us to separate effects of EP and CP El Niño variations.
Separating EP and CP El Niño variations requires indices
isolating the centroid of El Niño activity along the equatorial
Pacific.

To date, the longitudinal position of the center of maximum
SST anomalies has been delineated in the Niño1+2 (0◦–10◦S,
90◦–80◦W), Niño3 (5◦–5◦N, 150◦W–90◦W), Niño3.4 (5◦N–5◦S,
170◦W–120◦W) and Niño4 (5◦–5◦N, 160◦E–150◦W) regions
(Ashok et al., 2007). Based on analyses of the SST anomalies
variations in these regions, a range of El Niño indices have
been constructed. In the present study, the EP and CP El Niño
signals are characterized using the EP and CP index defined
by Kao and Yu (2009). The EP index was calculated by first
applying regression analysis of SST anomalies onto the Niño4
index (average SST anomalies over the Niño4 region) to remove
the influence of the SST anomaly component associated with
central Pacific warming, and then using Empirical Orthogonal
Function (EOF) analysis to determine the spatial patterns and
associated temporal index of EP events. Similarly, the CP index
was calculated by applying regression analysis of SST anomalies
onto the Niño1+2 index to remove the influence of the SST
anomaly component associated with east Pacific warming, and
then using EOF analysis to characterize pattern and index
of CP events (Kao and Yu, 2009; Yu et al., 2012). Using
partial correlation and EOF analyses, the characterization of the
canonical El Niño and El Niño Modoki signals has also been
achieved based on SST anomalies from the Niño3 region and
by differentiating the influence of SST anomalies variations from
a combination of regions in the tropical Pacific. The specific
combination and definition of regions have been formulated as
the Trans-Nino Index TNI (Trenberth and Stepaniak, 2001),
the El Niño Modoki Index EMI (Ashok et al., 2007), and the
Improved EMI (Li et al., 2010). A comprehensive review of
El Niño indices definition is presented by Capotondi et al.
(2015).

The main obstacles to distinguishing the ecosystem effects
associated with El Niño variability may be summarized to arise
from: (i) the challenges to construct continuous, synoptic-scale,
long-term time-series of marine ecosystem state at high temporal
and spatial resolutions for the global oceans (Sathyendranath
and Krasemann, 2014); (ii) the diversity and complexity
of the mechanisms driving the biophysical interactions in
different oceanic sub-regions or provinces (Longhurst et al.,
1995; Boyd et al., 2014); (iii) the difficulties to elucidate the
roles of the local and remote-forcing mechanisms associated
with different El Niño events (Cai et al., 2015; Capotondi
et al., 2015); (iv) the issues of lag in the transmission of
El Niños influences at higher latitudes and to other basins
via different teleconnection mechanisms (Ashok et al., 2007;
Couto et al., 2013); and finally (v) the broad ranges of
meridional position, amplitude and evolution of SST anomalies
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observed during different El Niño events, which militate
against consensus in the choice of method to estimate indices
of El Niño variability (Capotondi et al., 2015). Here, we
propose an original approach that overcome some of these
obstacles based on climate-quality ocean-color products and
state-of-the-art reanalysis datasets, and allow us to establish
an atlas of the impact of CP and EP types of El Niño
on primary producers in the global oceans. Finally, we
document the associated environmental changes and identify
the dominant mechanisms driving the diverse biophysical
interactions involved.

MATERIALS AND METHODS

The list of biological and physical datasets obtained for the
analyses is summarized in Table 1. Based on datasets availability,
two periods of study have been considered: (1) 1997–2012 (15
years) for biological and physical datasets, and (2) 1979–2014 (35
years) for physical datasets only.

Biological Datasets
Remotely-Sensed Chlorophyll Concentration and

Associated Uncertainty Estimates
Chlorophyll is at the heart of primary production, it is the state
variable used in photosynthesis-irradiance models to compute
primary production; it has a distinct optical signature which
makes it one of the easiest phytoplankton properties to measure,
both by in-situ and satellite methods. Ocean-color sensors on
satellites provide estimates of chlorophyll concentration at high
spatial and temporal resolution and at global scale. Because
they provide data consistently and frequently and over long
periods of time, they are suitable for computations of certain
ecological indicators and for studying long-term trends in the
state of the marine ecosystem (Platt and Sathyendranath, 2008;
Racault et al., 2014). However, ocean-color sensors do have
a finite lifespan, and differences in instrument design and
algorithms make it difficult to compare data from multiple
sensors. When overlapping data are available from two or
more sensors, such data can be used to establish inter-sensor
bias and correct for it. Recently, under the European Space
Agency (ESA) Climate Change Initiative (CCI), the ocean-color
project (http://www.esa-oceancolour-cci.org) has produced new,
improved products, merging observations from the Sea-viewing
Wide Field-of-View Sensor (SeaWiFS, 1997–2010), the Moderate
Resolution Imaging Spectroradiometer (MODIS, 2002-present)
and the MEdium Resolution Imaging Spectrometer (MERIS,
2002–2012) to provide a 15-year (1997–2012 OC-CCIv2) global
scale, climate-quality controlled, bias-corrected, and error-
characterized data record of ocean-color (Sathyendranath and
Krasemann, 2014). Furthermore, implementation of the coupled
ocean-atmosphere POLYMER correction algorithm (MERIS
period; Steinmetz et al., 2011) has increased significantly
the coverage of chlorophyll observations (Sathyendranath and
Krasemann, 2014; Racault et al., 2015).

