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Understanding the exploration patterns of foragers in the wild
provides fundamental insight into animal behavior. Recent exper-
imental evidence has demonstrated that path lengths (distances
between consecutive turns) taken by foragers are well fitted by a
power law distribution. Numerous theoretical contributions have
posited that “Lévy random walks”—which can produce power law
path length distributions—are optimal for memoryless agents search-
ing a sparse reward landscape. It is unclear, however, whether such a
strategy is efficient for cognitively complex agents, fromwild animals
to humans. Here, we developed a model to explain the emergence of
apparent power law path length distributions in animals that can
learn about their environments. In our model, the agent’s goal during
search is to build an internal model of the distribution of rewards in
space that takes into account the cost of time to reach distant loca-
tions (i.e., temporally discounting rewards). For an agent with such a
goal, we find that an optimal model of exploration in fact produces
hyperbolic path lengths, which are well approximated by power
laws. We then provide support for our model by showing that hu-
mans in a laboratory spatial exploration task search space system-
atically and modify their search patterns under a cost of time. In
addition, we find that path length distributions in a large dataset
obtained from free-ranging marine vertebrates are well described
by our hyperbolic model. Thus, we provide a general theoretical
framework for understanding spatial exploration patterns of cogni-
tively complex foragers.

Lévy walks | temporal discounting | optimal search | decision making |
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Lévy walks are a special kind of random walk whose path
lengths form a power law distribution at their asymptotic limit

(x): pðxÞ∝ x−μ;   1< μ< 3;   x> xmin (1–4). Numerous recent papers
have demonstrated that foraging animals in the wild or under
controlled conditions show path lengths consistent with power
laws (5–11), which are proposed to arise from an underlying Lévy
walk process. Theoretical models have demonstrated that such
a process can be optimal for memoryless agents searching for
randomly distributed rewards across space under certain condi-
tions (1, 2, 12). Together, these findings have led to the Lévy flight
foraging hypothesis, which states that such search patterns have
arisen due to their evolutionary advantage (2, 3). However, be-
cause many animals, including humans, are cognitively complex
and can learn from their environments, it is important to address
whether such heavy-tailed path lengths are optimal even for cog-
nitively complex agents (Fig. S1). The question of how memory
influences foraging patterns has been approached in some con-
texts (13–16) but has not yet been sufficiently addressed (17–20).
Because power law path lengths have been observed in sparse

and dynamic environments (e.g., open ocean), in which foragers
rarely revisited previously rewarded locations (8, 10, 21, 22), it is

reasonable to assume, as foundational models have, that there is
little advantage to learning about the reward distributions at any
given spatial location. Hence, under this assumption, prior studies
constrained the class of models studied to random searches in the
absence of learning. However, despite the fact that remembering
spatial locations in environments such as open oceans may not be
advantageous, it is widely believed that many ecological parame-
ters, including prey distributions, show high degrees of spatial
autocorrelation (23, 24). Moreover, it has been found that these
distributions can exist as hierarchies, wherein large, global spatial
structures comprise smaller, more local structures, and that
predators potentially learn these mean scales in the spatial dis-
tribution of prey (23, 24). Therefore, given the existence of pat-
terns in the distribution of prey in relative space, it may be
advantageous for predators to build representations, or models, of
these patterns as opposed to performing purely random searches
(Fig. 1 A and B). In this paper, we show that to optimally learn the
reward distribution across relative spatial scales in the service of
future reward rate maximization, foragers would produce ap-
proximate power law path lengths, resembling Lévy walks.
How might foragers build a model of the relative spacing be-

tween food items? Consider the foraging behavior of albatrosses,
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for instance. A straightforward solution is to build a model of
rewards obtained as a function of distance flown on each step
(Fig. 1C). Because the speed of movement during searching is
often nearly constant for many foragers (e.g., refs. 8 and 16), this
model can also be built with respect to the time flown on each step.
The question faced by the forager then becomes how to sample
different step lengths to maximize the ability to detect differences
in reward distributions associated with each step length. However,
foragers do not treat the same reward available at different delays
equally: The later the receipt of a reward is, the lower its subjective
value (26, 27). In other words, the subjective value of a reward
expected after a long flight is smaller than that of the same reward
obtained immediately. Many behavioral experiments have shown
that the cost of time associated with a delayed reward takes a
specific functional form: that of a hyperbolic (for μ = 1) or
hyperbolic-like (for μ ≠ 1) function (26–33), shown as

SV ðr, tÞ= rDðr, tÞ= r
ð1+ t=cÞμ, [1]

where SV(r, t) and D(r, t) represent the subjective value and
discounting function, respectively, of a reward of magnitude r
delayed by a time t. c and μ represent parameters that measure
the rate at which the value of a delayed reward is discounted. In
light of such a cost of time, exploration of a given flight time
should be done under consideration of its utility for future ex-
ploitation. Thus, the foragers must explore to maximize their

ability to discriminate subjective value (not reward) distributions
associated with different step lengths.
Here, we show that to maximize the ability to discriminate the

subjective value distributions associated with different step lengths,
the forager has to sample each step length in proportion to the
uncertainty in subjective value associated with that step length
(SI Results, 2.1) Optimal Exploration of Reward Distributions Across
Relative Space and Fig. 1D). This strategy makes intuitive sense
because the higher the uncertainty associated with an option, the
more it must be sampled to learn its properties. Such a strategy of
exploring in proportion to uncertainty has previously been as-
sumed to be an exploration heuristic (34). However, we show that
it is in fact optimal for maximizing discriminability (SI Results, 2.1)
Optimal Exploration of Reward Distributions Across Relative Space).
For a forager that initiates exploration under a uniform prior (i.e.,
no a priori assumption regarding the distribution of rewards),
sampling in proportion to uncertainty in subjective value equates to
sampling in proportion to the discounting function associated with
a flight time. As previously mentioned, the discounting function
over flight time is hyperbolic. Therefore, for constant speed, the
discounting function for a path length is also hyperbolic. Thus, we
predict that the path length distribution of a forager attempting to
explore the reward distribution across relative space will be

pðxÞ∝ 1
ð1+ x=cÞμ; or  rearranging  by  a  constant,   pðxÞ∝ 1

ðc+ xÞμ.
[2]

This is similar in appearance to a power law, but differs due to the
presence of an additive constant c. Consequently, whereas it decays
asymptotically as a power law, it predicts a constant probability at low
values. Further, note that any distribution that is consistent with a
strict power law [e.g., prior observations of foraging patterns (8–10)]
will necessarily be consistent with the above distribution because the
power law distribution is a special case of Eq. 2 in which c = 0.
Because foragers might limit the range of their exploration to a
bounded interval of step lengths (e.g., due to behavioral/environmen-
tal constraints), the above probability distribution would be expected
to hold only in a truncated domain (between xmin and xmax) under
exploration. Further, in reward dense environments, we propose that
observed path lengths would reflect not just the intended path lengths
shown in Eq. 2, but also the truncation due to prey encounter, thus
resulting in exponential path lengths [as has previously been shown
(7)] (SI Results, 2.4) Truncation Due to Prey Encounter and Fig. S2).
The model described above makes several predictions about

search behavior of a cognitively complex agent that we could test
with humans in a controlled laboratory setting. Specifically, we
sought to determine (i) whether humans search space in a random
search pattern as expected from the Lévy walk model or in a sys-
tematic and deterministic way and (ii) whether spatial search pat-
terns are sensitive to the cost of time incurred in traversing the
space. To test this, we designed a spatial exploration task for hu-
mans with and without the cost of time (Methods, Fig. 2A, and SI
Discussion, 1.1) Human Exploratory Task). In phase 1 (with a time
cost) of this task, subjects could stop an image of a flying albatross
to reveal a fish at a given spatial location. The goal of the subjects
was to build a model of the distribution of fish as the knowledge
acquired during this exploration phase could then be used on one
exploitation trial to collect the largest fish possible. Crucially, flying
longer distances across the screen took proportionally more time
(the longest distance corresponded to waiting 10 s). Unknown to
the subjects was that the distribution of fish sizes at any given lo-
cation was uniform between fixed bounds. To test path lengths in
the absence of a time cost, we removed the distance–time re-
lationship in phase 2 and allowed the subjects to explore by merely
clicking a given location with a computer mouse. In other words,
they no longer had to wait for the albatross to fly to that location.

