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Using multifractals to evaluate oceanographic model skill

Jozef Skakala', Pierre W. Cazenave', Timothy J. Smyth?, and Ricardo Torres?

'Plymouth Marine Laboratory, Plymouth, UK

Abstract we are in an era of unprecedented data volumes generated from observations and model sim-
ulations. This is particularly true from satellite Earth Observations (EO) and global scale oceanographic mod-
els. This presents us with an opportunity to evaluate large-scale oceanographic model outputs using EO
data. Previous work on model skill evaluation has led to a plethora of metrics. The paper defines two new
model skill evaluation metrics. The metrics are based on the theory of universal multifractals and their pur-
pose is to measure the structural similarity between the model predictions and the EO data. The two metrics
have the following advantages over the standard techniques: (a) they are scale-free and (b) they carry
important part of information about how model represents different oceanographic drivers. Those two met-
rics are then used in the paper to evaluate the performance of the FVCOM model in the shelf seas around
the south-west coast of the UK.

1. Introduction

Numerical models are broadly used in oceanography for various different purposes: to improve our insight
into phenomena, to supply surrogate data, to predict future conditions, and for the purpose of decision
making [Stow et al., 2009]. Satellite measurements provide us with large volumes of data for fields such as
sea surface temperature, or ocean surface chlorophyll-a concentrations. These data can be used to test the
quality of the model predictions.

Various techniques exist to compare the Earth Observation (EO) and the model data sets and to subse-
quently evaluate the model performance. The data sets can be compared using statistical parameters such
as correlation coefficient, average error, root-mean-square error, reliability index, the cost function, various
binary types of metrics, etc. [Allen et al., 2007a,2007b,2008; Allen and Somerfeld, 2009; Doney et al., 2008; Joll-
iff et al., 2009; Saux Picart et al., 2012; Shutler et al., 2011; Stow et al., 2009; Taylor, 2001]. These tools form the
standard set of model skill evaluation metrics [Stow et al., 2009; Taylor, 2001].

The standard model skill evaluation metrics are of major importance and offer a powerful way of looking at
model performance. However, these methods have their weaknesses: they are typically scale-dependent
and do not necessarily reflect on structural similarities between two data sets. Scale dependency biases the
metrics by phenomena specific to the scale of analysis. The second point, the incapability of metrics to
reflect on structural similarities can be shown on a simple example: imagine an extremely heterogeneous
distribution and create another distribution by spatially shifting the first distribution. If the original distribu-
tion was sufficiently heterogeneous, a slight “phase shift” between the two distributions can lead to a very
small mutual correlation and large mean square errors. If one of those distributions was a model output and
the other is the EO data, the standard metrics would completely disqualify the model performance despite
the fact that the two data sets are nearly identical (only slightly out of phase).

There is currently only limited number of tools used to assess the structural similarity of the model and the
EO data sets, examples of such tools being the self-organizing maps [Kohonen, 2000; Radic and Clarke, 2011]
and wavelet analysis [Saux Picart et al., 2012]. The wavelet analysis has also an additional advantage of com-
paring the data sets on a range of scales. As different dynamical drivers scale differently, a scale-free metric
could provide a unique tool to assess how well the different drivers are represented by the model. To our
knowledge neither wavelets, nor any other of the currently used metrics offers a clear analysis of the model
performance in terms of specific dynamical drivers. The purpose of this paper is to develop and test two
new model skill evaluation metrics that achieve three goals at the same time: the metrics are scale-free,
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they compare the data structural properties, and they link those structural properties to the dynamical
drivers.

