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Empirical relationships between particulate organic carbon (POC) and inherent optical

properties (IOPs) are required for estimating POC from ocean-color remote sensing and

autonomous platforms. The main relationships studied are those between POC and

particulate attenuation (cp) and backscattering (bbp) coefficients. The parameters of these

relationships can however differ considerably due to differences in the methodologies

applied for measuring IOPs and POC as well as variations in particle characteristics.

Therefore, it is important to assess existing relationships and explore new optical proxies

of POC. In this study, we evaluated empirical relationships between surface POC

and IOPs (cp, bbp and the particulate absorption coefficient, ap) using an extensive

dataset collected during two Atlantic Meridional Transect (AMT 19 and 22) cruises

spanning a wide range of oceanographic regimes. IOPs and POC were measured

during the two cruises using consistent methodologies. To independently assess the

accuracy of the POC-IOPs relationships, we predicted surface POC for AMT-22 using

relationships developed based on independent data from AMT-19. We found typical

biases in predicting POC ranging between 2–3, 4–9, and 6–13% for cp, bbp, and ap,

respectively, and typical random uncertainties of 20–30%. We conclude that (1) accurate

POC-cp and POC-bbp relationships were obtained due to the consistent methodologies

used to estimate POC and IOPs and (2) ap could be considered as an alternative optical

proxy for POC in open-ocean waters, only if all physiological variability in the POC:chl

ratio could be modeled and used to correct ap.

Keywords: particulate organic carbon, inherent optical properties, optical proxies, empirical relationships, Atlantic

Ocean

INTRODUCTION

The biological carbon pump (BCP) is a wide suite of processes through which marine biota remove
carbon dioxide from the surface ocean by transporting particulate organic carbon (POC) toward
the marine sediments (Volk and Hoffert, 1985). This mechanism contributes to mitigating the
earth’s climate and affects the main oceanic biogeochemical cycles (Sarmiento and Gruber, 2006).
To overcome insufficient spatial and temporal resolution of traditional POC observations, inherent
optical properties (IOPs) have been applied as proxies of POC to fully comprehend the key physical
and biogeochemical processes that control the BCP (e.g., Bishop et al., 2004; Honjo et al., 2008;
Bishop and Wood, 2009).
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Particulate beam attenuation (cp), backscattering (bbp), and
absorption (ap) coefficients are IOPs used as optical proxies of
POC (Gardner et al., 1993; Stramski et al., 1999; Wozniak et al.,
2011). The advantage of applying the IOPs as POC proxies is
that these optical properties are retrievable from space and/or
by autonomous platforms (Lee et al., 1996; Bishop et al., 2002),
which allows prediction of POC-fluxes with a greater temporal
and spatial resolution than conventional methods (e.g., Bishop
et al., 2004; Bishop and Wood, 2009; Briggs et al., 2011; Estapa
et al., 2013; Dall’Olmo and Mork, 2014). One of the main
limitations of these methods is that they depend on establishing
robust empirical relationships between POC and IOPs.

Numerous studies have been devoted to evaluating the
relationship between POC and cp (Loisel and Morel, 1998;
Bishop, 1999; Claustre et al., 1999;Mishonov et al., 2003; Gardner
et al., 2006) and bbp (Stramski et al., 1999, 2008; Balch et al.,
2010; Cetinić et al., 2012). These studies have demonstrated
that the derived relationships could differ considerably, which
in turn affects the accuracy with which POC is predicted. For
example, Gardner et al. (2006) found that the slope of the linear
regression between POC and cp(660) varied between 10 and
42% for different regions of the North Atlantic. More recently,
Cetinić et al. (2012) found good linear relationships (R2 =

0.83) between POC and cp(660) and bbp(550) during the North
Atlantic Bloom Experiment (NABE), however their relationships
are considerably different from previous ones derived for the
North Atlantic (Gardner et al., 2006; Balch et al., 2010). These
discrepancies may be due to the spatio-temporal variability of
phytoplankton-particle assemblages (e.g., particle size, shape, and
chemical composition) and the different methodologies applied
to measure POC and IOPs (e.g., Boss et al., 2015 and references
therein). Thus, it has been suggested that a single global algorithm
cannot accurately predict POC (Gardner et al., 2006; Cetinić
et al., 2012). Alternatively, robust global relationships may be
achieved by exploiting consistent protocols to measure POC
and IOPs over a wide range of oceanic conditions and particle
assemblages (e.g., Gardner et al., 2006).

Most in-situ studies have focused on the relationship between
POC and bbp or cp, but there is little information on the utility of
ap as a POC proxy (Stramski et al., 2008; Allison et al., 2010a).
As with bbp, ap can be derived from satellite ocean color data
(e.g., Mitchell et al., 2014). In contrast, cp can only be indirectly
estimated from remote sensing, which introduces additional
uncertainties on predicted POC. Uncertainties in bbp retrieval
from remote sensing still remain and instruments for in-situ
measurements of bbp may not be sensitive enough for the open
ocean (Twardowski et al., 2007; Dall’Olmo et al., 2012). Thus,
POC-bbp relationships may be noisier than POC-cp relationships.

Recently, Allison et al. (2010a,b) found a robust relationship
between estimates of in situ POC and blue-green reflectance
ratio in the open Southern Ocean. Stramski et al. (2008)
developed a similar relationship using data from the Pacific
and Atlantic oceans. Allison et al. (2010a) suggested that the
variability of the green reflectance ratio is mainly driven by
the particle absorption coefficient. Similar results were found
in more optically-complex waters between POC and ap(440)
(Wozniak et al., 2011). The main goals of the current study are

to evaluate the potential factors controlling the accuracy of POC-
IOPs relationships (bbp and cp) in the surface open ocean and
the reliability of ap as POC proxy. To this aim, we develop and
compare empirical relationships between surface POC and IOPs
(ap, bbp, and cp) using an extensive data set collected during
two Atlantic Meridional Transect (AMT) cruises, during which
we applied rigorous and consistent protocols to determine IOPs
and POC. More specifically, we (1) evaluate the potential sources
of uncertainties in POC measurements, and (2) estimate the
accuracy of the POC-IOPs relationships developed in this and
earlier studies, and discuss the reasons that explain the differences
observed between them. From the latter analysis, we highlight
that the application of consistent methodologies to measure POC
and bio-optical variables is needed to accurately predict POC
from POC-IOPs relationships.