A

B

C

D

Fig. 1. Model for adaptive benefits of apparent Lévy walks. (A) The envi-
ronments of foragers often show spatial autocorrelation with a mean spatial
scale. (B and C) Thus, it is likely that foragers attempt to build a model of the
mean spatial scale by building a model of rewards obtained for different
flight distances (main text). (D) An optimal model of exploration that maximizes
discriminability requires foragers to sample different flight distances (or dura-
tions) in proportion to the uncertainty in subjective value of rewards predicted
at those distances. If the prior expectation of rewards is uniform, the sampling
of different flight distances will produce a hyperbolic-like distribution (SI Results,
2.1) Optimal Exploration of Reward Distributions Across Relative Space)—due to
hyperbolic discounting—that can appear to be power law distributed (Fig. 2).
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We found that in both phases, the pattern of search was
nonrandom. Subjects systematically explored the space by, for
instance, undertaking longer and longer path lengths or un-
dertaking shorter and shorter path lengths from the end of the
screen (see Fig. 2B for two example subjects and Fig. S3 for all
subjects). Statistically, the probability of finding bouts of posi-
tive path length differences or negative path length differences
between consecutive paths was higher than chance in every
subject for phase 2 (P < 0.05, runs test with Benjamini–Hochberg
correction for multiple comparisons, n = 12). For phase 1, the
nonrandomness in the search was statistically significant in
10 of 12 subjects (P < 0.05, runs test with Benjamini–Hochberg
correction for multiple comparisons). Thus, human spatial search
in this random environment is not random. This conclusion is also
bolstered by prior studies demonstrating that numerous animals
remember spatial locations to produce nonrandom spatial search
patterns in the wild (20, 35–41). We also found that the distri-
bution of path lengths in phase 1 was significantly different
from that in phase 2 (Fig. 2C; P < 0.001, two-tailed two-sample
Kolmogorov–Smirnov test) due to the cost of time, as predicted by
our temporal discounting model. Thus, human data support two
key predictions of our model, i.e., that spatial search by cognitively
complex agents is systematic and nonrandom and that temporal
discounting plays a fundamental role in the shaping of such a
search. These datasets are relatively small, however—as it is dif-
ficult to encourage human subjects to explore for long periods in a
laboratory setting—and, therefore, are insufficient for model
comparisons (although our model is consistent with the data).
Therefore, to perform model comparisons, where considerable
amounts of data are required (Fig. 3A), we turned to foraging data
in the wild where, in some instances, thousands of path lengths
have been recorded from individual animals.
Given the preponderance of evidence that foraging path lengths

are well fitted by the power law distribution (5–9), the immediate
question to be addressed is whether the hyperbolic distribution of
path lengths expected from Eq. 2 can be well described by a power
law. Because the above distribution (and a power law) is defined
in a bounded domain, we tested against a truncated power law
(see Methods for details). We found that for random numbers
generated using Eq. 2, Akaike information criterion weights
(wAIC) overwhelmingly support a truncated power law compared
with a truncated exponential (wAICtp = 1.000 and wAICexp =
0.000) for all parameters tested (Fig. 3A and Fig. S4).
At this point, we wondered whether previously analyzed for-

aging data (8) may be well explained by our model. For this
analysis, we compared a hyperbolic model to a power law model,
as the power law distribution was found to provide a good fit to
the data (8) and is generally compared against the exponential
distribution to assert the presence of Lévy walks (5–7, 9–12). To

be clear, we compared against the power law distribution, not the
family of distributions that have power law distributions at their
asymptotic limits—to which a hyperbolic and a power law model
both belong. One important point to note here is that whereas a
strict power law distribution is a special case of the hyperbolic
distribution, it is not necessarily true that in a direct comparison
between the two models the data will be better fitted by a hy-
perbolic distribution. If the path length distributions decay as
steeply or more steeply than a power law, the best fit hyperbolic
model will reduce to the best fit power law and, hence, model
selection (by wAIC) would favor the model with fewer parame-
ters (i.e., the pure power law model).
Because differentiating between two highly similar distribu-

tions requires considerable statistical power, we limited our test
to eight individual marine animals, comprising four blue sharks
Prionace glauca (PG) and four basking sharks Cetorhinus maximus
(CM), for which a substantial number of path lengths (>10,000)
were recorded. The results for two individuals, blue sharks PG2
and PG4, are shown in Fig. 3 B and C, respectively. In both cases,
the hyperbolic fit (cyan) provides an excellent fit to the data.
Notably, the truncated power law fit is visually compelling for
PG2 (Fig. 3B) but not for PG4 (Fig. 3C). Indeed, individual PG2
represents a typical case where the fits are not easily distin-
guishable visually (as in the simulation in Fig. 3A), but where the
wAIC overwhelmingly favors a hyperbolic model. Examining all
individuals, we found that the hyperbolic model provided a su-
perior explanation of the data compared with power law and ex-
ponential models in all but one individual (Table 1). In this
individual (CM3), the exponential model provided the best fit,
potentially due to prey encounter-related truncation (7). In all
other cases, the hyperbolic model was overwhelmingly favored
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Fig. 2. Human spatial exploration task with and without temporal costs.
(A) Schematic of the computer task (Methods and SI Methods). In phase 1, an
albatross flies across the screen from a nest at a constant speed. In phase 2,
subjects can make the albatross teleport (i.e., flight time is negligible). (B) Data
from example subjects showing systematic search behavior across space. (C) Raw
cumulative distribution function (CDF) of the population data across subjects for
phase 1 and phase 2, showing sensitivity of exploration to the cost of time.
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Fig. 3. Previously collected data from wild animals are better fitted by a
hyperbolic model than by a power law model. (A) Random data generated
from a hyperbolic distribution (blue circles) can be well approximated by a
power law distribution (red), but not by an exponential distribution (green):
25,000 random numbers were generated from a hyperbolic distribution (Eq. 2)
(Methods) with truncation set to be between 10 and 1,000 (see Fig. S4 for more
parameters). The best fit truncated power law describes the data significantly
better than the best fit exponential (wAICtp = 1.000 and wAICexp = 0.000).
(B) Previously collected data (blue circles) that are well fitted by a hyperbolic
model (cyan) and a power law model (red), but not by an exponential model
(green) (see Fig. S5 for fits across many subjects). (C) Data from a subject in
which the hyperbolic model is considerably preferred to any alternative model.
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(wAIC = 1.000), except in PG3 where support was not as clear-
cut (wAIC = 0.708). Hence, our theoretical model provides a
superior fit to previously collected foraging data.
In our model for foraging animals in the wild, we previously

assumed perfect ability to estimate the time flown in a given step.
Because we know that the error in estimating longer intervals is
larger than that in estimating shorter ones (42), we derived the
optimal exploration model for the biologically realistic case in which
time perception is subjective and noisy (Fig. 4). In this model, the
sampling per bin of path length (or equivalently, real time) for
maximizing discriminability of rewards associated with that path
length is determined by the degree of nonlinearity in time percep-
tion as different bins in subjective time are scaled differently,
depending on the nonlinearity (Fig. 4C). Theoretically, it has been
proposed previously that the degree of nonlinearity in time per-
ception is directly related to the discounting function in subjective
time (43) (Fig. 4D, Left). Consequently, we show—based on our
prior theory of temporal perception and decision making (43–46)—
that the optimal path length distribution would be

pðxÞ∝ 1

ðvTime + xÞ3. [3]