The OC-CCI v2.0 Level 3 Mapped data of chlorophyll
concentration, root-mean-square-difference (RMSD) and bias
estimates of monthly log-transformed (base 10) Chl, were

obtained at 4 km spatial resolution, and monthly temporal
resolution from the ESA CCI Ocean Color website at http://www.
esa-oceancolour-cci.org. To remain coherent with the resolution
of the different datasets used in the analyses (Table 1), the
chlorophyll concentration was mapped onto a 1◦ × 1◦ regular
grid by averaging all available data points within each new, larger
pixel. Standard deviation of chlorophyll product (computed from
bias and RMSD) was calculated by aggregating pixel values
at the same spatial (1◦ × 1◦) resolution. Then, the standard
deviation of the log10Chl was converted to its untransformed
value. The standard error in the reported mean value at each
pixel for the period 1997–2012 was computed, and values
ranging between ±1% in the tropical gyres (associated with low
chlorophyll concentration) and below ±0.5% at higher latitudes
(associated with high chlorophyll concentration) were observed
(Supplementary Figure 1). Uncertainties in the anomalies of
relative (%) changes in chlorophyll in selected box areas
were calculated using the standard methods for computing
propagation of errors (Topping, 1972).

Remotely-Sensed Primary Production (PP)
Global observations of water-column PP were obtained from
the Open Ocean Transboundary Water Assessment Programme
(TWAP) using the algorithm of Platt and Sathyendranath (1988),
with OC-CCI v2.0 Chlorophyll, SeaWiFS and MODIS spectrally-
resolved light (i.e., PAR) as inputs. The model parameters
(i.e., vertical structure of Chlorophyll and the photosynthesis-
irradiance parameters) are assigned following the partitioning
of the ocean into biogeographic provinces (Longhurst, 1998).
The TWAP primary production estimates have been shown
to compare consistently well with other global ocean primary
production models (Longhurst et al., 1995; Antoine et al.,
1996; Behrenfeld et al., 2005). The PP data have been
obtained at 9 km spatial resolution, and monthly temporal
resolution from https://www.oceancolour.org/thredds/catalog/
TWAP-PProd/catalog.html. The PP data were regridded to 1◦ ×
1◦ spatial resolution by averaging all available data points within
each new, larger pixel.

Physical Datasets
Remotely-Sensed Photosynthetically Active

Radiation (PAR)
The Level 3 Mapped data of PAR, collected during the SeaWiFS
and MODIS missions (Frouin et al., 2012), were obtained at 9
km spatial resolution and monthly resolution from the NASA
website at http://oceancolor.gsfc.nasa.gov/cms/. The PAR data
were regridded to 1◦ × 1◦ spatial resolution by averaging all
available data points within each new, larger pixel.

Remotely-Sensed Sea Surface Temperature (SST)
The sea surface temperature SST-CCI vexp1.2 Mapped gap-filled
daily blend of the Advanced Very High Resolution Radiometers
and the Along-Track Scanning Radiometers data (Merchant
et al., 2014) were obtained at 1◦ × 1◦ spatial resolution, and
monthly temporal resolution from the ESA-CCI National Centre
for Earth Observation (NCEO) portal at http://gws-access.ceda.
ac.uk/public2/nceo_uor/sst/L3S/EXP1.2/.
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TABLE 1 | Datasets obtained for the analysis.

Dataset Version Period Time Res. Source

Chlorophyll Concentration v2.0 1997–2013 Monthly 1◦ × 1◦ Ocean Color-CCI ESA

Primary Production v2.0 1997–2012 Monthly 1◦ × 1◦ TWAP project

Sea Level Anomaly v1.1 1993–2013 Monthly 0.25◦ × 0.25◦ Sea Level-CCI ESA

Sea Surface Temperature vEXP1.2 1991–2015 Monthly 1◦ × 1◦ SST-CCI ESA

Sea Surface Temperature ERA Interim 1979–2014 Monthly 0.75◦ × 0.75◦ ECMWF

Wind ERA Interim 1979–2014 Monthly 0.75◦ × 0.75◦ ECMWF

Surface Air Temperature Jan-15 1948–2014 Monthly 2.5◦ × 2.5◦ NCEP/NCAR/NOAA

Precipitation Jun-16 1979–2013 Monthly 2.5◦ × 2.5◦ NCAR/NOAA/ESRL CMAP

Photosynthetically Active Radiation R2010 1997–2012 Monthly 1◦ × 1◦ NASA SeaWiFS & MODIS

Ocean subsurface temperature v2p2p4 1950–2008 Monthly 0.5◦ × 0.5◦ SODA

EP and CP El Niño indices Jan-15 1948–2014 Monthly – (Kao and Yu, 2009; Yu et al., 2012)

Multivariate ENSO Index Jan-13 1950–2013 Monthly – ESRL/NOAA

Information about the regridding procedure and selected period of study are provided in the Materials and Methods section in the manuscript. Res, Spatial Resolution.

Remotely-Sensed Sea Level (SL)
The sea level SL-CCI v1.1 Mapped gap-filled blend of the
Topex/Poseidon, Jason-1/2 with the ERS-1/2 and Envisat
missions data (Ablain et al., 2015) were obtained at 0.25◦ × 0.25◦

spatial resolution, and monthly temporal resolution from the
ESA SL-CCI website at http://www.esa-sealevel-cci.org.