MATERIALS AND METHODS

Description of the Study Area
Data were collected during AMT-19 (28th October to 22nd
November 2009) and AMT-22 (11th October to 20th November
2012). Both cruises spanned the wide range of oceanographic
regimes found at latitudes between∼46◦N−46◦S (Figure 1).

Chlorophyll a and Underway Optical
Measurements
Chlorophyll a
Chlorophyll-a concentration was estimated optically and by
means of high performance liquid chromatography (HPLC).
Surface seawater was collected from the ship’s clean seawater
supply and filtered through pre-combusted (4 h at 450◦C) 25-
mm Whatman GF/F filters (1–4 liters, depending on the trophic
status of the water masses). Samples were flash-frozen in liquid
nitrogen, stored at −80◦C and then analyzed using HPLC
analysis (Van Heukelem and Thomas, 2001; Mueller et al., 2003).
The concentration of total chlorophyll-a was calculated as the
sum of the chlorophyll-a, monovinylchl-a, divinyl chlorophyll-a,
and chlorophyllide-a (Figure 2).

Optically-derived chlorophyll-a was calculated using the
height of the particle absorption peak at 676 nm following Boss
et al. (2007), using data from both AC-9 and AC-s measurements
during AMT-19 (Dall’Olmo et al., 2012) and using only AC-s data
for AMT-22. Optically-derived chlorophyll-a concentration was
validated by comparing it to the HPLC-based total chlorophyll-
a (see Figure 2). Biases of −10 and +3% (median relative
differences) were found for AMT-19 and AMT-22, respectively.
These biases were then removed from the optically-derived
chlorophyll concentrations for the rest of the analysis. This bias-
corrected optically-derived chlorophyll-a is henceforth referred
to as chlop whereas HPLC-based total chlorophyll-a is referred as
chlhplc.

Beam Attenuation and Absorption Coefficients
Continuous optical measurements were collected on seawater
pumped from a nominal depth of 5m into the clean underway
supply of the RRS James Cook. Bubbles were removed by means
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FIGURE 1 | Sampling location for AMT-19 (red diamonds) and AMT-22 (white circles).

of two Vortex debubblers connected in series (model VDB-1G,
Stony Brook, NY, USA).

During both cruises particulate beam attenuation coefficients
(cp) were determined by two 25-cm WETLabs C-star
transmissometers (526 and 650 nm). Hyperspectral cp and
particulate absorption coefficients (ap) were also measured
between 400 and 750 nm by a 25-cm WETLabs spectral
absorption and attenuation meter (AC-s, 5-nm spectral
sampling, 15-nm band pass). As explained in Dall’Olmo et al.
(2012), during AMT-19 the AC-s instrument failed (∼year day
298) and was replaced by a WETLabs AC-9 instrument (nine
wavelengths between 412 and 715 nm, 10-nm band pass).

Particulate absorption and beam-attenuation coefficients, ap
and cp, were determined by subtracting from the bulk signals
those measured on 0.2-µmfiltered (Cole Parmer nylon cartridge)
seawater as previously described (Dall’Olmo et al., 2009, 2012;
Slade et al., 2010).

Since the AC-9 has a band pass narrower than the AC-s (10
vs. 15 nm), differences are expected between ap spectra collected
simultaneously by the two instruments (Dall’Olmo et al., 2012).
To make the ap data derived from the AC-s comparable with
those derived from the AC-9, we performed an intercalibration
by computing the ratio of ap derived from the AC-s to ap derived

from the AC-9 at the same chlop concentration (±10%) for
different values of chlop concentrations (n = 25, logarithmically
spaced between 0.03–5mg m−3) and for the two wavelengths
used in this analysis (i.e., 440 and 676 nm). The rationale for
this comparison is that, even if collocated spectra of AC-9 and
AC-s were not available, for a given chlop concentration, we
expect that in the open ocean the ap spectra collected by AC-9
and AC-s should, to first order, be comparable. This similarity
is a priori expected to be higher at 676 nm, where chl is the
most important contributor to ap, than at 440 nm, where other
optically-active constituents (e.g., detritus, accessory pigments)
have higher contributions. We avoided green wavelengths due
to the very low values of ap, which would significantly increase

uncertainties. Average (± standard deviation) ap
ACS:ap

AC9 ratios
of 0.68 (±0.05) and 0.60 (±0.02) were found at 440 and
676 nm for AMT-22, and of 0.75 (±0.08) at 676 nm for AMT-
19 irrespective of chlop. In contrast, during AMT-19 the average

ap
ACS:ap

AC9 ratios at 440 nm varied between 0.90 and 1.4 with
chlop. To account for this variation, we fitted a second-order
polynomial (R2 = 0.97) between the values of the ratio and
chlop and used the fitted regression coefficients to calculate

ap
ACS:ap

AC9 ratios at 440 nm for any chlop value during AMT-
19. We finally corrected the ap values measured by the AC-s
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FIGURE 2 | Relationship between chlorophyll-a determined by HPLC and that estimated optically (not bias corrected) for AMT-19 (red diamonds) and AMT-22 (blue

circles). The black line indicates the 1:1 relationship.

instruments by dividing them by (1) the average ratios found for
AMT-19 (at 676 nm) and AMT-22 (at 440 and 676 nm), and (2)
the ap

ACS:ap
AC9 ratios at 440 nm for a given chlop for AMT-19.

These corrected ap values were used for the rest of the analysis.

Particulate Backscattering
Continuous measurements of the particulate backscattering
coefficient (bbp) were carried out by means of a WETLabs ECO-
BB3 meter (470, 526, and 660 nm) installed in a flow-through
chamber as described in Dall’Olmo et al. (2009 and 2012). More
details about the bbp determination as well as the calibration and
characterization of the instrument can be found in Dall’Olmo
et al. (2009 and 2012) and Behrenfeld et al. (2013, supplementary
materials). During AMT-19 flow-through bbp(470;526) data
were validated against in-situ bbp values measured with an
independent instrument that was deployed on a profiling package
(see details in Dall’Olmo et al., 2012). Biases of 16 and 13% and
precisions of 6 and 7% were found between the two independent
methods for the coincident bbp(470) and bbp(526) measurements,
respectively and demonstrated that the underway system was
clean during AMT-19. Unfortunately, we did not conduct a
similar intercalibration during AMT-22.