Here, v is the speed of the animal. The term Time is the interval
over which the past reward rate experienced by an animal is
estimated to make appropriate intertemporal decisions that max-
imize reward rates (43–45). Importantly, this term governs the
nonlinearity of time perception and the steepness of temporal
discounting (43–46) (SI Results, 2.1.5) Exploration under noisy
temporal estimation). Thus, the power law that best approximates
the above distribution would have an exponent determined by
the nonlinearity of time perception (Fig. 4D; SI Results, 2.1.5)
Exploration under noisy temporal estimation; and Fig. S6).
It is important to note that the derivations mentioned above

necessarily simplify the foraging problem faced by animals in the
wild. For instance, one factor that we did not yet take into ac-
count is that animals might account for other sources of risk such
as that resulting from competition in their exploratory model. In
such a case, we show in SI Results, 2.1.6) Modeling risk due to
competition that the probability distribution of path length du-
rations can be calculated as

pðtÞ∝ 1

ðTime + tÞ3ð1+ kαrαtÞ1=α
, [4]

where k and α represent the magnitude of competition such that
an increase in their values represents more competition and

hence, shorter path lengths. r in Eq. 4 can be thought of as the mean
reward expected in an environment; the larger the mean reward
expected is, the larger the competition and the shorter the path
lengths. The asymptotic limit of Eq. 4, for positive α, will have a
power law exponent greater than 3 and hence will be outside the
Lévy range of exponents. However, in cases where the asymptotic
limit cannot be reached, as is often the case in biology where path
lengths are often truncated either by the physical world or potentially
by some internal limit set by the forager, a best fit truncated power
law will appear to have a lower exponent than the real generative
process, with the apparent exponent lying between 0 and 3 + 1/α.
An even more complete model of animal movements would

involve additional factors, some of which are mentioned in SI
Discussion, 1.2) Potential Predicted Deviations from the Simplified

Table 1. Data from model fits to step length distributions of eight sharks

KS D statistic wAIC

Individual Data type xmin xmax μpl μhyp chyp pl hyp exp pl hyp exp

CM1 Discrete 1 322 1.19 1.41 1.19 0.061 0.026 0.356 <10−6 1.000 <10−6

CM2 Discrete 6 91 2.07 3.03 7.20 0.056 0.083 0.127 <10−6 1.000 <10−6

CM3 Discrete 7 68 1.49 8 88.64 0.077 0.051 0.059 1 × 10−91 1 × 10−11 1.000
CM4 Discrete 7 63 1.44 1.79 4.25 0.015 0.007 0.061 2 × 10−4 1.000 <10−6

PG1 Discrete 2 185 2.10 2.24 0.36 0.013 0.003 0.248 <10−6 1.000 <10−6

PG2 Discrete 3 185 1.63 1.82 1.23 0.022 0.007 0.219 <10−6 1.000 <10−6

PG3 Discrete 4 218 1.70 1.77 0.57 0.025 0.018 0.222 0.292 0.708 <10−6

PG4 Continuous 0.027 87.32 1.38 1.90 0.13 0.150 0.031 0.376 <10−6 1.000 <10−6

The first seven animals had quantized data that could be considered as resulting from a discrete probability distribution. For these animals, we divided the data by
their common factor to get the discrete data (e.g., the first animal had unique observations 1, 2, 3, . . ., 322). xmin and xmax represent the best fit truncation across all
three distributions (Methods). Themaximum step length and percentile of xmax for each animal were 322 (100th percentile), 91 (100th percentile), 78 (92nd percentile),
80 (80th percentile), 965 (84th percentile), 910 (80th percentile), 958 (80th percentile), and 87 (100th percentile), respectively. The best fit parameters for the power law
and hyperbolic distributions are shown. The goodness-of-fit was quantified by the KS D statistic and the relative quality of fit was quantified by wAIC.

A B

C D

Fig. 4. Optimal exploration when temporal representations are noisy.
(A) Optimal algorithm for exploration. (B) If temporal resolution is constant at
every interval, subjective representation of time can be represented as a linear
function of real time, with constant noise. However, it is known that errors in
timing increase with the interval being timed (42). In this case, subjective repre-
sentation of time can be represented as a nonlinear function with the nonlinearity
controlled by the parameter Time (43–45). (C) When subjective representation
of time is nonlinear (concave), equal bins in subjective time correspond to bins
of increasing width in real time. (D) A theory of reward rate maximization
(43–45) predicts linear sampling for optimal exploration in subjective time,
with the slope determined by Time. In real time, this sampling becomes hy-
perbolic (Eq. 3) with its decay controlled by Time (SI Results, 2.1.5) Exploration
under noisy temporal estimation).
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Model Presented Here. Nevertheless, the simplified model pre-
sented here demonstrates that the path lengths of foragers with
spatial memory who build a map of their environment for future
exploitation can be heavy tailed and nearly power law distributed.
To conclude, we argue that if foragers seek to learn about

their reward landscape, an optimal model of exploration would
require sampling in proportion to the uncertainty in subjective
value associated with a reward obtained after a given path length.
Because it is often observed that the subjective value of rewards
obtained after a delay is discounted hyperbolically with respect
to the delay, we showed that the resultant path lengths would be
hyperbolically distributed. In support of our model, we found
that humans engaged in a laboratory exploration task searched
space systematically and account for the cost of time in traversing
space. Next, we showed that data generated from a hyperbolic
distribution are better fitted by a power law distribution than by
an exponential distribution and that previously collected data
from foraging animals in the wild can be better explained by a
hyperbolic model than by a power law model. Additionally, we
extended our model to show that for foragers in the wild with
noisy temporal perception, the exponent of the best fit power
law is governed by the nonlinearity of time perception and the
amount of competition faced from other foragers. Thus, we
contribute to the ongoing discussion regarding the mechanistic
origins of power law path lengths in foragers (47–58) by arguing
that search patterns are unlikely to be purely random when
cognitive modeling is advantageous and that approximate power
law path lengths emerge due to the temporal discounting of far-
ther away rewards. A deeper understanding of the neurobiological
basis of spatial search (59–63) may further enrich this model
and provide greater insight into the movements of wild ani-
mals and humans.

Methods
Description of Experiment.
Subjects. The 12 subjects that participated in this experiment were healthy
individuals aged 22–35 y recruited from Johns Hopkins University. All pro-
cedures were approved by the Institutional Review Board at Johns Hopkins
School of Medicine under application identification NA_00075036. All sub-
jects gave oral consent before the start of the experiment.
Exploration task. We developed an exploration task for human subjects. Our
task was divided into two phases. At the start of each trial in phase 1, an
image of an albatross would begin flying (i.e., moving) from its “nest” left
to right across the “sky” (i.e., light blue patch of screen). Subjects were
instructed to stop the albatross at any point by clicking a mouse. When the
albatross was stopped, it would instantaneously dive into the “water” (i.e.,
dark blue patch of screen) and an image of a fish would be revealed. Un-
known to the subject, the size of the fish was drawn from a uniform dis-
tribution with five discrete outcomes. After the fish was displayed for 1 s, the
albatross returned to its nest and immediately began to fly in the next trial.

In phase 1, it would take the albatross 10 s to fly the entire length of the
screen. The speed of the albatross was constant and was 109 pixels per
second. If the subject waited for the albatross to traverse the entire screen,
the albatross automatically dove into the water and a fish was revealed.
Before the start of phase 1, subjects were informed that they would have
exactly 3 min to explore the region and “discover where the biggest fish
swim.” They were also informed that at the end of the phase, they would be
given just one chance to catch the largest fish they could and that their
payout would be “determined exclusively by the size of the fish on this one
trial” and not by the fish caught during exploration. In this way, the subjects
were incentivized to explore the region.

Following phase 1, phase 2 began. In phase 2, the subjects were instructed
that the albatross was flying over a different region of the ocean and, thus,
they had to explore again to knowwhere the biggest fish swim. The albatross
remained in its nest until the subject clicked on a region of space (indicated by
a gray region that ran the length of the screen) to which it instantaneously
teleported. Therefore, there was no time cost in exploring farther regions
of space, as there was in phase 1. The instructions for phase 2 were similar
to those for phase 1 except that subjects were informed that they had 1 min
to explore the region. This limit was imposed so that subjects would complete
a similar number of trials in phase 1 and phase 2 (because trials in phase 2

are shorter as the albatross teleports rather than flies). Aesthetic changes
(background color, fish image, and fish size) were made between phases to
encourage exploration by underscoring the instruction that the environ-
ments in phase 1 and 2 were distinct.
Procedure. Subjects were placed in a quiet room in front of a 13-inchMacBook
Pro. On-screen instructions were read aloud by the experimenter to ensure
that the subject understood them. At the end of the experiment, subjects
answered a questionnaire administered by the experimenter and were
monetarily compensated for their participation.
Display. The experiment was controlled by custom-made code written in Java
(JDK 6.0_65). The display was 1,220 pixels wide and 730 pixels high. The area of
the fish image (i.e., the size of the fish) was a random integer value between 1
and 5 scaled by a constant factor. Movie S1 shows a sample of the experiment.