It has been known now for several decades that many phenomena in physics, biology, or even in finance
have the property of scale-invariance [Harte, 2001; Lovejoy and Schertzer, 2013; Mandelbrot, 1982, 1997].
One suggested answer to the question of why scale-invariance occurs frequently in nature is a phenome-
non called self-organized criticality [Bak et al., 1987]. Heuristically, the emergence of scale-invariance can be
understood from the phenomenological equations if, within a certain range of scales, one can neglect all
terms that contain dimensional constants. The phenomenological equations without those terms are by
definition scale-free. Although the deterministic solutions of those (in general nonlinear) equations describe
complicated structures which are subject to chaotic dynamics, the statistics across those structures pre-
serves the symmetry of scale-invariance. Furthermore, unless there is some external discretization condition
(such as the presence of physical boundaries), the scale-invariance is continuous. Thus, it can be generally
expected that such scale-free phenomenological models produce (chaotic looking) data described by statis-
tical models that are scale-invariant at a continuous range of scales.

Continuous scale-invariance is a mathematically significantly constraining property and only a few specific
classes of continuous scale-invariant models are known [Seuront et al., 2005]. From the known models the
most successful are the stable attractive cascades termed universal multifractals [Schertzer and Lovejoy, 1987,
1988, 1997, 2011]. The statistical model of universal multifractals has been widely used to model the Earth
atmosphere [Lovejoy et al., 2001a; Lovejoy and Schertzer, 2010; Schertzer and Lovejoy, 1988; Schmitt et al.,
1993], the Earth topography [Gagnon et al., 2006; Lavalee et al., 1993], climate [Lovejoy and Schertzer, 2013;
Lovejoy, 2014], and also the oceanic fields [Lovejoy et al, 2001b; de Montera et al., 2011; Seuront et al.,
1996a,1996b; Seuront and Lagadeuc, 1997; Seuront et al., 1999; Seuront and Schmitt, 2005a,2005b; Skakala
and Smyth, 2015]. Universal multifractals lead to models exhaustively described by the values of three
parameters. Therefore, despite a complex system'’s dynamics being complicated, its statistics can have
remarkable simplicity and, using system symmetries, one can reduce it to information about three
parameters.

The central idea of this work is a development of metrics comparing data sets via the universal multifractal
scaling parameters. This brings us back to the three goals stated earlier in the paper: the universal multifrac-
tal type of metrics are automatically scale-free and they tell us how well models reproduce the structural
scaling patterns of the EO data. Since the universal multifractal parameters frequently relate to specific
dynamical drivers [Lovejoy et al., 2001b; Skakala and Smyth, 2015], these metrics also carry relatively straight-
forward information about which drivers are, or are not, well represented by the oceanographic model.

2. Methods

2.1. Theoretical Background

Universal multifractals have direct links to the theory of turbulence [Schertzer and Lovejoy, 1987, 2011;
Schmitt et al., 1993]. In the turbulent regime the viscosity term in the Navier-Stokes equation (term contain-
ing the dimensional viscosity parameter) can be neglected when compared to the nonlinear inertia and the
Navier-Stokes equation becomes scale-free. There is a characteristic energy input scale which breaks scale-
invariance on large scales, but at intermediate scales, scales in between the energy input scale and the vis-
cosity scale (usually being of the order of millimeter), the turbulent eddies governed by the scale-free Nav-
ier-Stokes equation statistically dissipate in a scale-invariant way [Gurvitch and Yaglom, 1967; Kolmogorov,
1941; Novikov and Stewart, 1964; Obukhov, 1949; Richardson, 1922; Yaglom, 1966]. The eddies lead to the fol-
lowing length correlations in the fluid longitudinal velocity (v) components [Kolmogorov, 1941]:

Avp = (v(x+0)—v(x)) ~ ()3, (1)

Here ¢, is the energy flux conserved by the dynamical equations, ¢ is the scale of separation between two
spatial points, and Z=L/{ is a scale ratio between some chosen fixed scale L and the scale £. The velocity
correlations of the underlying fluid parcel lead to similar correlations in the densities of a passively advected
tracer (p) [Obukhov, 1949]:
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Apg = (Ip(tO)=pOl) = (¢, (2)
p=y"2e0°, 3)
where y; is again a flux conserved by the dynamical equations.