Particulate Organic Carbon
Seawater samples (0.5–4 l) were collected from the ship’s
clean seawater supply (∼5m depth) and filtered through pre-
combusted (4 h at 450◦C) 25-mm Whatman GF/F filters under
low vacuum (120 ≤ mmHg) by open-filter funnels. Each filter

was stored in pre-combusted aluminum envelopes, frozen, and
stored using the same protocol indicated for HPLC samples, and
analyzed in the laboratory after the cruises.

Two methods were used to quantify the contribution of
dissolved organic carbon (DOC) adsorbed on the filters (Moran
et al., 1999; Gardner et al., 2003). This allowed us to assess
their consistency and select the best method to estimate carbon
mass retained by the filter blanks. The first method (“intercept-
blanks”) consisted of filtering three volumes of seawater (0.5–1,
0.75–2, and 2–4) for each sample and regressing the mass of
carbon measured on each filter vs. the corresponding volume.
The intercept of this regression provided our first estimate of
the blank (i.e., mass of carbon present on the filter due to
DOC adsorption; Menzel, 1966; Abdel-Moati, 1990; Moran et al.,
1999; Gardner et al., 2003; Liu et al., 2005, 2009; Turnewitsch
et al., 2007). The second method (“filter-blanks”) consisted of re-
filtering through a clean pre-combusted GF/F filter the filtrate
from the sample with the intermediate volume (0.75–2l). These
filter blanks were then stored and analyzed as the bulk POC
samples.

To determine the POC concentration, filters were first fumed
with hydrochloric acid (12N HCl) at room temperature and then
POC was determined by standard high-temperature combustion
technique (Knap et al, 1996). The cruise-specific average mass of
carbon calculated by the intercept-blanks method was removed
from each sample as in Cetinić et al. (2012). POC was finally
computed as the average concentration derived from the three
different volumes collected for each sample. We also estimated
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the average sample mass (POC signal) and mean filter-blank
mass (blank) ratio to compute the relative contribution of the
blank to the bulk POC signal. The POC signal-to-blank ratio was
relatively low in oligotrophic regions (e.g., ∼3, see Figure 3C).
This therefore indicated that uncertainties in POCmeasurements
could potentially increase in these areas (Moran et al., 1999).
To increase the signal-to-noise ratio when it was lower than 3,
we calculated POC by excluding the samples with the smallest
volume (<1, Moran et al., 1999). Finally, to parameterize bio-
optical models, we fitted power laws between POC and IOPs.
We used log-transformed data to better resolve the bio-optical
variability at small POC values as suggested by Campbell (1995).

RESULTS

Chlorophyll a
Chlorophyll concentration ranged between 0.02–1.42 and 0.03–
1.26mgm−3 for AMT-19 and AMT-22, respectively (Figure 4A).
Similarly, during both expeditions chlhplc showed a latitudinal
pattern which followed the well-established biogeographical
provinces of the Atlantic Ocean (Longhurst, 1998) as in previous
AMT cruises (Tarran et al., 2006; Aiken et al., 2009).

POC Measurements
Mass of Carbon in Blanks
During AMT-22 both methods for determining the blank carbon
mass produced consistent results, with average (±standard
deviation) masses for the filter and intercept blanks of 15.5
± 6.5 µg C (n = 196) and 14.9 ± 8.7 µg C (n = 114),
respectively (Figure 3B). However, for AMT-19, filter-blanks
[averages of 24.9 ± 17.9 µg C (n = 69)] were ∼2.3 times larger
than intercept-blanks [averages of 10.9 ± 8.7 µg C (n = 68),
Figure 3A], indicating a potentially greater contamination of the
filter blanks during AMT-19 relative to AMT-22. Nonetheless,
the blank values determined in this study with either method
were within (or lower than) the range of those reported in
the literature (19–25 µg C; Menzel, 1966; Moran et al., 1999;
Cetinić et al., 2012), which supports the rigorousness of our POC
protocol (e.g., our coefficient of variation had a mean value of
0.06 and ranged between 0.01 and 0.26). Since the intercept-
blank method produced values that were consistent between the
two cruises, we used the average intercept-blanks calculated for
each cruise separately to derive POC. During AMT-22 4% of
the intercept-blanks were negative (Figure 3D) and these values
were mostly located in productive areas of the Atlantic (63% of
the negative intercepts were found where POC > 60mg m−3).

FIGURE 3 | Frequency distribution of the mass of carbon measured by filter-blanks (solid lines) and calculated by intercept-blanks (dash-dot lines) for (A) AMT-19 (red)

and (B) AMT-22 (blue). Latitudinal variability of the (C) ratio between mass of carbon in the intermediate-volume samples and mass of carbon in the filter blanks

obtained from the corresponding filtrate and (D) mass of carbon on the filter blanks calculated by intercept-blanks for AMT-19 (red) and AMT-22 (blue), respectively.
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FIGURE 4 | Latitudinal variability of (A) chlhplc; (B) POC and (C) POC:chlhplc ratio for AMT-19 (red diamonds) and AMT-22 (blue circles). Note that all y-axes are in log

scale.

These negative values are discussed in section POC Blanks and
Accuracy.

POC
The observed range of POC was consistent between the two
cruises (15–230mg m−3) and with previous studies for the
Atlantic ocean (Poulton et al., 2006; Balch et al., 2010). POC
showed a first-order spatial pattern similar (R2 = 0.83) to that of
chlhplc (Figures 4A,B). However, the POC:chlhplc ratio showed an
opposite latitudinal pattern (i.e., maxima in themost oligotrophic
regions) and varied by a factor of 12 and 14 for AMT-19 and
AMT-22, respectively (Figure 4C).

Inherent Optical Properties
All optical properties showed latitudinal patterns qualitatively
similar to those of POC and chlhplc during both cruises (Figure 5).
While cp(440) and ap(440) values overlapped during both cruises,
bulk bbp(470) was on average 30% larger during AMT-19 than
bbp(470) measured during AMT-22 for most of the transect
(Figure 5). However, bulk bbp(470) matched when signals
measured on 0.2-µm were subtracted from the AMT-19 bulk
bbp(470) (see detailed explanations in Dall’Olmo et al., 2012).
This result suggests that the backscattering signal measured on

0.2-µm water can be used to remove biases in flow-through
backscattering measurements.

Observed IOPs were well correlated (R2 ranged between 0.71–
0.91, Figure 6) with each other. In most cases, power law fits
between IOPs and chlop were comparable with previous optical
models, except for ap(440) vs. chlop where the slope was about
66% steeper than previously reported (equation 4 in Bricaud
et al., 1998; Figures 7E,F).