Animal Foraging Data. Blue (n = 4) and basking sharks (n = 4) were each fitted
with a pressure-sensitive data logger that recorded an individual time series
of depth measurements as the fish swam through the water column, as
described previously (8). Raw depth measurements from loggers were con-
verted into move step lengths by calculating the vertical movement step size
between successive vertical changes in direction (from down to up and vice
versa), as described previously (8).

Procedure to Fit Data. The general approach used here to test the appro-
priateness of different models is to (i ) estimate the respective parameters
using maximum-likelihood estimation (MLE) for the same set of possible
truncations across all models, (ii ) set the best truncation to that resulting
in the lowest Kolmogorov–Smirnov (KS) D statistic across all models and
all truncations, and (iii ) quantify relative likelihoods of models, using
the AIC.

The truncated hyperbolic-like distribution, shown in Eq. 2, needed to be
statistically characterized. We do so in SI Results, 2.2) Statistical Charac-
terization of the Hyperbolic Distribution in Eq. S1. The truncated power
law distribution is a particular example of a truncated hyperbolic distri-
bution for c = 0. To test whether data generated from this distribution can
be mistaken for a power law distribution (Fig. 3A), we generated data
using the following random number generator (derived in SI Results, 2.2)
Statistical Characterization of the Hyperbolic Distribution in Eq. S1),

t =
h
ðtmin + cÞ1−μ +

n
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

o
u
i1=ð1−μÞ

− c,

where t is the random variate following the truncated hyperbolic-like dis-
tribution, tmin and tmax are the minimum and maximum truncation limits, c
and μ are the parameters of the distribution, and u is a uniform random
variate. For the purpose of Fig. 2, tmin was set at 10 and tmax at 1,000. More
parameters are shown in Fig. S4. The procedure for fitting and testing of
power law, hyperbolic, and exponential models is explained below.

Prior data were tested against three models: (i) exponential, (ii) truncated
power law, and (iii) truncated hyperbolic. The same truncation parameters
were fitted across all models. To this end, we fitted each model at different
sets of truncation and then found the truncation that resulted in the lowest
KS D statistic across all models. Thus, truncation limits are not free-fitting
parameters for each distribution that add cost to the AIC. The benefit of
using this approach is that the exact same data are used for comparison
across all of the models, thus avoiding different domains of the probability
distribution functions for the different distributions tested. The procedure
for MLE is derived and explained in detail in SI Methods, 3.1) Model Fits.

To calculate relative likelihood of the different models (i.e., assessing
which model minimizes the estimated Kullback–Liebler divergence between
data and the model), the AIC was calculated for every model as shown be-
low (explained in SI Methods, 3.2) Model Comparisons):

AICtp = 2− 2 log
�Ltp

�
+

4
n−2

AIChyp = 4− 2 log
�Lhyp

�
+

12
n−3

AICexp = 2− 2 log
�Lexp

�
+

4
n− 2

.

L is the likelihood of the data given each model. We used the small-sample
correction for the AIC.
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SI Discussion
1.1) Human Exploratory Task. The human exploratory task pre-
sented here has superficial differences from the general model of
exploration of relative space that was proposed earlier for for-
agers in the wild. The main difference is that whereas foragers
in the wild were predicted to explore relative locations in space
(i.e., locations relative to their current position), humans in this task
are exploring absolute locations in space (i.e., locations relative to a
fixed location). However, there is a fundamental equivalence be-
tween both cases in that exploration is performed with respect to
the distance traveled on each search bout. In this sense, exploration
of absolute space in one dimension is just a special case of ex-
ploration in relative space. Consequently, the discounting of re-
wards for future exploitation is defined with respect to the distance
traveled during exploratory bouts in both cases. Thus, our labo-
ratory task provides a test for the conceptual framework we de-
veloped here.

1.2) Potential Predicted Deviations from the Simplified Model Presented
Here.We presented a model for animal movements in the wild by
assuming that animals are building a model of the subjective
value of reward distributions across relative space. Our calculations
would thus be expected to be true only when animals are in fact
building such a model. Because animals would likely not spend
their entire foraging time building such a model, in these cases, one
must expect deviations from the hyperbolic distribution of path
lengths predicted here. One such instance would be when animals
are exploiting knowledge gained from the aforementioned ex-
ploration. If foragers realized that there is indeed a scale over which
prey are distributed across space, they would fly these distances
under exploitation. Thus, for exploitation, one would predict
unimodal distributions of path lengths if the foragers are flying an
optimal distance. Another prediction of our framework would be
that paths of foragersmight show directional preferences. If there is
anisotropic autocorrelation in the spatial distribution of prey, the
foragers would likely also learn the optimal angle to travel. Thus,
one would predict nonuniform spread of directions of travel.
Further, even when foragers are building a model of subjective

value of reward distributions across relative space, our calculations
have ignored complications such as models of risk associated, for
instance, with competition from other foragers. These complications
would introduce quantitative deviations from the simplified frame-
work presented here (SI Results, 2.1.6) Modeling risk due to com-
petition). On a related note, it must also be pointed out that
optimizing discriminability between all choices is not required to
optimize the ability to pick the maximum reward in a static envi-
ronment. However, because reward environments are rarely static,
it is likely that animals evolved a mechanism to build models of the
world appropriate for mapping the entire distribution of subjective
values. Another caveat is in relation to the dimensionality of the
environment to explore. Here, the assumption was that the depen-
dence of interest to the animal is on the distance from the previous
reward (i.e., autocorrelation). This results in a 1D exploration
problem irrespective of the dimensionality of the environment.
Further, we have assumed radial symmetry in autocorrelation.
Despite these caveats, our calculations illustrate how path lengths of
foragers in the wild can be heavy tailed, as experimentally observed.

SI Results
2.1) Optimal Exploration of Reward Distributions Across Relative Space.
As explained in the main text, we assume that animals are mapping
out a distribution of subjective reward values across relative space

(i.e., distances traveled). To this end, we assume that they maintain
a constant speed and are mapping out the distribution of rewards
against the time flown on each step length (Fig. 1). The aim for such
an exploration is to sample each option a given number of times to
build a map of the reward distribution across relative space for
future exploitation. Because it is known that the subjective value
of a delayed reward decays systematically with respect to the delay
(e.g., “Which do you prefer: $100 now or $100 in a year?”), ex-
ploration of relative space should also consider the subjective
value of a reward for a given flight time. In other words, the ex-
ploration of a given flight time must be done under consideration
of its utility for future exploitation. We also assume that the search
space for exploration is bounded by the forager to be between a
minimum (tmin) and a maximum flight time (tmax). Note that we
are using symbols for time here but they can easily be converted to
distance as time = distance/speed. This conversion obviously ap-
plies to the case of constant speed, but also to the case where
speed is variable, but independent of distance flown.
If there were no discounts (subjective value of a delayed reward

divided by the subjective value of that reward when obtained
immediately) associated with time and all flight times are expected
to have the same reward distribution, the optimal manner to map
out the reward–flight time relationship would be to sample all
possible flight times equally and note the corresponding reward
amounts. Such a sampling strategy would lead to a uniform dis-
tribution of sample times between tmin and tmax.
However, when different time intervals have different associ-

ated discounts, the problemof optimal sampling becomes nontrivial.
We first solve this problem for the simpler case of two possible flight
time options (similar to the “two-armed bandit” problem), under
the following assumptions:

i) As in our behavioral task, the environment is stationary such
that the reward distribution associated with any option does
not change in time.

ii) The aim of exploration is to ascertain the optimal option for
future exploitation.

iii) The total number of trials to explore is fixed. The aim of
the agent is to calculate how to sample the two different
options while keeping the total number of trials fixed. This
assumption will be relaxed later to also consider (a) the
case where the total time for exploration is fixed and (b) a
case where the stopping of exploration has to be determined
by the forager.

iv) The agent has access to the SEM of an option after n samplings.