Reanalysis Products of SST and Wind
ERA Interim reanalysis of monthly 10m U wind component,
10m V wind component, 10m wind speed (Dee et al., 2011)
were obtained on 0.75◦ × 0.75◦ global grid-box from ECMWF
at http://apps.ecmwf.int/datasets/data/interim_full_moda/.

Reanalysis Product of Surface Air Temperature (SAT)
NCEP/NCAR reanalysis of monthly surface air temperature
(Kalnay et al., 1996) were obtained on 2.5◦ × 2.5◦ global grid-
box from National Oceanic Atmospheric Administration/Office
of Oceanic and Atmospheric Research/Earth System research
Laboratory at http://www.esrl.noaa.gov/psd/data/gridded/data.
ncep.reanalysis.surface.html. This dataset was chosen to be
consistent with the data used by Yu et al. (2012) in their analysis
on El Niño impact on U.S. winter air surface temperature.

Reanalysis Product of Precipitation
CPC Merged Analysis of Precipitation (CMAP) interpolated
data (Xie and Arkin, 1997) were obtained on 2.5◦ × 2.5◦

global grid-box at monthly temporal resolution from National
Oceanic Atmospheric Administration/Office of Oceanic and
Atmospheric Research/Earth System research Laboratory at
http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html.

Mixed Layer Depth (MLD)
The mixed layer depth (MLD) was estimated as the shallowest
depth at which ±0.2◦C change is observed compared with
the temperature at 10m depth, based on the temperature
criterion of de Boyer Montégut et al. (2004). The vertical profiles
of temperature were downloaded from Simple Ocean Data
Assimilation (SODA) model output v2p2p4 http://iridl.ldeo.
columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4/ at

monthly temporal resolution and 0.25◦ × 0.4◦ × 40-level spatial
and vertical resolutions (Carton and Giese, 2008). The data were
regridded to 1◦ × 1◦ spatial resolution by averaging all available
data points within each new, larger pixel.

Zonal Surface Currents
Annual average zonal surface currents data were obtained at
1◦ × 1◦ resolution for the global oceans from NOAA Ocean
Surface Current Analyses Real-time (OSCAR) at http://www.esr.
org/oscar_index.html.

Nitrate Concentration
Annual average surface nitrate concentration data were obtained
at 1◦ × 1◦ resolution for the global oceans from the
World Ocean Atlas Climatology (Boyer et al., 2013) at
https://www.nodc.noaa.gov/OC5/woa13/.

Climate Impact Analysis
Climate Indices
Time-series of MEI based on principal component analysis of six
atmosphere-ocean variable fields in the tropical Pacific basin i.e.,
SL, SST, SAT, U, and V wind components, and total cloudiness
fraction of the sky (Wolter and Timlin, 1993) were obtained at
http://www.esrl.noaa.gov/psd/enso/mei/table.html. Time-series
of Eastern Pacific and Central Pacific El Niño indices based a
combination of regression and empirical orthogonal function
analyses applied to SST data in the tropical Pacific (Kao and Yu,
2009) were obtained at http://www.ess.uci.edu/∼yu/2OSC/.

Statistical Analysis
The influences of EP and CP El Niño events may propagate across
the world at different speed through different teleconnection
mechanisms (Ashok et al., 2007). To avoid implementing impact
analyses on monthly anomalies, which would involve different
lag-coefficients, the influence of the different types of El Niño
is characterized based on annual mean anomalies. Anomalies
of physical and biological variables were computed first by
removing the monthly mean climatology over the period 1997–
2012. Then, annual mean anomalies were calculated by averaging
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the monthly anomalies over the periods from June (of year
t) to May (of year t + 1) (i.e., spanning over two calendar
years). This 12-month delineation period was chosen to follow
the seasonality of ENSO activity, which generally peaks in the
month of November to January (i.e., higher SST anomalies in
the Equatorial Pacific, Niño 1–4 regions). Because chlorophyll
concentrations can span three orders of magnitude, relative
percent differences in chlorophyll were calculated such as:

Cra =
(

Ct − C̄
)

/
((

Ct + C̄
)

/2
)

∗ 100

where Cra is relative chlorophyll anomalies in percent, Ct is
annual chlorophyll concentration in mg.m−3 in year t, and C̄ is
the mean of annual chlorophyll concentrations over the 15 years
study period. Note that the results of the EP and CP impacts (see
method below) were not sensitive to the choice of normalization
function.

The climate impact analysis to identify the oceanic regions
that are most sensitive to El Niño variability is based on a
statistical approach initially developed in a study of El Niño
impact on U.S. winter air surface temperature using EP and
CP indices (Yu et al., 2012). In the present study, the global
and regional influences associated with each type of El Niño are
extracted by separately regressing at each 1◦ × 1◦ grid point the
EP and CP El Niño indices with: (a) annual mean anomalies
of chlorophyll concentration time-series (as a key measure of
phytoplankton population), and (b) annual mean anomalies of
primary production (i.e., the rate of phytoplankton growth)
time-series. To identify the mechanisms driving the regionally-
different biological responses associated with each type of El
Niño, we further applied the statistical analysis based on the EP
and CP indices, to annual mean anomalies of SAT, SST, SL, wind,
and precipitation.

The statistical significance of the regression coefficients was
estimated according to Student t-test. The autocorrelation of the
time-series was considered and the effective degrees of freedom,
which enter the significance test was determined based on the
method presented in Lin and Derome (1998).