POC and IOPs were correlated during both cruises
(Figures 8, 9, Tables 1–3; R2 ranged between 0.76–0.95)
regardless of the spectral region of the measurement, however,
the accuracy of the derived POC-IOPs relationships varied
between cruises (2–13%) and regions of the spectrum
(Figures 8, 9, Tables 1–3).

DISCUSSION

POC Blanks and Accuracy
Factors such as sample handling, vacuum pressure, and sample
volume are known to introduce uncertainties in measured POC
which, in turn, affect the accuracy of the relationships between
POC and optical properties (e.g., Gardner et al., 2003 and
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FIGURE 5 | Spatial distribution of (A) cp(440), (B) bbp(470) and (C) ap(440) for AMT-19 (red points) and AMT-22 (blue points). Note that all y-axes are in logarithmic

scale.

references therein). In this study we followed recommendations
from these previous studies to maximize the accuracy of our
POC measurements (see section Particulate Organic Carbon).
However, we also assessed how the blank varied between
two methods (i.e., intercept-blanks and filter-blanks), along a
latitudinal transect, as well as attempted to explain negative
intercept-blanks in productive areas.

To explain why filter-blanks were larger than intercept-
blanks, we hypothesize that by re-filtering the same seawater
(as during the filtrate-blanks method) additional sources of
contamination and/or uncertainties could be introduced. This
may be particularly important in oligotrophic regions where
POC is very low and the signal-to-blank ratio reaches its lowest
values (Figure 3C). To minimize contamination of blanks, we
recommend the use of two stacked GF/F filters as done in
previous studies (Menzel, 1967; Liu et al., 2005, 2009; Cetinić
et al., 2012), even though filtration times increase considerably.

We further evaluated the latitudinal patterns of the intercept-
blanks. We found a large number (63%) of negative intercepts
in the southern productive region of the AMT-22 transect (with
POC ranging around 60–230mg m−3, Figure 3D). Interestingly,
the relationships between carbon mass and filtered volume
resulting in negative intercepts were less linear (R2 statistics were:

min = 0.921; median = 0.980; max = 0.997; n = 11) than
for other samples along the transect (R2 statistics were: min
= 0.965; median = 0.997; max = 0.999; n = 89; Figure 10).
We hypothesize that this loss of linearity could be due to a
saturation of the filters likely caused by the large concentrations
of particulate carbon found in these regions. If this was indeed the
case, then filters could have become more efficient at retaining
POC resulting in the higher carbon masses per unit volume
evident in Figure 10. These results indicate that the protocols for
determining POC can still be improved.

Toward this aim, we propose to use data from optical
transmissometers (commonly available on the ship’s rosette)
to define the optimal volume of water to be filtered on GF/F
filters for determining POC without saturating filters. Our data
indicate that linearity in the carbon mass vs. filtered volume
relationship was maintained at (1) relatively high values of POC
and particulate beam-attenuation coefficient (122 ± 35mg m−3

and 0.28 ± 0.06 m−1, respectively) when filtered water did not
exceed 1 liter and (2) at low POC and cp(650) values (∼29± 9mg
m−3 and ∼0.04 ± 0.01 m−1, respectively) when up to 4 liters
of seawater were filtered. Therefore, we propose an empirical
relationship to estimate the maximum volume to be filtered for
POC analysis (Vmax, in liters) based on cp(650) (from WETLabs

Frontiers in Marine Science | www.frontiersin.org 7 November 2017 | Volume 4 | Article 367

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rasse et al. Evaluating Optical Proxies of POC

FIGURE 6 | Bivariate histograms showing the relationships between IOPs during AMT-19 (left) and AMT-22 (right). (A,B) Describe bbp(526) vs. cp(526). (C,D) and

(E,F) Describe bbp(526) vs. ap(676) and ap(676) vs. cp(650), respectively. The solid and dotted black lines in (A,B) are the prediction from Westberry et al. (2010) and

Dall’Olmo et al. (2009) models, respectively. The solid red (left) and blue (right) lines are our best fits for AMT-19 and AMT-22, respectively. The colorbar indicates the

number of data points per bivariate bin. Our relationships were fitted using a power law function (log10 (IOPs) = m × log10 (IOPs) + q). cp(650) values were measured

by a C-star transmissometer.

C-star transmissometer, in m−1) and valid for cp(650) ranging
between 0.02 and 0.46 m−1:

Vmax = 4.1− 7.9cp(650)

Using this empirical relationship, we predicted Vmax for all cases
where the intercept was negative and for those positive intercept-
blank values that were not significantly different from zero. We
found that, in most cases, the Vmax was lower than the amount
of seawater filtered (data not shown). Therefore, we recommend
using this empirical relationship to estimate Vmax in future
studies.

Comparison of IOPs Measurements and
Existing Bio-optical Models
The relationships between bbp(526) and cp(650) vs. chlop observed
for AMT-19 and AMT-22 (Figure 7) were in agreement with

published bio-optical models (Bricaud et al., 1998; Huot et al.,
2008; Dall’Olmo et al., 2009; Antoine et al., 2011). Similar results
were also obtained for bbp(526) vs. cp(526) (Figures 6C,D).
However, our power-law slopes for the ap(440)-chlop relationship
were on average 66% steeper than that obtained by Bricaud et al.
(1998) by their equation 4 (see our Figures 7E,F).

In open-ocean waters, the slope of the ap(440)-chl relationship
is driven by the absorption of phytoplankton (aph) and non-
algal particles (anap) (Bricaud et al., 1998). Nevertheless, aph
would be the main factor determining the slope of the ap(440)-
chl relationship because it accounts for about 73–80% of the
total ap(440) (Bricaud et al., 1998; Allison et al., 2010a).
Therefore, the slope of the ap(440)-chl relationship has been
mainly attributed to the packaging effect and/or the variability
of accessory pigments due to changes in the trophic status
(Kirk, 1975; Morel and Bricaud, 1981; Bricaud et al., 1995). Our
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FIGURE 7 | Bivariate histograms showing the relationships between IOPs and chlop during ATM-19 (left) and AMT-22 (right). (A,B) describe cp(650)-C-star vs. chlop.

The solid, dashed and dash-dot lines in (A,B) are the linear fits reported by Behrenfeld and Boss (2006), Huot et al. (2008) and Loisel and Morel (1998), respectively.