We first consider the case where the total number of trials for
exploration is fixed.
2.1.1) Total number of trials for exploration fixed. With the above as-
sumptions, the problem faced by the agent is exactly the same as
the problem faced in designing an optimal experiment tomaximize
one’s ability to distinguish between the mean of two distributions.
The solution for the optimal experiment design is to sample each
option in such a way that the t statistic between the two distri-
butions can be maximized. Hence, for the agent trying to solve
the optimal exploration problem, the task is to maximize the
t statistic between the subjective value distributions of the two
options. Because the variances of the subjective values for the
options will not be the same due to the multiplicative discounts,
one has to use Welch’s t statistic for unequal variances (64), which
is defined as
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t=  
< x1>−< x2>

σd
,

where xi is the subjective value for option “i,” <x> denotes the
expected value of x, and σd refers to the SE of the difference of
means. Because the number of samplings of either option affects
only σd, maximizing the t statistic is the same as minimizing σd.
If the distributions of rewards for each option are independent

and identical, with a SD σ, σd—the SE of the difference of sub-
jective means of the two options—would be

σd = σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1

2

n1
+
d2

2

n2

s
,

where d1 and d2 are the discounts associated with the two options,
and n1 and n2 are the number of times the two options were sampled.
Given that the total number of trials is constant (N), n2 = N − n1.
Minimizing σd is equivalent to minimizing the square of σd. At

the minimum of the square of σd, the derivative of σd
2 with re-

spect to n1 will be zero. Therefore,

dðσd2Þ
dn1

= σ2
�
−
d1

2

n12
+

d2
2

ðN − n1Þ2
�
= 0

⇒
n1
d1

=
n2
d2
.

The second derivative can be verified to be positive at this solution,
showing that σd is indeed at its minimum for the above solution.
Hence, for a binary choice between options with independent

and identically distributed (i.i.d.) reward distributions but with
different discounts, optimal exploration requires sampling in
proportion to the discounts.
Next, we extend this analysis to the case of k options (“k-armed

bandits”), each having i.i.d. reward distributions with different
discounts, dk. Although it is hard to identify a single metric whose
optimality can identify the option with the maximum subjective
value, one can define the optimality metric as the sum of variances
of the difference distributions for each distinct pair of options.
Minimizing this metric will lead to maximum discriminability be-
tween all options. Hence, for the k-option case, we assume that the
aim of the agent is to maximize the ability to distinguish between
the subjective rewards of the k options. With this assumption, the
agent has to minimize

σnet
2 =

X
i<j

σij2d ,

where σd
ij is the SE of the difference of the expected subjective

rewards of options i and j.
Expanding the expression on the right-hand side (RHS) gives

σnet
2 = σ2ðd1

2

n1
+
d2

2

n2
+
d1

2

n1
+
d3

2

n3
+
d1

2

n1
+
d4

2

n4
+ . . .

d1
2

n1
+
dk

2

nk
+
d2

2

n2
+
d3

2

n3

+
d2

2

n2
+
d4

2

n4
+ . . . +

d2
2

n2
+
dk

2

nk
+ . . . Þ.

Collecting like terms,

σnet
2
= σ2ðk− 1Þ

 X
i

di
2

ni

!
.

Because the total number of trials is constant, nk can be written as
nk =  N‒

P
i≠kni.

At the minimum of σnet
2, its partial derivative with respect to

any ni,i<k will be zero. Therefore,

∂σnet2

∂ni
= σ2

 
−
di
2

ni2
+

dk
2

�
N −

P
j,j< knj

�2
!
= 0

⇒
ni
di
=
nk
dk
, i< k.

Hence, even in the k-option case between options with i.i.d. re-
ward distributions but with different discounts, optimal explora-
tion requires sampling in proportion to the discounts.
It is important to point out that the optimal exploration requires

sampling in proportion to the discounts only when comparing
between options with i.i.d. reward distributions. The general so-
lution as we worked out for the case with different variances as-
sociated with the real values of each option is to sample in
proportion to the estimated variance of the mean of the subjective
values associated with that option (n α d2σ2/n). It is interesting to
point out that a similar strategy, in which exploration of an option
was proportional to uncertainty, was assumed for some previous
studies of exploratory behavior in humans (34, 65).
Extending this to the continuous case, if we denote the

probability of sampling the flight time t by p(t) and substitute a
hyperbolic or a hyperbolic-like (26) discounting function for
D(t), we get that for optimal exploration, assuming that flight
time is proportional to distance traveled,

pðtÞ∝ 1
ðc+ tÞμ; tmin < t< tmax, [S1]

where c and μ represent the two constants in the hyperbolic-like
function. In other words, an optimal agent samples flight times in
proportion to its hyperbolic-like discounting function. Eq. S1 has
been derived using the assumption that the bins in flight time
(or relative spatial location) are linearly spaced. This in turn results
from the assumption that the error in perception of time for each
flight time is constant. This is an inaccurate assumption as it is
known that errors in the representation of longer temporal intervals
are larger. For such a case of noisy temporal representation, see SI
Results, 2.1.5) Exploration under noisy temporal estimation.
2.1.2) Total time for exploration fixed. Now, we solve for optimal
exploration when the total time for exploration is fixed. As before,
the aim is to minimize σd

2 but under the constraint that n1t1 +
n2t2 = T, where T is the total time available for exploration.
Taking the derivative with respect to n1, we get

dðσd2Þ
dn1

= σ2ð−d1
2

n1
+

d2
2

ððT − n1t1Þ=t2ÞÞ.

Thus,

dðσd2Þ
dn1

= σ2
�
−
d1

2

n21
+

t1t2d2
2

ðT − n1t1Þ2
�
.

Thus, the minimum of σd
2 is when

σ2
�
−
d1

2

n12
+
t1t2d2

2

ðn2t2Þ2
�
= 0;

i.e.,

n1
n2

=
d1
d2

ffiffiffiffi
t2
t1

r
.
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For the case with k options, we have to minimize

σnet
2 = σ2ðk− 1Þ

 X
i

di
2

ni

!

under the constraint nk = T – (n1t1 + . . .. + nk−1tk−1). Taking the
partial derivative with respect to any ni<k, we get

∂σnet2

∂ni
=  

∂
∂ni

σ2
�di2
ni

+
tkdk

2

�
T −

P
j,j<knjtj

�
�
.

Setting the derivative to zero, we get

σ2
�
−
di

2

ni2
+

titkdk
2

ðnktkÞ2
�
= 0.

Thus,

ni
nk

=
di
dk

ffiffiffiffi
tk
ti

r
; i< k.

Extending this to the continuous case, we get that when the total
time for exploration is held constant, the probability of sampling a
particular flight time must be

pðtÞ∝ 1ffiffi
t

p 1
ðc+ tÞμ; tmin < t< tmax. [S2]

2.1.3) Caveat associated with the above model for optimality. It is im-
portant to mention the caveats associated with the above model
for optimality. It is defined as an extension of the optimal ex-
perimental design concept wherein the only aim of the forager is
to maximize the ability to discriminate between the means of the
subjective values for different flight times. That is, the forager is
seeking to purely explore the environment without exploiting its
knowledge. The optimality is thus defined by this constraint. The
second caveat associated with the above model is that it is only a
steady-state solution for optimality. In other words, it says only
that at the steady state, the probability of sampling a given flight
time is as expressed by Eqs. S1 and S2. It does not provide a
dynamical solution and, hence, does not predict how the sam-
pling will develop with experience. For a discussion of this point,
see the Movie S1 legend. These equations also assume that every
flight time is equally likely to contain the largest fish, i.e., that the
prior is uniform.
2.1.4) Self-initiated stopping rule for exploration. With the above ca-
veats in mind, we can now attempt to define a stopping rule for
exploration. Such a rule would be useful when the exploration
phase is not well defined, as we assumed previously with fixed total
samplings or fixed total time. A reasonable stopping rule can be
defined as the moment when the net discriminability (1/σnet

2) goes
above a threshold. This threshold might represent the maximum
resolution available to the agent. In other words, sampling be-
yond this point affords no benefit to the agent in terms of new
information about subjective value. A caveat of the above state-
ment is that in some cases, there might be no need to exploit even
after this threshold has been met. For instance, the total time
available for exploration to a forager could be much more than
that needed to meet the maximum discriminability threshold. In
this case, further exploration can be aimed at gaining more in-
formation about the rewards themselves. Under this framework,
if there is infinite time to explore (i.e., no opportunity to exploit
any knowledge gained), the forager will start sampling uniformly
within the bounded search region.