Validation of EP and CP Impact on Interannual to

Decadal Time-Scales
The analyses of impact on phytoplankton and primary
production have been limited to 15 years by the availability of
consistent climate-quality controlled satellite data (Table 1). To
assess whether the results may be skewed due to the specific
1997/1998 EP event during the ocean-color satellite era, and to
investigate the validity of the results over multi-decadal time
scales, we have estimated the impact of EP and CP El Niño
(considering autocorrelation, Lin and Derome, 1998) on sea
and air surface temperatures, wind and precipitation during the
period 1979–2014 (35-years) and compared the results with the
analysis during the shorter period 1997–2012 (15-year). These
two periods of 15 and 35 years respectively have been selected
based on availability of physical and biological data products
(Table 1). The period 1997–2012 includes one strong EP El
Niño event in 1997–1998, and three CP events in 2002–2003,
2004–2005, and 2009–2010. The period 1979–2014 includes one

additional strong EP El Niño event in 1982–1983, and three
additional CP events in 1986–1987, 1991–1992, and 1994–1995
(Figure 1).

RESULTS AND DISCUSSION

EP and CP El Niño Impact on Oceanic
Phytoplankton
The confidence level of the response patterns (Figures 2A,B)
identified with the statistical analysis is assessed as very likely (i.e.,
within 90–100% probability range; IPCC Climate Change, 2013).
During EP El Niño, at the global scale, the median chlorophyll
impact is found to be −6.5%, mostly driven by a large decrease
of −7.5% in the tropics (3,529 pixels), and limited increases in
the Northern and Southern Hemispheres of +6.6 and +5.5%
respectively (505 and 643 pixels respectively). During CP El Niño,
global median chlorophyll impact is found to be −7.4%, which
is the resultant of large decrease estimated for the tropics of
−8.7% (1,948 pixels), and limited decrease estimated for the
Northern Hemisphere of −4.9% (342 pixels) and increase for
the Southern Hemisphere of+4.1% (500 pixels) (Supplementary
Table 1 and Supplementary Figure 2). The impact values are
estimated based on EP and CP indices equal to one (annual
mean index values over the period 1997–2012 are presented in
Figure 1). It is noteworthy that monthly impact values may be
∼3–4 times higher, particularly during the peak of El Niño events,
such as in December 1997 when the EP El Niño index reached
value of 3.9, and in December 2009 when the CP El Niño index
reached value of 2.6 (Yu, 2016).

The regions identified as most sensitive to the EP and CP
El Niño climatic perturbations compare well with the locations
where significant trends in chlorophyll have been estimated
previously using contemporary satellite records (Vantrepotte and
Mélin, 2011; Gregg and Rousseaux, 2014; Hoegh-Guldberg et al.,
2014). Furthermore, the biological and physical response patterns
to each type of El Niño observed in the present work over the
satellite record of 1997–2012 are consistent with contemporary
case studies of specific EP andCP El Niño events in the Equatorial
Pacific (Turk et al., 2011; Gierach et al., 2012; Radenac et al.,
2012), the Indian Ocean (Webster et al., 1999), the continental
U.S. (Yu et al., 2012; Yu and Zou, 2013), and the global
oceans (Behrenfeld et al., 2001; Messié and Chavez, 2012, 2013).
In addition, the response patterns observed for the physical
variables have also been shown to persist over decadal timescales
during the period 1979–2014 (see Section Physical Forcing
Mechanisms Associated with El Niño Variability). Finally, when
both EP and CP indices are equal to one, the sum of the
observed impacts observed in response to EP and CP El Niño
(Supplementary Figure 3) is shown to be approximately equal to
the impact observed using the MEI. This is coherent as the MEI
encompasses effects of both EP and CP El Niño variations.

Major Factors Influencing Phytoplankton
Growth
To understand the specific influence of the climatic perturbations
on phytoplankton, we must first identify the mechanisms
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FIGURE 1 | Climate indices of El Niño events during the period 1979–2014. Monthly anomalies of (A) Multivariate ENSO Index; (B) Eastern Pacific El Niño

Index; and (C) Central Pacific El Niño Index. Annual mean anomalies (thick red line and large dots) were calculated by averaging the monthly anomalies over the

periods from June (of year t) to May (of year t + 1). Classification of El Niño as EP and CP is based on Radenac et al. (2012) and Yu et al. (2012). EN, El Niño, EP,

Eastern Pacific, CP, Central Pacific.

driving the biophysical interactions at the global and regional
scales. Phytoplankton growth is light-limited at high-latitudes
where annual mean nitrate concentration is high and monthly
means of chlorophyll and PAR show positive correlation,
and monthly means of chlorophyll and MLD show negative
correlation (i.e., chlorophyll increases when MLD is shallower
and light availability is higher; Figures 3A,B). In contrast,
phytoplankton growth is nutrient-limited in the tropics and
subtropics where light-availability is plentiful all-year-round,
annual mean nitrate concentration is low (Figure 3C) and
monthly means of chlorophyll and MLD show positive
correlation (i.e., chlorophyll increases when MLD is deeper, and
nutrient-rich deep waters are mixed with nutrient-poor surface
waters, increasing nutrient availability for phytoplankton growth
to occur). Further to nutrient supply from vertical mixing,
the tropics display strong zonal surface currents (Figure 3D),
which can increase horizontal advection of nutrient and, in
turn, enhance phytoplankton growth. The latter mechanism
can explain the weak correlation coefficients observed between
monthly means of chlorophyll and MLD in some areas of the
tropics and subtropics. Finally, the negative correlation shown
between monthly means of chlorophyll and MLD in the eastern
Equatorial Pacific is coherent with the observed high annual
mean nitrate concentration (i.e., macronutrients are not limiting;

Figure 3C), and previously reported iron limitation (i.e., limiting
trace nutrient) occurring in the region (Gordon et al., 1997;
Moore et al., 2013). In some specific areas of the North and
Equatorial Pacific Ocean, and the Southern Ocean, known as
High Nutrient-Low Chlorophyll (HNLC) regions, the low trace
nutrients concentration (iron,manganese) present all year round,
limit phytoplankton production.