It was observed [Mandelbrot, 1974; Schertzer and Lovejoy, 1987, 2011] that rather than being near-
homogeneous, the fluxes €, ¢, behave as intermittent multifractal cascades that scale as

(¢9) = 7K@, (4)

Here K(q) captures the flux scaling profile and is called the “moment scaling function.” In fact, the flux scal-
ing can be expressed exactly as

(¢9)=(Ln/ 0", (5)

where L, has a meaning of the flux homogeneity scale. The flux homogeneity at the scale L, can be seen
from the following:

(Pl )=(,)" 6)

Note that the equation (6) is obtained from the equation (5) by a trivial identity, since the fluxes have mean
values equal to one. L, is a physically interesting parameter, as it can be interpreted as the energy input
scale. This is the initial scale of the cascade process, a scale from which the energy gradually dissipates, cre-
ating large inhomogeneities at the lowest scales.

The scaling continuity defined through the infinite divisibility and stability of the cascade in equation (4)
implies that K(q) is determined by a two-parametric family [Schertzer and Lovejoy, 1987, 2011] as
G,
Klg)=-—(@"~q), 0<a<2a#1. (7)
Here C; and « are two free parameters, C; being a fractal codimension of the set giving dominant contribu-
tion to the mean and « is the Levy exponent describing how rapidly fractal dimensions of sets vary as they
leave the mean singularity [Gagnon et al., 2006]. For « = 1 one gets the limiting expression:

K(q)=C - qn(q). 8)

The case o = 2 gives the lognormal model of turbulence [Gurvitch and Yaglom, 1967]. The model described
by the equation (7) is called universal multifractals (UM).

A suitable generalization of passive scalar scaling is given by the fractionally integrated flux model (FIF) [de
Montera et al., 2011; Schertzer and Lovejoy, 1987, 2011]:

Ap} = (| p(x+0)=p(x)| ") =K ($7) ™. 9

In the equation (9) we have written explicitly the proportionality constant as K. The scaling model from the
equation (9) is defined by four parameters: g, H, and the two UM parameters C;, a. However, the universal
multifractal (UM) scaling (equation (7)) can be used to reduce the number of parameters to three, by suit-
ably redefining the C; and H values. The final model has then three parameters: the simple increments scal-
ing exponent H and the two universal multifractal parameters C;,o. One can intuitively understand the
H, C;, o parameters as follows: The scaling exponent H can be seen as a combined imprint of the dynamical
drivers scaling (drivers such as solar energy, bathymetry, turbulence, etc.). If the imprint of those drivers was
perfect, the fluctuations Ap, ~ ¢ would be constant across the domain. This is equivalent to the fluxes hav-
ing codimension C; =0, filling the whole physical space. However, in a realistic situation the mean value of
the field fluctuations is realized only on a limited fraction of the underlying space. The size of this fraction
then corresponds to the codimension C; # 0. The remaining fraction of the space with the fractal dimen-
sion C; corresponds to field fluctuations which deviate from their mean value. How much the field fluctua-
tions deviate from their mean value is then partially controlled by the remaining o parameter.

The FIF model is sufficient to describe scale-invariance of fields in various areas of geophysics [Gagnon et al.,
2006; Lavalee et al, 1993; Lovejoy et al, 2001a,2001b; Lovejoy and Schertzer, 2010; de Montera et al, 2011;
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Seuront et al., 1996a,1996b; Seuront and Lagadeuc, 1997; Seuront et al., 1999; Seuront and Schmitt, 2005a].
In Skakala and Smyth [2015] the FIF model was shown to describe the scaling of bathymetry, chlorophyll-a
surface concentrations, and the sea surface temperature (SST) in the shelf seas around the south-west
of the UK. The FIF model can be used for data parameterization as well as to determine the dominant
dynamical drivers (using the multifractal parameters). For example, it is predicted that the 3D turbulent
velocity fields have the following values of the FIF model parameters [Schmitt et al, 1993l
H=0.35+0.1, «=1.3%0.1, C;=0.25+0.05. In general, for passive scalars the situation is less clear: in the 3D
turbulent regime the H parameter seems to lie somewhere between H=0.3—0.45 and the o parameter
between «=1.3—2 [Gagnon et al., 2006; Lavalee et al., 1993; Lovejoy et al., 2001b; de Montera et al., 2011].
For SST the UM parameter values were found in Lovejoy et al. [2001b] as «=1.7%+0.05, C;=0.04%0.01, and
H=0.42+0.02. Deviations from the passive scalar regime can be identified with an action of specific drivers:
for example in Skakala and Smyth [2015] the SST field distributions were interpreted as resulting from a
combined effect of bathymetry scaling and turbulence.