Mathematically, we can quantify the abovementioned stopping
rule of maximum discriminability as the sampling when σnet

2 =
σstop

2. For this calculation, we assume that the forager is sam-
pling each option in proportion to its uncertainty (or discount,
assuming a uniform prior). To calculate the sampling at the
stoppage point, let us represent ni

stop = βdi. β can now be calcu-
lated as the value that satisfies

σnet
2 = σ2ðk− 1Þ

 X
i

di
2

nstopi

!
= σstop

2.

Substituting ni
stop = βdi, we get

σ2ðk− 1Þ
 X

i

di
2

βdi

!
= σstop

2.

Therefore,

σ2ðk− 1Þ
 P

idi
β

!
= σstop

2.

Or,

β=
σ2

σstop
2 ðk− 1Þ

 X
i

di

!
.

Thus,

nstopi =
σ2

σstop
2 ðk− 1Þdi

 X
i

di

!
. [S3]

As mentioned previously, if there is no possibility to exploit even
after the above threshold has been met, the sampling will then be
directed toward gathering more information about the rewards
themselves. In this case, the steady-state sampling will be uniform.
2.1.5) Exploration under noisy temporal estimation. In the prior sec-
tions, we have assumed that errors in the representation of time
are constant for every flight time. This is, however, not true.
Hence, the sampling of different flight times will be done linearly
with respect to the subjective representation of those intervals
(Fig. 4), rather than their real time values (as was previously
assumed). In a previous theory on intertemporal decision making
and time perception (43, 44), we showed that a decision-making
algorithm that considers reward rate maximization over a limited
temporal interval (including a past interval over which reward rate
is estimated as well as the expected interval to future reward)
explains well-established observations in intertemporal decision
making and time perception. In our theory, the subjective value of
a delayed reward was calculated as

SV ðr, tÞ= r− aestt
1+ t=Time

, [S4]

where SV(r, t) is the subjective value of a delayed reward of
magnitude r and delay t, and aest is the experienced reward rate
estimated over the duration Time (referred to as “past integration
interval”). The above equation holds when the average reward
rate estimated in the past is assumed to not be available during
the delay to the current reward, resulting in an opportunity cost
of the delay. If such an opportunity cost is not present or ac-
counted for, the numerator in Eq. S4 will not contain the aestt
term. We also showed that the subjective representation of the
delay t can be represented by
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STðtÞ= t
1+ t=Time

. [S5]

The above equation represents approximate scalar timing [error
in timing grows in proportion to interval being timed (42)] and
thus takes into account noisy temporal estimation. It says that
the representation of time is nonlinear and that this nonlinearity
is controlled by the past integration interval, Time.
The subjective value of a delayed reward can be expressed in

terms of the subjective representation of the delay as

SV ðr, tÞ= r
�
1−

STðtÞ
Time

�
− aestSTðtÞ.

Thus, the discounting of a delayed reward is linear with respect to
the subjective representation of the delay. It also has two compo-
nents: One is an explicit cost of time (the first term on the RHS)
and the second one is the opportunity cost of time, expressed in
terms of the subjective representation of the delay (second term
on the RHS).
For exploration, the aim is to sample intervals, keeping in mind

the explicit cost of time. Thus, the subjective value considered
during exploration will not include the opportunity cost term.
Hence, for exploration,

SV ðr, tÞ= r
�
1−

STðtÞ
Time

�
.

Thus, the discounting function in terms of subjective representa-
tion of time is expressed as

DðSTðtÞÞ= SV ðr, tÞ
r

=
�
1−

STðtÞ
Time

�
.

As was mentioned previously, the sampling under exploration
is done in subjective time and not real time. Thus, the sam-
pling probability of a flight time t can be expressed (similar
to Eq. S1) as

pðSTðtÞÞ∝ 1−
STðtÞ
Time

. [S6]

The corresponding sampling in real time can then be calculated as

pðtÞ= pðSTðtÞÞ dSTðtÞ
dt

.

From Eq. S5, dSTðtÞ
dt = 1

ð1+ t=TimeÞ2 and from Eq. S6, pðSTðtÞÞ∝
1

ð1+ t=TimeÞ. Thus,

pðtÞ∝ 1

ð1+ t=TimeÞ3
. [S7]

Or equivalently,

pðtÞ∝ 1

ðTime + tÞ3. [S8]

This equation is similar in form to Eq. S1 but has a fixed power of
3. When Time → 0, Eq. S8 predicts exploratory sampling with a
power law with exponent = 3. When Time →∞, the RHS will be
dominated by a constant and thus, the sampling will be uni-
form. Uniform sampling can also be approximated by a power
law of exponent = 0. Thus, Eq. S8 predicts that optimal ex-
ploratory sampling of foragers in the wild will depend on their

past integration interval—a quantity that measures future tolerance
to delay in decision making and the nonlinearity of time perception.
For a given value of Time, the closest power law fit to Eq. S8

can be calculated by equating the medians of the two distribu-
tions. This calculation is worked out below.
From Eq. S19, the median for Eq. S8 can be expressed as

median=
h
ðxmin +TimeÞ−2 + 0.5

n
ðxmax +TimeÞ−2 −

ðxmin +TimeÞ−2
oi−1=2

−Time.

From Eq. S18, the median for the closest truncated power law
can be expressed as

medianðtpÞ=
h
x

1−μopt
min + 0.5

�
x

1−μopt
max − x

1−μopt
min

�i1=ð1−μoptÞ
.

Equating the two medians, the exponent (μopt) for the closest
power law to Eq. S8 is the solution to

h
x

1−μopt
min + 0.5

�
x

1−μopt
max − x

1−μopt
min

�i1=ð1−μoptÞ

=
h
ðxmin +TimeÞ−2 + 0.5

n
ðxmax +TimeÞ−2

− ðxmin +TimeÞ−2
oi−1=2

−Time. [S9]

This can be calculated only numerically and depends on the value
of Time. When Time = 0, it is easy enough to see that μopt = 3.
When Time → ∞, the RHS of Eq. S9 tends to the limit 0.5(xmax +
xmin). Hence, the solution for μopt = 0 in this case. Thus, in all
cases, the exponent of the best fit power law to Eq. S8 will be
between 0 and 3. Numerical solutions for different values of Time,
xmin, and xmax are shown in Fig. S6.
An important caveat needs to be mentioned regarding Eq. S8.

Its derivation assumes that the discounting function is calculated
without any associated model of risk such as those resulting from
competition due to other predators. These factors are quite
likely important in determining the success of foragers in the
wild and hence would likely be included in their decision making.
However, to preserve simplicity, we have chosen to ignore such
factors. Simple models of such risk can be found in the supple-
ment of our prior theoretical work (43). When such factors are
included in the discounting function, the resultant path length
distribution would be much more complicated. Further, as
mentioned in SI Results, 2.1.3) Caveat associated with the above
model for optimality, the above model assumes a uniform prior.
Hence, real life path lengths will certainly be more complicated
than the simple model presented here. Nevertheless, our model
shows that the resultant path lengths will be heavy tailed.
2.1.6) Modeling risk due to competition. In SI Results, 2.1.5) Explo-
ration under noisy temporal estimation, we considered the simple
case where animals in the wild have to account only for the
passage of time in calculating the temporal discounting. Specif-
ically, we assumed that they do not face explicit risks of losing
rewards or, at least, that they do not model such risks. However,
this assumption is almost definitely incorrect. In the presence of
such competition, during the course of a foraging path, the value
of a reward might reduce because other animals might consume
it. Considering such a risk as a stochastic process with a mean
decay proportional to the magnitude of the reward (i.e., larger
rewards are more sought after), we showed previously that an
appropriate model of risk can be mathematically expressed as
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rðafter  path  of   duration  tÞ= rðstart  of   pathÞ
ð1+ kαrðstart  of   pathÞαtÞ1=α

.

Here, r(start of path) is the reward magnitude at the start of a
given path of duration t and k and α represent the degree of
competition—the larger their values are, the more the competi-
tion. In the time t, the mean reward is expected to have decayed
to the value r(after path of duration t) as expressed above. As is
clear, this introduces another power law form to the model ex-
pressed in SI Results, 2.1.5) Exploration under noisy temporal
estimation. Thus, a more complete model of path length distri-
bution can be obtained by combining temporal uncertainty
(shown in Eq. S8) and competition risk (shown above) as

pðtÞ∝ 1

ðTime + tÞ3ð1+ kαrαtÞ1=α
. [S10]

Here, r can be thought of as the mean reward expected in an
environment.