The results presented in Figure 3 are consistent with the
different physical regimes and global climatological relationships
previously demonstrated between open ocean satellite surface
observations of chlorophyll and subsurface parameters of
MLD, thermocline and nutricline depths at global scale
(Wilson and Coles, 2005; Messié and Chavez, 2012; Brewin
et al., 2014) and in the Equatorial Pacific (Turk et al.,
2011; Gierach et al., 2012; Radenac et al., 2012; Lee et al.,
2014). In coastal regions, phytoplankton production can
be modified further by local supply of nutrients through
coastal upwelling, riverine input (e.g., Turner et al., 2003)
or atmospheric dust deposition (Abram et al., 2003; Jickells
et al., 2005). In Polar regions, changes in phytoplankton
production are tightly coupled to variations in sea-ice extent
and timing of retreat, which can affect light and nutrient
availability (Kahru et al., 2011, 2016; Arrigo and van Dijken,
2015).
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FIGURE 2 | Observed impacts of Eastern and Central Pacific El Niño on biological and physical variables during 1997–2012. Annual mean anomalies are

regressed onto the (left) EP and (right) CP El Niño indices. Increase and decrease are indicated by positive (red) and negative (blue) anomalies respectively. (A)

Chlorophyll Concentration anomalies; (B) Primary Production anomalies; (C) SST anomalies; (D) SL and wind anomalies; (E) Surface Air Temperature anomalies; and

(F) Precipitation anomalies. In all panels, stippling indicates where the linear regression coefficients are significant at the 90% confidence level over the entire period of

1997–2012. The statistical significance of these regression coefficients was estimated according to Student t-test and considering the autocorrelation of the

time-series. The impact values are estimated based on EP and CP indices equal to one.

Frontiers in Marine Science | www.frontiersin.org 7 May 2017 | Volume 4 | Article 133

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Racault et al. ENSO Impact on Phytoplankton

FIGURE 3 | Major factors influencing phytoplankton growth. (A)

Correlation map between monthly surface chlorophyll concentration from

OC-CCIv2 and photosynthetically active radiation (PAR) over the period Sep.

1997 to Dec. 2012; (B) Correlation map between monthly surface chlorophyll

concentration from OC-CCIv2 and mixed layer depth (MLD) estimated using

SODA vertical profiles of temperature over the period Sep. 1997 to Dec. 2008;

(C) Annual average surface concentration of nitrate (µmol/l) from World Ocean

Atlas Climatology; and (D) Annual average zonal surface currents (m/s) from

OSCAR NOAA. (A,B) Positive correlation is indicated in red color and negative

correlation in blue color. Contour lines indicate correlation coefficients that are

significant at the 90% confidence level based on Pearson correlation

coefficients. (D) Positive values indicate eastward currents and negative values

westward currents.

Physical Forcing Mechanisms Associated
with El Niño Variability
The results of the biological and physical responses to the EP
and CP types of El Niño, which are statistically significant, are
presented in Figures 2, 4, and with an estimate of uncertainty

in the observational product in Figure 5. In the Equatorial

Pacific Ocean, where ENSO activity is rooted, an EP El Niño
event is generated when easterly trade winds weaken in the east
and westerlies prevail in the west (Figures 2D, 4C), pushing
warmer, nutrient-poor waters to the east (along the coast of
Peru and Chile), reducing nutrient availability, leading to a

decrease in chlorophyll and PP in the eastern Pacific of −12
± 5% and −56 ± 21 TgC/y (Figures 2A,B, 5). In contrast, a
CP El Niño event is generated when easterly trade winds in the
east and westerlies in the west are enhanced (Figures 2D,4C),
pushing warmer, nutrient-poor waters to the central Equatorial
Pacific, reducing nutrient availability, which is associated with
a decrease in chlorophyll and PP of −14 ± 5% and −68 ±

22 TgC/y (Figures 2A,B, 5). In both cases, regional decreases
in phytoplankton are caused by variations in horizontal and
vertical advective fluxes responsible for the transport of nutrients
to the surface layer, which are driven by perturbation in the
wind forcing (Ashok and Yamagata, 2009; Gierach et al., 2012;
Messié and Chavez, 2012, 2013; Radenac et al., 2012). Enhanced
advection is also observed during CP El Niño in the tropical
Atlantic Ocean as the Equatorial easterlies intensify in the east
(Figures 2D, 4C), bringing warmer, nutrient-poor waters to
around 15◦N (Richter et al., 2012), and leading to decreases
in chlorophyll and PP of −8 ± 3% and −10 ± 5 TgC/y
(Figures 2A,B, 5). In the Indian Ocean, Equatorial easterlies are
found to intensify during EP El Niño, promoting horizontal
advection of warmer and nutrient-poor waters to the western-
side of the basin (Figure 2C) (Webster et al., 1999), resulting
in decreases in chlorophyll and PP of −11 ± 4% and −82 ±