The dotted black line in (A,B) was reported by Behrenfeld and Boss (2006) and it shows that cp and chl are not correlated in the Bermuda Atlantic Time Series

(BATS). (C,D) describe bbp(526) vs. chlop. The solid, dashed and dash-dot lines in (C,D) are the linear fits reported by Antoine et al. (2011), Dall’Olmo et al. (2009) and

Huot et al. (2008), respectively. (E,F) describe ap(440) vs. chlop. The black line in (E,F) is the linear fit calculated by Bricaud et al. (1998). The solid red (left) and blue

(right) lines are our best fits for AMT-19 and AMT-22, respectively. The color bar indicates the number of data points per bivariate bin. Our relationships were fitted

using a power law function (log10(IOPs) = m × log10(chlop) + q).

ap(440)-chlop relationship suggests that the package effect and/or
the variability in accessory pigments may have a smaller influence
than expected (Figures 7E,F). Alternatively, the steeper slope of
our relationship could be due to an overestimation of ap(440)
resulting from lower accuracy of the scattering correction in the
blue region of the AC-meter data (Slade et al., 2010).

Another potentially important reason for our steeper slope
could be the difference between the methods applied to
measure ap(440). While we used optical data derived from the
AC-s and AC-9 absorption and attenuation meters, Bricaud
et al. (1998) employed the quantitative filter technique (QFT).
The QFT concentrates particles on a filter and can result
in optical pathlengths of up to 20m (Trüper and Yentsch,
1967). This technique requires a correction for pathlength
amplification (β factor), that, in most cases, is non-linear and
known to introduce uncertainties (Bricaud and Stramski, 1990

and references therein; Allali et al., 1997). By contrast, the
pathlength in an AC-s or AC-9 is 25 cm and no correction
for pathlength amplification is needed. Testing whether this
methodological difference explains the differences in the chl-
driven ap(440) bio-optical model is however beyond the scope of
this study.

Relationship between POC and chl
The main challenge in applying chl as POC proxy is the
high spatio-temporal variability of the POC:chl ratio due to
physiological photoacclimation, variations in the community
composition and phytoplankton biomass, and possibly also
from variations in the relative contribution of detritus and
phytoplankton to the bulk POC (Behrenfeld et al., 2002, 2005,
2015; Gardner et al., 2006 and references therein). Thus, to
accurately predict POC from chl, the POC-chl relationships
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FIGURE 8 | Empirical relationships between POC and IOPs for AMT-19 (left figures, red diamonds) and AMT-22 (right figures, blue circles). For all figures the solid red

and blue lines represent our best fits calculated for AMT-19 and AMT-22, respectively. The dotted red and blue lines are the POC predicted by the AMT-19 and

AMT-22 empirical relationships, respectively. Plots (A,B) present POC vs. cp(440), while (C,D) present POC vs. bbp(470). (E,F) are POC vs. ap(676).

must (implicitly or explicitly) parameterize the variability in the
POC:chl ratio.

The AMT cruise spans a wide range of Atlantic regimes
characterized by specific phytoplankton communities acclimated
to specific environmental conditions (e.g., prokaryotes and
micro-phytoplankton dominate oligotrophic gyres and high
temperate latitudes, respectively), (Aiken et al., 2009; Martinez-
Vicente et al., 2013; Graff et al., 2015). As a consequence, we
found that the POC:chl ratio varied on average by a factor
of 13 during both cruises, with its lowest and largest values
in the productive areas and oligotrophic gyres, respectively
(Figure 4C). Interestingly, we found similar POC:chl ratios at
similar latitudes along the transect during both cruises, likely
because we have sampled similar phytoplankton communities
acclimated to similar environmental conditions. This similarity
between the POC:chl ratios measured at similar latitudes during
two independent AMT cruises, suggests that, although the

measured range of POC:chl ratios is wide, this ratio is changing
in a relatively predictable manner from 1 year to the next at a
given latitude. Thus, it should possible to empirically model, at
least part of, the variability of the POC:chl.

To test the above hypothesis, we quantified the accuracy of
the POC-chl relationships by predicting surface POC for AMT-
22 by means of the independently-derived power laws fitted from
AMT-19 and others studies (see Tables 1, 2, Figure 11). Our
POC-chlhplc relationship predicted surface POC with a median
error (calculated as the difference between the POC measured
minus the POC predicted divided by the POC measured and
multiplied by 100) that was between 6- and 11-fold lower than
those calculated from previous studies (Table 2). We propose
that this relatively high level of accuracy is achieved because
our model is implicitly parameterizing some of the factors (e.g.,
community composition, phytoplankton biomass among others)
affecting the variability in POC:chl ratio along the Atlantic
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FIGURE 9 | Empirical relationships between POC and IOPs for AMT-19 (left figures, red diamonds) and AMT-22 (right figures, blue circles). For all figures the solid red

and blue lines represent our best fits calculated for AMT-19 and AMT-22, respectively. The dotted red and blue lines are the POC predicted by AMT-19 and AMT-22

relationships, respectively. The (A,B) present POC vs. cp(650)-C-star, while (C,D) are the POC vs. bbp(526). (E,F) are POC vs. ap(676). From (A–D)

the dashed-dotted and dashed black lines are the linear fits reported by Cetinić et al. (2012) and Stramski et al. (2008) for the corresponding IOP (see Tables 2, 3). In

(A,B) the solid black line is the model reported by Gardner et al. (2006)-global.

transect during this period of the year. However, we cannot
argue that this model will accurately predict POC during different
seasons or in other ocean regions, because of the expected high
variability in the POC:chl ratio (Behrenfeld et al., 2002, 2005,
2015). For example, in oligotrophic regions (e.g., chl <0.10mg
m−3) this model could underestimate POC (see Figures 7A,B,
9A,B, 11 in this study and Figures 5B,C in Behrenfeld and Boss,
2006), because in these areas the temporal variability in chl,
and thus in the POC:chl ratio, is mostly driven by intracellular
changes in phytoplankton pigmentation and not by changes in
carbon biomass (Behrenfeld and Boss, 2003, 2006). In other
words, we cannot expect that our POC-chl relationship will
predict POC in regions where pigment concentrations are driven
by photoacclimation. To demonstrate this, we regressed POC vs.
chl using only data with chl <0.1mg m−3 and found that the two
variables are poorly correlated (R2 ranged between 0.14 and 0.33).