2.2. Definition of Scaling-Based Model Skill Evaluation Metrics

There is not a single best way to compare two data sets and hence not a single best model skill evaluation
metric. The use of a specific model skill evaluation metric rather depends on the questions asked and the
purpose for which the specific model is used. Two types of data set comparisons (and metrics) are sug-
gested in this section, both utilizing the scaling properties of the fluctuations from equation (9).

One could use inverse Mellin transform of the moments scaling function K(qg) to obtain the probability den-
sity distribution (PDF) for the field Ap (equation (9)). The model and the EO data would lead to two different
sets of Cy, «, H parameters, as well as to different L, flux homogeneity scales (equation (5)) and proportional-
ity constants (equation (9)). These would then give two different PDF’s fzo, f,,04 that can be compared as

m:J|on() fmoa (V)| - dv. (10)

Equation (10) suggests a natural metric, as it evaluates the differences in the structure of the two (EO and
model) ensembles. However, there is one significant problem with the metric (10): the power tails of the
two PDFs represent increasingly extreme events and eventually fail to correspond to the realistic, physically
finite ensembles. The differences in the PDFs tails in the unphysical region can still, when integrated, pro-
vide a nontrivial contribution. This suggests that those PDFs tails should be removed from the integral (10).
The solution is to multiply the integral (the equation (10)) by a weight that emphasizes the central peak of
the distribution and discards the extreme tails. It turns out that the simplest way to do this is to work direct-
ly with the statistical moments. The analysis of the statistical moments provides us with the moment cutoff
value gp which corresponds to the largest singularity that can be sampled by the specific finite ensemble.
Or in other words, gp is the largest statistical moment which can be estimated from the finite ensemble
[Schertzer and Lovejoy, 2011]. The cutoff moment gy corresponds to a second-order phase transition [Schert-
zer and Lovejoy, 2011] and can be identified by a discontinuity in the second derivative of the moment scal-
ing function K(q). The discontinuity is a result of the fact that K(g) behaves as a linear function for g > gp
[Schertzer and Lovejoy, 2011].

In addition to this, the statistical moments provide us with a natural measure that emphasizes the values
around the peak of the PDF:
> . (n
¢

Here the p(y), p(y) represent two distributions whose fluctuations are being compared. The UM; metric mea-
sures the relative differences in statistical moments of the two distributions in the physical region
q € (0,gp). By relative differences one means differences weighted by the average between the statistical
moments of the two distributions. This weight is largest for the moments that depend mostly on the peak
of the PDF for Ap. Furthermore, to remove the scale dependence, the metric (11) averages across a range of
scales at which the FIF model is a good approximation.