2.2) Statistical Characterization of the Hyperbolic Distribution in Eq.
S1. Rewriting Eq. S1 with a proportionality constant k, we get

pðtÞ= kðc+ tÞ−μ; tmin < t< tmax.

For this expression to represent a probability distribution, k must
have a value such that it is normalized over the domain. We first
consider the case of continuous data for which the integral of the
probability distribution should be 1; i.e.,

Ztmax

tmin

kðc+ tÞ−μdt= 1.

Solving for k, we get

k=
1− μ

ðtmax + cÞ1−μ − ðtmin + cÞ1−μ
.

Thus,

pðtÞ= 1− μ

ðtmax + cÞ1−μ − ðtmin + cÞ1−μðt+ cÞ−μ. [S11]

The cumulative distribution function can be calculated as

FðtÞ=
Z t

tmin

pðtÞdt=
Z t

tmin

1− μ

ðtmax + cÞ1−μ − ðtmin + cÞ1−μ
ðt+ cÞ−μdt.

Solving and simplifying, we get

FðtÞ= ðt+ cÞ1−μ − ðtmin + cÞ1−μ
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

. [S12]

For testing whether observed data are consistent with the probability
distribution shown in Eq. S11, it is important to be able to generate
random numbers following that distribution. This can be done using
inverse transform sampling, provided one has access to a uniform
random variate u. Inverse transform sampling states that solving for
t in the equation below will require that t is distributed according to
the distribution shown in Eq. S11:

FðtÞ= u;

i.e.,

ðt+ cÞ1−μ − ðtmin + cÞ1−μ
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ = u.

Solving for t, we get

t=
h
ðtmin + cÞ1−μ +

n
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

o
u
i1=ð1−μÞ

− c.

[S13]

Eq. S13 describes the random number generator for the distri-
bution shown in Eq. S11 with u being a uniform random variate
between 0 and 1.
The next question to be addressed is that of parameter estimation

for Eq. S11 when attempting to fit experimental data. This can be
done using maximum-likelihood estimation as shown below.
Say that we have n independent observations that are assumed to

be from the hyperbolic distribution in Eq. S11. Let the ith observa-
tion be ti. Then the likelihood of the data given parameters c and μ is

L=
Y
i

pðtiÞ.

The log-likelihood is

logðLÞ=
X
i

logðpðtiÞÞ.

Substituting p(ti) from Eq. S11,

logðLÞ=
X
i

log

 
1− μ

ðtmax + cÞ1−μ − ðtmin + cÞ1−μ
ðti + cÞ−μ

!
.

Simplifying,

logðLÞ=
X
i

h
logð1− μÞ− μ logðti + cÞ

− log
�
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

�i
.

Performing the sums, we get

logðLÞ= n logð1− μÞ− μ
X
i

logðti + cÞ

− n log
�
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

�
.

At the maximum of the log-likelihood function, its partial deriv-
atives with respect to c and μ will be zero.
Therefore,

∂logðLÞ
∂μ

=
∂
∂μ

h
n logð1− μÞ− μ

X
i

logðti + cÞ

− n log
�
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

�i
= 0.

Thus, we get

1
1− μ

+ hlogðxi + cÞi

=
ðxmax + cÞ1−μ logðxmax + cÞ− ðxmin + cÞ1−μ logðxmin + cÞ

ðxmax + cÞ1−μ − ðxmin + cÞ1−μ
, [S14]
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where h i signifies the mean.
Similarly,

∂logðLÞ
∂c

=
∂
∂c

h
n logð1− μÞ− μ

X
i

logðti + cÞ

− n log
�
ðtmax + cÞ1−μ − ðtmin + cÞ1−μ

�i
= 0

−μ
D
ðxi + cÞ−1

E
= ð1− μÞ ðxmax + cÞ−μ − ðxmin + cÞ−μ

ðxmax + cÞ1−μ − ðxmin + cÞ1−μ.
[S15]

Eqs. S14 and S15 have to be numerically solved simultaneously to
calculate the maximum-likelihood estimates for parameters c and μ.
In practice, this numerical estimation has to be multistepped

because typical numerical solvers provide only local solutions. To
ensure that the initial values for numerical solution are close to
the global solution, we used the following procedure. First, we
calculated the pure power law fit to data using the version of
Eq. S14 with c = 0. This is also the ML estimator for a pure
power law as calculated previously (66) and is shown below:

1
1− μ

+ hlogðxiÞi= ðxmaxÞ1−μ logðxmaxÞ− ðxminÞ1−μ logðxminÞ
ðxmaxÞ1−μ − ðxminÞ1−μ

.

[S16]

Eq. S16 also needs to be estimated numerically. The initial value for
this solution was taken as the ML exponent for a nontruncated
power law that has an analytical expression shown below (66). The
expression can be obtained as the limit xmax → ∞ in Eq. S16:

μ= 1−
1

logðxminÞ− hlogðxiÞi. [S17]

Once the solution to Eq. S16 was obtained, the numerical solu-
tions for Eqs. S14 and S15 were calculated using the procedure
explained below.

i) Call μmle for Eq. S16 as μtp because this is the MLE exponent
for a pure truncated power law model. The initial values of μ
for the numerical solution for Eqs. S14 and S15 were taken
as [μtp, μtp + 0.05, μtp + 0.10, . . . , μtp + 2].

ii) The corresponding initial value of c for each of the above-
mentioned μ was calculated as the value that would produce
the same median for the truncated hyperbolic distribution as
the median for the best fit truncated power law with expo-
nent μtp. This is calculated as shown below:

medianðtpÞ=
h
x 1−μmle
min + 0.5

�
x 1−μmle
max − x 1−μmle

min

�i1=ð1−μmleÞ

[S18]

medianðhypÞ=
h
ðxmin + cÞ1−μ + 0.5

n
ðxmax + cÞ1−μ

− ðxmin + cÞ1−μ
oi1=ð1−μÞ

− c. [S19]

Equating the above two values and solving for c for each value
of μ from the list [μtp, μtp + 0.05, μtp + 0.10, . . . , μtp + 2]
provides the appropriate initial point for the numerical solu-
tion for Eqs. S14 and S15. However, the above equations need
to be solved numerically as well. The initial value for this so-
lution was set sequentially. For μ = μtp, the initial value for c
was taken as zero. The solution to this equation provided the
initial value for μ = μtp + 0.05. The solution for this equation
provided the initial value for μ = μtp + 0.1 and so on.

iii) For each of the above combinations of c and μ as initial values,
the corresponding log-likelihood of the data was calculated.

iv) The maximum-likelihood c and μ for solving Eqs. S14 and
S15 were taken as the pair that maximized the global
(against initial values for numerical optimization) log-likeli-
hood calculated above.

To appropriately compare the exponential model to truncated
hyperbolic and power law models, it is important to use a trun-
cated exponential model. If k is the normalization constant, the
exponential distribution can be defined as

pðtÞ= ke−λt; tmin ≤ t≤ tmax

with

Ztmax

tmin

pðtÞdt= 1.

Solving for k, we get

k=
λeλtmin

1− e−λðtmax−tminÞ.

Thus, the truncated exponential model used for calculating like-
lihoods is

pðtÞ= λe−λðt−tminÞ

1− e−λðtmax−tminÞ; tmin ≤ t≤ tmax. [S20]

It is Eq. S20 that must be used to calculate Lexp in Eq. S30.
The CDF over the truncated domain for the exponential dis-

tribution can be calculated as

FðtÞ=
Z t

tmin

pðtÞ=
Z t

tmin

λe−λt

1− e−λðtmax−tminÞ; tmin ≤ t≤ tmax.

Solving and simplifying, we get

FðtÞ= 1− e−λðt−tminÞ

1− e−λðtmax−tminÞ. [S21]

A random number generator for this distribution can again be
obtained using inverse transform sampling by solving for t in
the equation below,

FðtÞ= u,

where u is a uniform random variate.
Solving for t, we get

t= tmin −
1
λ
log
�
1− u

n
1− e−λðtmax−tminÞ

o�
. [S22]

To get a maximum-likelihood estimate of λ, the log-likelihood of
the data can be expressed as

logðLÞ=
X
i

log
�

λe−λðti−tminÞ

1− e−λðtmax−tminÞ

�
. [S23]

We found theMLE λ by numerically maximizing the above equation.