Relationships between POC and IOPs
Particulate Beam Attenuation Coefficient
The POC-cp relationship has been extensively tested in the
literature (e.g., Gardner et al., 2006; Cetinić et al., 2012 and
references therein) and it has been shown that its slope can
vary by up to 1.8-fold between open-ocean regions (Gardner
et al., 2006). The power-law fit computed here was similar in
the three spectral regions and the POC-cp(650) relationship (cp
derived from WETLabs C-star transmissometer) was consistent
with previous studies, regardless of whether cp was derived
with the same or different (e.g., Sea Tech) transmissometers
(Figures 9A,B). To compute the accuracy with which the POC-
cp(650) relationship can predict surface POC, we used the
method described above for the POC-chlhplc relationship. We
found that the POC-cp(650) relationship developed using AMT-
19 data can predict the POC values of AMT-22 with a median
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TABLE 1 | Empirical relationships between POC, IOPs, and chl for AMT-22.

Variables Instr. n (Slope ± std

error)a
(Intercept ± std

error)

cp(440) AC-s 185 0.858 ± 0.025 2.45 ± 0.03

cp(532) C-star 185 0.838 ± 0.026 2.52 ± 0.03

cp(650) 185 0.832 ± 0.027 2.60 ± 0.03

bbp(470) ECO-BB3 185 1.18 ± 0.046 5.15 ± 0.14

bbp(470)-bb02(470) 184 0.853 ± 0.056 4.20 ± 0.17

bbp(470)-bb02(470) and

bbp(470)- < 0.0015b
156 0.345 ± 0.080 2.56 ± 0.25

bbp(526) 185 1.15 ± 0.042 5.10 ± 0.13

bbp(526)-bb02(526) 179 0.870 ± 0.054 4.28 ± 0.17

bbp(526)-bb02(526) and

bbp(526) < 0.0015b
151 0.378 ± 0.083 2.68 ± 0.26

ap(440) AC-s 185 0.760 ± 0.025 2.99 ± 0.05

ap(676) 185 0.602 ± 0.022 3.05 ± 0.05

chl HPLC 192 0.622 ± 0.023 2.16 ± 0.02

aOur optical models are expressed as log10(POC) = m*log10(x) + b, where x is the

corresponding IOP or chl.
b The power law function fitted after excluding productive areas and subtracting bb02 from

bbp.

error of −2.2%, which was similar or lower than that computed
from most published relationships (see Table 2). In addition, our
POC-cp relationships have typical uncertainties comparable to
our POC-chlhplc relationship (Table 2).

On the other hand, the lower predictive accuracy of the POC-
cp(660) relationship proposed by Cetinić et al. (2012) could be
due to the specific temporal and environmental conditions of
their study (e.g., North Atlantic spring bloom, dominance of
diatoms). If this was the case, then this relationship may need
to be considered specific for the North Atlantic bloom periods.
Cetinić et al. (2012) report that the lowest POC-cp slopes are
found in areas with larger phytoplankton communities (e.g.,
diatoms with low carbon-cell volume ratio), whereas their largest
slopes are found in ocean regions where smaller phytoplankton
dominate (e.g., pico-eukaryotes). Similarly, DuRand et al.
(2002) indicate that cp per unit of carbon may increase with
phytoplankton cell size. Our data are consistent with these earlier
studies in that prediction errors of the POC-cp(660) relationship
derived by Cetinić et al. (2012) tend to decrease in highly-
productive areas (POC > 60mg m−3, Figures 9A,B) dominated
by larger phytoplankton communities.

The POC-cp relationship has the advantage that cp(660)
has been measured during the last decade from oceanographic
rosettes. However, cp cannot be derived directly from satellite
data and optical transmissometers are not routinely deployed
on autonomous platforms. Thus, there is still a need to evaluate
other optical proxies of POC.

Factors Affecting Prediction of POC from Particulate

Backscattering Coefficient
As with all inherent optical properties, particulate backscattering
covaries to first order with the concentration of suspended
matter, but it is also sensitive to changes in particle composition

and size, which vary spatially and temporally as a result
of external events (e.g., atmospheric deposition) as well as
physical (e.g., aggregation-disaggregation) and biogeochemical
processes (e.g., mineralization-dissolution) (Stramski et al.,
2004a). In addition, it is challenging to measure bbp in the
open ocean with high accuracy because of limitations of
current sensors (Twardowski et al., 2007; Dall’Olmo et al.,
2012). This optical property, however, has the advantages of
being retrievable from ocean-color remote sensing and being
measured in situ by autonomous platforms. Thus, bbp has
been used as a proxy of POC in open-ocean waters where
optical properties are dominated by biogenic organic matter
(Morel and Prieur, 1977; Smith and Baker, 1978; Stramski et al.,
2008).

We computed power-law fits between POC and bbp for two
spectral regions (470 and 526 nm, Tables 1, 3, Figures 8, 9). We
found that the slopes of the relationships were almost equivalent
between the cruises (Tables 1, 3), and we thus concluded that the
underway system was also clean during AMT-22 (see also the
section Particulate Backscattering). However, the POC-bbp(470)
relationship derived during AMT-19 predicted POC with the
largest median error (25%, Table 3). Dall’Olmo et al. (2012)
reported that during AMT-19 relatively large bbp signals were
measured on 0.2-µm filtered seawater, likely due to a small,
but unidentified bias in their bbp measurements. We therefore
subtracted the 0.2µm filtered signal (bb02) from bbp to re-
evaluate our POC relationships (Figure 12). Resultant median
errors for the POC-bbp(470) and POC-bbp(526) relationships
decreased by 7- and 2-fold, respectively (Table 3, Figure 12).
These results indicate that even small biases in bbp measurements
can significantly affect the accuracy of the POC-bbp relationship.