“M1:J:qu<’2.<(A<p )1>éi<A<p 2;»)

If we assume that the statistical moments of the two distributions do not differ too much then:
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<Ap?1)z‘> - <Apt(12)1>:Z (Ap]) /AP, (12)

!

where P; are the model parameters. This simplifies the metric (11) into
Aap ~
UM, =J dg(|In (0){A,Ao+Ac, ACy +AyAH} + AR AK + AL, ALpl),. (13)
0

The coefficients in the equation (13) can be expressed using the moment scaling function K(q) (see the
equation (6))

sz—%-i-ac%]ln(q)q“, (14)
Ac, =%’), (15)
Ap=—q, (16)

Ak:% (17)

A= K(qz;qH (18)

In case the integrand in the equation (13) has a constant signature one can further simplify the equation

into:
UMy =|(In (£)) {AsAa+Ac, A, +AyAH} +Ai AK +AL, ALp|, (19
with
C1qg+1 |: 2o :| C1q%
=———In - + , (20)
= e @ ) | )T oE ) 2y
_ 1V Ja" g
g L(+1 2] @1
2
AH=—q7D, (22)
a5
=% 23
K=ok (23)
1 C a+1 C 2
A= | b+ =) 3| (24)
Ly [(—1)(xt+1) a—=1) 2

The coefficients A; from the equations (20)-(24) can be used to estimate how sensitive is the metric UM, to
the values of the various parameters. Imagine that UM; measures difference between two data sets that dif-
fer only in the value of one specific parameter. Consider a situation in which the data sets differ only in the
parameter o and another situation when they differ only in the parameter H. Then the fluctuation in o
changes the metric UM, by the same amount as the fluctuation in H if:

AH _ A, 2g%7! 20 1
A A | 9 _ N
Ao Ay G (e=1) (ot 1) In (o) (=1)(a+1)]  (2=1)2] (25)
where A, Ay are from the equations (20) and (22). The same can be done with the C; and H coefficients
AH _AC1 _ 1 q%ﬁ1 B
AG Ay a1 Lc+1 " (26)

As expected, the equations (25) and (26) show that the sensitivity of the metrics UM; on the values of the H,
o, C; parameters depends significantly on the cutoff moment gp. Smaller cutoff moment means more of
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the PDF tail is discarded and the metric
is relatively insensitive to the fluctua-
tions of the C;,a exponents, which
determine the tail properties. Con-
versely, for large cutoff moments gp
the metric becomes more sensitive to
the fluctuations of «, C;, relative to the
fluctuations of the mean value expo-
nent H.

In addition to the metric UM; one
might want to focus specifically on the
three scaling exponents «,Cy,H, as
they encode the dominant part of the
information about the nature of the
processes involved. To do this the sec-
ond metric, UM,, can be defined by
simply taking UM, with AK=AL,=0.

The two metrics UM, and UM, defined
in this section are both scale-free. The
UM; metric carries complex informa-
tion about fluctuations (including
information about fluctuation sizes
and the energy input scales), whereas
the UM, metric is focused on the scaling exponents and carries more specific information about the dynam-
ics at different scales. Since both UM; and UM, are based on relative differences between statistical
moments, the closer the values of the two metrics are to zero, the better the match between the model
and the EO data. Some additional intuition about how the values of UM; and UM, relate to the mean square
root errors will be developed at the end of the Results section. Further to this, these metrics will be added
to the standard metrics to evaluate the performance of the Finite-Volume, primitive equation Community
Ocean Model (FVCOM) in the shelf seas around the south-west of the UK. This will be done in the next two
sections of the paper.

Figure 1. The AVHRR SST satellite weekly composite from 13-19 May 2011 with
the two regions marked: (A) Irish Sea and (B) English Channel.

2.3. Evaluation of the FVCOM Model

2.3.1. Data

All the data sets were taken from 2011 from which a complete FVCOM model run was available. The FVCOM
model was configured and run by the co-authors at PML. The model configuration is described in Cazenave
et al. [2016]. Two specific regions were considered: the Irish Sea region and the English Channel. The two
regions are shown in Figure 1.