2.3) Discrete Distributions.Because previously collected data (Table 1)
also contained discrete data, we derive the above procedure for
discrete data here. For truncated discrete data, the only difference
from the above derivation is that the sumof theprobability distribution
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should equal 1, rather than the integral. For the truncated hy-
perbolic model, the appropriate probability distribution function
can be written as

pðtÞ= ðc+ tÞ−μPtmax
tmin

ðc+ tÞ−μ; tmin ≤ t≤ tmax.

The ML estimates of c and μ were calculated by numerically
maximizing the log-likelihood of the data:

logðÞ= h−μ logðc+ tiÞi− log

 Xtmax

tmin

ðc+ tÞ−μ
!
.

We used the same procedure as described in the above section for
global maximization. The same equation above was used to esti-
mate the best fit power law distribution by setting c = 0.
For a discrete truncated exponential distribution, the proba-

bility distribution function can be written as

pðtÞ= �1− e−λ
� e−λðt−tminÞ

1− e−λðtmax−tmin+1Þ. [S24]

The ML estimate for λ was calculated by maximizing the log-
likelihood. It can be shown that this is equivalent to numerically
solving the following equation:

e−λ

ð1− e−λÞ− ðtmax − tmin + 1Þ e−λðtmax−tmin+1Þ

1− e−λðtmax−tmin+1Þ = hti − tmini. [S25]

2.4) Truncation Due to Prey Encounter. A curious observation re-
garding forager path lengths is that they tend to become diffusive
when food abundance is high (8, 10). Whereas it was previously
argued that Brownian walks are sufficiently productive under high
food density (8, 10), a recent experimental finding demonstrated
that such path lengths result from truncation of search due to prey
encounter (7). A simple theoretical argument provided an explanation
for this result. However, their calculation was in one dimension. Here,
we extend their argument to search in 2D (Fig. S2).
We first calculate the probability distribution of truncated path

lengths. An easy solution is to assume that foragers are moving in a
straight line until they hit a food item and then calculate the resultant
path length distribution. We assume that food is homogenously
distributed with density (number per unit area) ρ. Denote the di-
ameter of the prey (or a cluster of prey) as dprey, the CDF of path
lengths as F(r), path lengths as r, and probability density function of
path lengths as p(r). Then the infinitesimal change in the CDF, dF(r)
over a distance dr from r corresponds to the probability that the path
length lies between r and r + dr. This is equal to the probability that
the forager at least moved r (= 1 − F(r)) multiplied by the probability
that the forager hit a target between r and r + dr. The second
probability can be calculated as the total angle covered by prey in the
ring between r and r + dr divided by 2π. The total number of foragers
(on an average) in this ring equals 2πrdrρ. Thus, we can write

dFðrÞ= ð1−FðrÞÞ · 2πrdrρ · dprey
	
r

2π

If the forager had a sensory diameter of dperc, the above equation
would remain exactly the same but with the change that dprey
would change to dprey + dperc.
Solving the above equation, we get

FðrÞ= 1− e−ρdpreyr. [S26]

Thus, the probability density function of path lengths is given by

pðrÞ= dFðrÞ
dr

= ρdpreye−ρdpreyr .

Hence, the prey-truncated path lengths are exponentially distributed.
If the intended path length distribution (CDF) for exploration

was Fintended(r), the probability that the path length is at least
greater than r is the probability that the intended path length is
at least greater than r multiplied by the probability that there was
no prey truncation within r. The latter probability, from Eq. S26,
is 1 − F(r). Thus, the observed path lengths would be

1−FobservedðrÞ= ð1−FintendedðrÞÞe−ρdpreyr . [S27]

Thus, as the density of prey increases, path lengths approach the
exponential distribution.

SI Methods
3.1) Model Fits.We fitted the data using three models: exponential,
truncated power law, and truncated hyperbolic. As discussed in
prior work (1, 2), upper truncation is important for power law and
hyperbolic models, but not for exponential models, as such heavy-
tailed models cannot last for an infinite domain in the real world.
Additionally, a lower truncation is necessary for the power law
model as it is not defined for a flight time of zero. Consequently,
as done previously (1, 2), we used a truncation for all of the
models tested. Unlike before, however, we did not tune the
truncation parameters to each model. Rather, we tuned them
across all models by picking the truncation that resulted in the
lowest KS D statistic across all models and all truncations. The
different values of the truncation tested were as follows: For
discrete data, the low truncation possibilities were set to 1, 2, . . . ,
7 and the upper truncation to 80th, 84th, . . . , 100th percentiles
of the unique observations in the data, whereas for continuous data,
the possible options for the minimum truncation were set to 0th,
4rth, . . . , 20th percentiles and the upper truncation was chosen
from 80th, 84th, . . . , 100th percentiles for which at least 80% of the
data were retained. Thus, if the lower truncation was set to the 20th
percentile, the upper truncation had to be the 100th percentile,
whereas the possible upper truncations with a lower truncation of
16th percentile were 96th and 100th percentiles.
The ML estimate for the exponent in the truncated power law

model was numerically calculated by solving Eq. S16. Similarly,
the ML estimate for c and μ for the truncated hyperbolic model
was numerically calculated by solving Eqs. S14 and S15. Finally,
the ML estimate for the truncated exponential model was cal-
culated by solving Eqs. S23 and S25.

3.2) Model Comparisons. We used the AIC to compare the three
models. Because the truncation parameters were set to be the
same for all models, these were not counted as free-fit parameters
in the calculation of the AIC. Thus, the AICs for the different
models were calculated as shown below (each AIC was calculated
using the correction for small sample sizes; i.e., they were AICc).
The numbers of free-fit parameters for the different models were
one for “tp,” one for “exp,” and, two for “hyp”:

AICtp = 2− 2 log
�Ltp

�
+

4
n− 2

[S28]

AIChyp = 4− 2 log
�Lhyp

�
+

12
n− 3

[S29]

AICexp = 2− 2 log
�Lexp

�
+

4
n− 2

. [S30]
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Fig. S1. Optimal search of a bounded area containing reward by a forager with spatial memory. A forager with spatial memory searches a bounded area
containing uniformly distributed rewards. The optimal solution, assuming that the forager has a limited perceptual range, is to tessellate the search region into
bins defined by the perceptual range so that every location in the search space can be sensed by single visits to the locations xmin + rp, xmin + 3rp, xmin + 5rp, . . .
xmax. If the forager has no spatial memory and hence cannot remember which location it visited on the previous search bout, it will be suboptimal.

Fig. S2. Prey truncation leads to exponential path lengths when the density of food is high. Observed path lengths of foragers no longer reflect the intended
path lengths when the distribution of prey is high due to prey-encounter truncation. The resultant path lengths can be shown to be exponential for a 2D
environment with randomly distributed prey (SI Results, 2.4) Truncation Due to Prey Encounter).
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Fig. S3. Search pattern for all 12 human subjects for phase 1 and phase 2. Data from phases 1 and 2 are shown in brown and orange, respectively.
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Fig. S4. Simulation shown in Fig. 3A repeated for more parameters. Truncation of random data generated from a truncated hyperbolic distribution was set to
xmin = 10 and xmax = 1,000. The AIC strongly favored the truncated power law fit over exponential (wAICtp = 1.000 and wAICexp = 0.000) in all cases.
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Fig. S5. Hyperbolic, power law, and exponential fits to all eight individual subjects shown in Table 1. The first row shows individuals 1 and 2, the second row
shows individuals 3 and 4, etc. Data are shown in blue. Exponential fits are shown in green, power law fits in red, and hyperbolic fits in cyan.
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Fig. S6. Optimal exponents for power law fits to Eq. S8. If path length data conformed to Eq. 3 from the main text (derived for uncertainty in time per-
ception), the closest approximation with a power law fit would have exponents as shown here. This is a numerical solution of Eq. S9 (SI Results, Eq. S9 (2.1.5)
Exploration under noisy temporal estimation).
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Movie S1. Shown is a sample from an experimental session of the human exploratory task. Each chapter shows a segment of the task. The segments are
shortened in the movie for illustrative purposes. For complete details of the task, please see Methods and SI Discussion, 1.1) Human Exploratory Task.

Movie S1
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