31 TgC/y (Figures 2A,B, 5), whereas in the eastern-side, the
observed increases in chlorophyll and PP of +7 ± 3% and
+13 ± 5 TgC/y (Figures 2A,B, 5) are likely to be driven by
enhanced upwelling (Figure 2C) and atmospheric fallout from
Indonesian fires and, further north in the basin, by enhanced
nutrient supply from the Ganges and Brahmaputra rivers. The
latter processes are consistent with the strong increase in fires
(Wooster et al., 2012; Huijnen et al., 2016) and dust deposition
reported off the west coast of Sumatra (Murtugudde et al.,
1999; Abram et al., 2003), and the increased precipitation
patterns observed over the Himalayas (Figure 4F). Furthermore,
in some regions, these processes may not be sufficient to
explain the observed variations in chlorophyll and PP, and
other processes may be involved, such as atmospheric dust
deposition from desert (e.g., EP El Niño impact in the Cape
Verde Sea), extent and duration of sea-ice cover in the Artic
(e.g., EP El Niño impact in the Bering and Labrador Seas),
and iron limitation in HNLC regions (e.g., EP and CP El
Niño impact in the Pacific sector of the Southern Ocean).
Further information would be required to validate these forcing
mechanisms.

The estimation of EP impact relies heavily on the El Niño
event of 1997–1998, which was the single, important EP event
that occurred within the relatively short time span of 15 years
for which we have the OC-CCI data. To evaluate the impact
that this single event had on our results, the correlation analyses
have been rerun without the 1997–1998 event. In this case,
the influence of EP El Niño on phytoplankton chlorophyll
concentration remained significant in the Eastern Pacific Ocean
and Western Indian Ocean, but not in the Eastern Indian
Ocean region (Figure 5), indicating further that other regional
climate oscillations are important drivers at basin scale (please
see discussion in Section Implications for Climate Impact
Research). In addition, the analyses of the EP and CP impact
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FIGURE 4 | Observed impacts of Eastern and Central Pacific El Niño on physical variables during the periods 1979–2014 and 1997–2012. Annual mean

anomalies are regressed onto the annual mean EP and CP El Niño indices. Increase and decrease are indicated by positive (red) and negative (blue) anomalies

respectively. In all panels, stippling indicates where the regression coefficients are significant at the 90% confidence level over the entire 35-year period (1979–2014;

left panels) and 15-year period (1997–2012; central panels). The statistical significance of these regression coefficients was estimated according to Student t-test and

considering the autocorrelation of the time-series. The probability density distributions of the regression coefficients are shown in gray shading for the 35 and 15-year

periods (right panels). The white dot indicates the position of the median, and the upper and lower ends of the black rectangle indicate the upper and lower quartiles

respectively. Surface air temperature and precipitation datasets are from NCEP/NCAR reanalysis, and sea surface temperature and wind datasets are from ECMWF

reanalysis (see Table 1). The impact values are estimated based on EP and CP indices equal to one.

on physical processes are further validated on interannual to
decadal timescales in Figure 4. The regression coefficients of
the EP and CP impact estimated for the two periods 1979–
2014 and 1997–2012 show similar spatial patterns and frequency
distributions for the physical variables studied. This indicates

that the results presented in Figure 2 (period 1997–2012) are not
skewed to the 1997–1998 EP El Niño event, and that the impact
patterns are stable over multi-decadal time scales (35-year), at
least for the physical variables. Since phytoplankton dynamics are
at the mercy of these physical conditions, we postulate that the
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FIGURE 5 | Regional impacts of ENSO climatic perturbations during the period 1997–2012. (A) Location of the areas used in the estimation of regional EP

and CP El Niño impact during the period 1997–2012; (B) Annual mean relative anomalies of Chlorophyll (in %) vs. EP index, and annual mean anomalies of Primary

Production (in TgC/y) versus EP index; and (C) Annual mean relative anomalies of Chlorophyll (in %) versus CP index, and annual mean anomalies of Primary

Production (in TgC/y) vs. CP index. The slope is provided ±Standard Error. Significant Pearson correlation coefficients at the 90% confidence level are indicated with a

star. (B) The Pearson correlation coefficients shown in parenthesis are based on the analyses run without including 1997–1998 El Niño event. (B,C) Error bars for

each point indicate the standard error based on the total number of observations in each corresponding box region. The standard error is calculated based on the

root-mean-square-difference and bias observations provided in OC-CCIv2.

inference may also hold for the biological variables studied here
(e.g., Figures 2, 5).

Implications for Climate Impact Research
Phytoplankton have a high turn-over rate, responding to
changes in their environment at scales ranging from seconds to
days, and illustrating well the first-level biological response to
environmental changes. At the same time, because of decadal-
scale variabilities in the physical forcing fields, it is generally
understood that multi-decadal, uninterrupted data are needed
to evaluate the impact of climate change on marine ecosystems.
Such data are only rarely available from limited in situ time
series stations (mostly coastal). Furthermore, satellite ocean-
color sensors have provided barely two decades of uninterrupted
data that can be used for climate research (Sathyendranath
and Krasemann, 2014). In this context, El Niño variability,
together with other large-scale inter-annual variations, provides
an important vehicle to study how phytoplankton in the ocean
(and hence the organisms at higher trophic levels) respond to
climate variability and identify the driving processes. In turn,
monitoring and analysis of long-term changes in these driving
processes would help us to improve understanding of projected
impact of long-term climate changes on the marine ecosystem.