Additional factors that can affect the accuracy of POC-bbp
relationships between independent studies are: (1) uncertainties
of POC estimates, (2) uncertainties in bbp measurements, and (3)
variability in the particles assemblages between regions (Gardner
et al., 2006; Stramski et al., 2008; Cetinić et al., 2012). Published
POC-bbp relationships predict biased estimates (by ∼±60%) of
surface POC measured during AMT-22 (Table 3, Figure 9). The
POC-bbp(555) relationship proposed by Stramski et al. (2008) is
based on data collected in waters similar to those found during
AMT (e.g., similarly to our dataset, POC, POC:chl and bbp/bp
ratios measured by Stramski et al. (2008), range between 12
and 270mg m−3, 100–1,000, and 0.007–0.018, respectively). This
relationship, however, was developed using bbp data measured
by Hydroscat-6 and a-βeta sensors (calibrated by the plaque
method) installed on a CTD-rosette, whereas we used an ECO-
BB sensor (calibrated by the micro-sphere method) installed
in a flow-through chamber connected to the ship’s underway
system (see detail description in Dall’Olmo et al., 2009, 2012).
The prediction error of the Stramski et al. (2008) POC-bbp(555)
relationship (median error of−27%) was slightly higher than that
found in this study (Table 3). However, their prediction error was
within the range (in absolute value) of the uncertainties in bbp
measurements (20–40%, Dall’Olmo et al., 2012). We therefore
suggest that the difference between the POC-bbp relationships
derived from Stramski et al. (2008) and in this study could be due
to the different methods applied to measure bbp(526), as well as
uncertainties in bbp measurements. This hypothesis is supported
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TABLE 2 | Accuracy of AMT-19 bio-optical relationships to predict surface POC measured during AMT-22.

Variables References Instr. N (Slope ± std error) (Intercept ± std error) aPerformance in predicting POC

Median SRb

cp(440) This study AC-s/AC-9 57 0.869 ± 0.038 2.44 ± 0.04 3.1 18.9

cp(532) C-star 68 0.829 ± 0.036 2.51 ± 0.04 −2.5 22.2

cp(650) 68 0.822 ± 0.035 2.58 ± 0.05 −2.2 22.8

cp(660) [1] Sea Tech 3462 381 ± 3 9.4 ± 0.6 8.8 21.1

cp(660) [2] C-star 59 458.3 10.3 −6.4 25.0

cp(660) [3] 296 391 ± 19 −5.8 ± 5.5 60.7 14.4

ap(440) This study AC-s/AC-9 57 0.776 ± 0.038 3.04 ± 0.07 −6.4 26.4

ap(676) 57 0.598 ± 0.028 3.10 ± 0.07 −12.6 33.7

chl This study HPLC 69 0.556 ± 0.032 2.08 ± 0.03 2.8 14.11

chl [4] HPLC 409 90 0.57 29.8 22.3

chl [5] HPLC 77 35.8 22.2 15.6 32.8

aThe residual was calculated as the difference between the POC measured and predicted divided by the POC measured.
bSR: Spread of the residuals around the median computed as half the difference between the 84th and 16th percentile.
cQFT: quantitative filters technique.

[1,2,3] Relationships between POC vs. IOPs found by [1]Gardner et al. (2006) for Global oceans, [2]Stramski et al. (2008) for Atlantic-Pacific, and [3]Cetinić et al. (2012) for North Atlantic.

Models derived from d, e and f are expressed as POC = m*x + b, where x is the corresponding IOP. For Stramski et al. (2008) we used POC vs. cp model that includes all data.

[4] Power law fitted (POC = 90(chl)0.57 ) by Loisel and Morel (1998) for world oceans.

[5] Linear regression (POC = m*chl + b) computed by Stramska and Stramski (2005) for North Polar Atlantic spring.

[This study] Our optical models are expressed as log10(POC) = m*log10(x) + b, where x is the corresponding IOP or chl.

TABLE 3 | Accuracy of POC-bbp models derived from AMT-19 in predicting surface POC measured during AMT-22.

Variables Reference Instr. n (Slope ± std error) (Intercept ± std error) aPerformance in predicting POC

Median SRb

bbp(470) This study ECO-BB3 71 1.22 ± 0.08 5.15 ± 0.24 24.7 21.1

bbp(470)-bb02(470) 71 1.04 ± 0.08 4.72 ± 0.25 −3.7 28.8

cbbp(470)-bb02(470) and

bbp(470) < 1.5 × 10−3

60 0.69 ± 0.14 3.62 ± 0.43 0.2 25.2

bbp(526) This study ECO-BB3 71 1.13 ± 0.07 4.95 ± 0.20 17.2 21.9

bbp(526)-bb02(526) 71 0.999 ± 0.08 4.60 ± 0.23 8.9 28.6

cbbp(526)-bb02(526) and

bbp(470) <1.5 × 10−3

61 0.63 ± 0.12 3.42 ± 0.39 3.7 26.4

bbp(555) [2] Hydroscat-6 54 53606.7 2.47 −26.6d 35.6

bbp(700) [3] FLNTU 321 43317 ± 2092 18.4 ± 5.8 64.5d 22.0

aSummary statistics quantifying the accuracy (Median) and precision (SR) of POC prediction. POC was predicted from IOPs using the AMT-22 dataset and independently-derived

bio-optical relationships. Residuals were calculated as the difference between the POC measured minus the POC predicted divided by the POC measured and multiplied by 100.
bSR: spread of the residuals around the median computed as half the difference between the 84th and 16th percentile (this is a robust version of the standard deviation).
cRelationships that exclude data from productive areas (POC > 60mg m−3 and bbp > 1.5 × 10−3 m−1 ).
dTo test the accuracy of the reported POC-bbp relationships we used the bbp(526) signal after subtract the bbp (526) of filtered seawater.

[This study] Our optical models are expressed as log10 (POC) = m*log10(bbp ) + b.

[2–3] Linear regression between POC vs. bbp found by [2]Stramski et al. (2008) for Atlantic-Pacific and [3]Cetinić et al. (2012) for North Atlantic. Both models are expressed as POC =

m*bbp + b. For Stramski et al. (2008) we used POC vs. bbp (555) relationship that excludes upwelling data.
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FIGURE 10 | Relationship between mass of carbon and volume of seawater filtered for (A) data with negative intercepts significantly different from zero and located in

high latitudes (POC > 60mg m−3) and (B) data with positive intercepts significantly different from zero in oligotrophic areas (POC < 60mg m−3 ). Figures only include

data from AMT-22.

FIGURE 11 | Power law relationship fitted between POC vs. chlhplcfor AMT-19 (red diamonds) and AMT-22 (blue circles). The solid red and blue lines represent our

best power law fits calculated for AMT-19 and AMT-22, respectively. Dashed and dashed-dotted black lines are the relationships computed by Loisel and Morel (1998)

and Stramska and Stramski (2005), whereas the dotted red and blue lines are the POC predicted from AMT-19 and AMT-22 POC-chlhplc models, respectively.