In the present study, we have addressed potential issues
related to the collection of continuous ocean-color time-series
and processing of climate-quality products, to the study of
biophysical interactions, El Niño remote-forcing mechanisms
and their propagation, and the diversity of El Niño events by: (i)
using the longest, error-characterized, biased-corrected, climate-
quality controlled, global scale merged satellite ocean-color
data product from ESA Ocean-Color Climate Change Initiative
project; (ii) analyzing in synergy satellite ocean-color data record
and reanalysis datasets to identify the dominant mechanisms
driving the biophysical interactions; (iii) characterizing local and
remote influences of El Niño types on key driving variables of
SST, Sea Level, wind, and precipitation; (iv) analyzing annual
mean signal centered around the peak timing of El Niño activity
in boreal winter; and (v) selecting EP and CP indices, which are
computed to enhance differences in SST anomalies from the two
most eastern and central Pacific Niño1+2 and Niño 4 regions
respectively.

Our work highlights the importance of maintaining a long
time series of consistent ocean-color products, to be able to
evaluate the impact of climate variability on the biological fields.
For example, our results on the impact of EP events could
be improved when additional EP events can be incorporated
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into the analyses, such that the results would no longer be
so heavily dependent on a single EP event, as was the case
here. More data from longer time series are also essential to
explore non-linearities in biological responses, which could not
be investigated here because of limited data availability.

Our analysis shows that the modification of global oceanic
phytoplankton under climate change cannot be forecast with
respect to changes in a single ocean property. Rather, a
range of environmental properties may be involved (e.g.,
advection in three dimensions, wind, riverine input, atmospheric
dust deposition, stratification) whose intensity may vary on
a regional basis. The statistical approach to study El Niño
impact applied here has permitted us to characterize a complex
mosaic of biological responses illustrating that different forcing
dominates in different regions. The biophysical processes driving
phytoplankton production are summarized in Figure 6 in the
form of an atlas of EP andCP El Niño impact. The influence of CP
and EP El Niño events can be felt in the global oceans, although
the affected regions are predominantly located in the tropics and
subtropics encompassing 66–67% of the total areas affected, and
the remaining 33–34% are areas located in high-latitudes. In the
tropics and subtropics, 35–39% of the total affected areas showed
a decrease in PP associated with reduced nutrient availability
during CP and EP El Niño respectively, whereas in higher
latitudes 19–20% of the affected areas showed an increase in PP
associated with reduced light limitation (Figure 3). Even though,
the percent of total affected areas are relatively similar between
CP and EP El niño events, the regional differentiation is marked,
and may be of opposing sign (e.g., along the coast of Peru and
Chile, the Benguela upwelling, the Great Barrier Reef), or affected
during an EP event but not during a CP event (e.g., in the tropical
eastern and western Pacific). Several process-orientated studies
have further highlighted the important role played by horizontal
processes (together with vertical processes) in the supply of
nutrients in the surface layer, and specifically demonstrated
significant impacts in Winter new primary production in the
North Pacific transition zone (Ayers and Lozier, 2010), inter-
annual variations of chlorophyll concentration in the Equatorial
Pacific (Gierach et al., 2012; Messié and Chavez, 2013; Dave
and Lozier, 2015) and the Red Sea (Raitsos et al., 2015), and
decadal variations in phytoplankton abundance in the North
Atlantic Subpolar Gyre (Martinez et al., 2015). Thus, both the
development of statistical methods to study climate impact, and
the assessment of the future evolution of regional physical forcing
processes may help us to understand phytoplankton responses
to climate change and improve confidence in our projection of
future ecosystem state (Bopp et al., 2013; Boyd et al., 2014). The
first assessment based on a biogeochemical and ecosystem model
output of chlorophyll response to the EP and CP types of El Niño
was shown to compare well with remotely-sensed observations in
the Equatorial Pacific (Lee et al., 2014). However, the response to
El Niño variability projected from biogeochemical and ecosystem
models is yet to be investigated at the global scale.

Notwithstanding the dominant influence of El Niño on global
climate patterns, other driving factors may enhance or weaken
the observed biophysical impact. Examining links between
El Niño and inter-annual and decadal climate oscillations

(Di Lorenzo et al., 2010; Izumo et al., 2010) may provide
further insights toward improving projection of environmental
properties and associated phytoplankton responses to climate
forcing at global and regional scales. The regional variations
associated with El Niño may be superimposed on long-term
warming trends (Bopp et al., 2013; IPCC Climate Change,
2013; Boyd et al., 2014; Kumar et al., 2016) and regional-scale
oscillations at sub-seasonal and seasonal scales associated with
other large-scale climate modes of variability, such as the Atlantic
Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation
(PDO; Martinez et al., 2009), the North Pacific Gyre Oscillation
(NPGO; Di Lorenzo et al., 2008, 2010; Messié and Chavez, 2013),
the monsoon and Indian Ocean Dipole (IOD; Saji et al., 1999;
Ashok et al., 2007; Izumo et al., 2010; Brewin et al., 2012; Currie
et al., 2013). As a result, the regional climate response is not a
simple function of the strength and centroid location of an El
Niño event. Further, the regional patterns observed using EP and
CP El Niño indices may be sufficient to explain only a fraction
of all the regional variations on a year-to-year basis (except
perhaps where El Niño is likely to dominate the variability of
the system such as in the Equatorial Pacific region). For instance,
in the Indian Ocean, the ENSO and IOD indices can account
for ∼30% and 12% respectively of the regional variations in SST
(Saji et al., 1999), and years of co-occurrence of positive IOD
and El Niño events may provide positive feedbacks to the SST
(Kumar et al., 2016). Therefore, some apparent differences will
show between the observed impact of El Niño on biological and
physical variables, and the corresponding anomalies.