FIGURE 12 | (A) Correlation between POC and bbp(470). Blue circles are data from AMT-22. Solid red line is the power law fitted for AMT-19. Dotted red line is the

power function computed after subtracting bb02 from bbp. Dashed red line is the power law function fitted after excluding productive areas and subtracting bb02 from

bbp. (B) Relative distribution of bbpfor AMT-19. Solid black line is the bbp data and dashed red line is bbp minus bb02.

by the agreement found between the POC-cp relationships of
Stramski et al. (2008) and in this study in the red spectral region
(Table 2, Figure 9).

The Cetinić et al. (2012) POC-bbp(700) relationship
underestimated by 60% the POC measured during AMT-22

and we hypothesize this is due to the different protocols
used for measuring bbp and/or different wavelengths (for
example, see Table 3), as explained above. However, the
difference between the structural compositions of the particles
between studies seems to be a significant factor determining
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the accuracy of their POC-bbp relationships. For example,
large phytoplankton assemblages predominated (diatoms
with low carbon:volume-cell ratio) in Cetinić et al. (2012),
whereas small and large phytoplankton assemblages were
included in our case. Interestingly, and similar to what
was found for the POC-cp(660) relationship, the relative
errors in POC prediction derived from their POC-bbp(700)
relationship fell to the lowest values in productive areas
(Figure 9).

It is also reasonable to suggest that uncertainties in the Cetinić
et al. (2012) POC measurements (POC <60mg m−3) could be
another factor that contributed to the difference between their
predicted POC and those measured for AMT-22 in oligotrophic
regions (Figure 9). For example, to increase the POC signal-
to-blank ratios and decrease potential uncertainties in places
with low POC concentration (POC <60mg m−3, see sections
Particulate Organic Carbon and Figure 3C), we calculated POC
by using samples with the largest volume of seawater filtered
(the volumes of the samples were ≥2 l for 80% (n = 296) of our
POC measurements in these areas). As a result, low standard
deviations were found for oligotrophic POC concentration
(POC concentration in oligotrophic regions (mean ± standard
deviation)= (27.2± 1.42) mgm−3; n= 148). In contrast, Cetinić
et al. (2012) calculated POC by using smaller volumes (1.1 l)
than those used here for a similar range of POC (<60mg m−3).
This in turns could decrease their POC signal-to-blank ratios and
increase the errors in their POC measurements (Moran et al.,
1999).

During both cruises, we sampled trophic states (oligotrophic
and eutrophic) characterized by different POC concentration and
structural composition of the particle assemblages. For example,
the greatest POC concentration and the lowest POC:chlhplc ratios
were found in the productive areas (Figure 4). In these areas,
large phytoplankton cells are also typically observed. Therefore,
the influence of POC concentration and particle assemblages in
the accuracy of POC-bbp relationships was assessed by excluding

POC and bbp data from productive areas (POC >60mg m−3,

which is equivalent to ∼bbp > 1.5 × 10−3 m−1) and by re-
evaluating the relationships. The prediction error of the POC-
bbp relationships did not decrease significantly (only by 4%,
Table 3), because approximately 80% of our data are located
in oligotrophic regions. However, with the revised relationships
the POC was underestimated by 55% (±14) in productive areas
(Figure 12). Similarly, Stramski et al. (2008) found that their
POC-bbp(500) slope decreased by 1.3-fold when they excluded
POC-bbp data from productive upwelling regions. These results
corroborate the suggestion that, to derive robust global POC-
bbp relationships, it is important to include POC-bbp data from
different trophic states (e.g., Gardner et al., 2006).

Predicting POC from Particulate Absorption

Coefficient
The variability in the particulate absorption coefficient is
driven by the variability in particulate organic and inorganic
components (phytoplankton biomass, biogenic detritus, bacteria,
atmospheric dust), (Bricaud et al., 1998; Stramski et al., 2004b).
Because POC potentially comprises all the organic components

mentioned above and because the concentration of inorganic
material is generally low in the surface open-ocean, we expect to
find correlations between POC and ap. As an example, a relatively
strong relationship exists between POC and remote-sensing
reflectance ratios and the latter quantity is mainly dependent on
ap in the surface open-ocean (Allison et al., 2010a). Indeed, in our
study, the relationships based on ap predicted POCwith amedian
error of −6.4 and −12.6% in the blue and red spectral regions,
respectively (Table 2). The POC-ap relationships, however, also
depends on the variability in POC:chl ratios, because ap is mostly
driven by phytoplankton pigments in the surface open ocean
(Bricaud et al., 1998; Allison et al., 2010a), (section Relationship
between POC and chl). Therefore, the arguments that explain
why we can predict POC from ap in this study, and why we
cannot warrant application of this model to other seasons or
other ocean regions, are the same as described above for the POC
chl relationship (section Relationship between POC and chl).
Nevertheless, the median prediction error of ap(440) is similar
to those computed for cp and bbp (Tables 2, 3), and ap(440) can
be retrieved from remote sensing (e.g., Mitchell et al., 2014). We
therefore suggest that, similarly to chl, ap could be used as a global
POC proxy, only when the factors affecting the variability in the
POC:chl ratio are accounted for in the bio-optical model (e.g.,
Behrenfeld et al., 2015; Arteaga et al., 2016).

CONCLUSIONS

We found empirical POC-IOPs relationships that can predict
independently-measured POC with a median error of about
±10%. We showed that our POC-IOPs relationships predicted
POC with equal or greater precision than those predicted from
previous POC-IOPs and POC-chl relationships. We conclude
that the differences found between POC-cp and POC-bbp
relationships from previous studies and those found here,
were due to differences between (1) the protocols applied for
measuring POC and IOPs, and (2) the characteristics of the
particle assemblages in the sampled ocean regions.

To our best knowledge, we reported for the first time POC-
ap relationships for the surface oligotrophic open ocean. We
found that the POC-ap(440) relationship predicted POC with
accuracy comparable to those predicted from the traditional ones
(e.g., POC-bbp, POC-cp, and POC-chl). However, we warn that
before ap(440) or chl could be considered as alternative POC
proxies, bio-optical models should account for the factors driving
the large variability in POC:chl ratio that is expected due to
physiological photoacclimation.

We finally conclude that our POC-bbp and POC-cp
relationships are robust and can estimate POC in surface
open-ocean waters of the Atlantic with the accuracies of the
order of 10%.
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