Implications for the Oceanic Ecosystem
and Carbon Cycle
Phytoplankton are at the base of the food chain and transfer
energy to higher trophic levels. This transfer of energy has a
knock-on effect on fisheries and dependent human societies
especially in highly productive and coastal upwelling regions,
as well as coral reef ecosystems. The larvae of many marine
species graze on phytoplankton during this most vulnerable
stage of their lives. Hence, changes in phytoplankton population
associated with climate variability may propagate rapidly up
the marine food chain and profoundly alter the functioning of
marine ecosystems (Platt et al., 2003; Edwards and Richardson,
2004; Lo-Yat et al., 2011). In addition, changes in environmental
conditions associated with EP and CP El Niño events have been
shown to impact mesozooplankton community with variable
time lags in the northern California Current, which in turn
can affect top down control on phytoplankton, and disrupt
the pelagic food chain (Fisher et al., 2015). Following EP and
CP El Niño events, quite different impact on commercially
important fisheries have been reported in anchovy catches in the
Humboldt Current LargeMarine Ecosystem (Jackson et al., 2011)
and tuna catches in the Indian Ocean (Kumar et al., 2014). In
coral reef ecosystems, changes in phytoplankton population and
mass bleaching following an El Niño event can critically affect
fisheries, recreation, and tourism services (Hoegh-Guldberg,
1999; Abram et al., 2003; Lo-Yat et al., 2011). Recent analysis
in the Andaman Sea, southeast Bay of Bengal, has further
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FIGURE 6 | Schematic atlas of the influence of El Niño variability on

oceanic phytoplankton in the global oceans. (A) Eastern Pacific El Niño

influence, and (B) Central Pacific El Niño influence. Increase and decrease in

primary production (PP) are indicated in red and blue filled colors respectively.

The color contours provide information about the controlling biophysical

mechanisms (which are described in Section Physical Forcing Mechanisms

Associated with El Niño Variability and Mapped in Figure 3): (yellow) PP is

nutrient-limited; (dark blue) PP is enhanced by nutrient availability; (orange) PP

is light-limited; (turquoise) PP is enhanced by light availability; (light pink or

dashed contour) PP may be further controlled by other mechanisms, such as

sea-ice melting, atmospheric dust deposition and availability of trace nutrients.

The contour delineation of the influence of EP and CP El Niño is generated

based on information displayed in Figure 2 and Supplementary Figure 4.

demonstrated that differences both in intensity and timing of
SST warming associated with EP and CP El Niño events, can
determine the extent of mass coral bleaching (Lix et al., 2016).
In this context, regional differentiation of the impact of each type
of El Niño events (Figure 6) may provide important information
to delineate and establish protected coral reef and fishing areas to
facilitate their recovery.

The oceanic carbon sink is part of a very active, natural
cycle, in which phytoplankton in the surface layer of the ocean
fix, by photosynthesis, dissolved CO2 in the water into organic
matter, some of which subsequently sinks below the mixed layer.
Through the associated decrease in the partial pressure of CO2 in
the surface ocean, phytoplankton contribute to the drawdown of
dissolved CO2 from the ocean surface layer (Hauck et al., 2015),
which in turn help to modulate the increase in anthropogenic
atmospheric CO2. The estimated El-Niño-driven changes in PP
at the regional scale can be considerable, reaching values of −57
± 21 and−68 ± 22 TgC/y in the Eastern and Central Equatorial
Pacific Ocean during EP and CP types of El Niño respectively

(Figure 5). However, to provide a more complete picture on
the influence on the carbon cycle, further investigations are
required to quantify the impact of El Niño on carbon export and
associated changes in air-sea CO2 fluxes. The buffering action
of the ocean in the carbon cycle is non-linear—it varies with
the water temperature (solubility pump), alkalinity (carbonate
pump), biological productivity and demineralization (biological
pump); the impact on environmental and ecosystem properties
must be evaluated at the appropriate scale to allow investigation
of the underlying mechanisms driving the variability in the ocean
carbon cycle.

As the frequency of extreme El Niño events and the relative
frequency of occurrence of CP-El Niño/EP-El Niño are projected
to increase under climate warming (Yeh et al., 2009; Lee and
McPhaden, 2010; Cai et al., 2015), it is essential to refine our
regional assessment of climate impact associated with El Niño
variability. The atlas of impact of CP and EP types of El Niño
on oceanic phytoplankton (Figure 6) can be used for societal
benefit. It provides key climate impact information that can
allow us to better inform fisheries management on possible
risks and opportunities associated with El Niño events, and
support more effectively mitigation and adaptation plans for
local fisheries-dependent societies. The atlas information can
also provide observational basis to test model predictions of the
impact of climate change on the marine ecosystem. Finally, from
a biogeochemical perspective, such insights on El Niño variability
impact are needed to improve our understanding of the buffering
capacity of the oceanic carbon cycle under climate change.
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