The model used in this study is the FVCOM, a prognostic, unstructured-grid, finite-volume, free-surface, 3D
primitive equation coastal ocean circulation model [Chen et al., 2003]. FVCOM solves the 3D momentum,
continuity, temperature, salinity, and density equations by computing fluxes between unstructured triangu-
lar elements. Vertical turbulent mixing is modeled with the GOTM using a k-¢ formulation [Umlauf and Burh-
card, 2005] while horizontal mixing is parameterized through the Smagorinsky scheme [Smagorinsky, 1963].
The horizontal grid resolution in the model domain varies from 10 km at the open boundaries to 150 m in
the finest coastal elements. The vertical grid in FVCOM is described in terrain following (sigma) coordinates
with 20 quadratically distributed layers, where shallower areas resolve vertical structure with finer detail.
The model is forced with TPXO [Egbert et al., 1994; Egbert and Erofeeva, 2002] predicted tidal elevation at
the open boundaries, with surface forcing (heat flux, wind and precipitation/evaporation) from the National
Centers for Environmental Prediction and Department of Energy Atmospheric Model Intercomparison Pro-
ject (NCEP-DOE AMIP-II) Reanalysis-2 data. River temperature climatology time series were calculated from
the Environment Agency Freshwater River Temperature Archive [Orr et al, 2010]. River discharges were
obtained from the E-HYPE European catchment model [Donnelly et al., 2012].
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Figure 2. The Log-Log plot of the fluctuations Ap (g = 1) as a function of scale. The figure shows seasonally averaged (Winter is January-
March and so on) EO (red) and FVCOM (green) data in the Irish Sea. The slopes are the H coefficients from the Table 1.

FVCOM has been widely used in shelf and coastal domains for a range of problems where a strong need
exists to resolve varying horizontal scales, including physical modeling of temperature and salinity stratifica-
tion [Chen et al., 2007; Yang and Tarang, 2008; Huang, 2011; Zheng and Weisberg, 2012]; modeling impacts
from marine renewable energy devices [Yang et al., 2013]; tracer evolution in complex estuaries [Torres and
Uncles, 2011]; the behavior of sequestered CO, leak plumes [Blackford et al., 2013]; and tracking the dispers-
al of lice [Adams et al., 2012, 2014].

All the Earth Observation (EO) data were taken from the NOAA Advanced Very High Resolution Radiometer
(AVHRR) satellite (the data resolution was 1.1 km). They were provided by the NERC Earth Observation Data
Acquisition and Analysis Service (NEODAAS) at the Plymouth Marine Laboratory. For each month and region
between 5 and 14 sufficiently cloud-free satellite overpasses were selected. Since satellite measures ocean
skin with thickness of the order of 100 um, whereas the model upper layer thickness can vary up to the
order of ~1 m, the ocean stratification introduces an error into the analysis. This is because one expects the
horizontal ocean variability near the water surface to decrease with the vertical dimension. Furthermore,
the solar radiation throughout the day overheats the ocean skin which is another potential source of error.
To minimize these two sources of error only nighttime overpasses were considered.

2.3.2. Analysis

The FVCOM model data were collected from the same time than the EO overpasses. To remove some noise
from the EO data, the data were averaged on the 3 pixel scale (~3.3 km). The FVCOM model data were then
put on a 3.3 km regular grid (through averaging). There was a number of pixels with missing data in both
the EO and FVCOM data sets. The missing EO data are a result of the cloud cover, whereas in the FVCOM
case the missing data are due to the grid sparsity further from the coastline (the FVCOM grid points are sep-
arated by distances of > 10 km far from the coast). To retain consistency in the analysis, initially only data
points valid in both data sets were considered. The missing data were then, in both cases, almost completely
filled by an interpolation algorithm, where each empty sea pixel having at least one neighboring pixel
containing data was filled with the average of the neighboring pixels data.

To determine the scaling properties, one starts with the scaling of the fluctuations Ap, (equation (9)). The
scaling analysis was performed from the 7.5 km scale up to roughly the scale of 180 km (this upper bound
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Figure 3. The Log-Log plot of the fluctuations Ap (g = 1) as a function of scale. The figure shows seasonally averaged (Winter is January-
March and so on) EO (red) and FVCOM (green) data in the English Channel. The slopes are the H coefficients from Table 1.
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Figure 4. The seasonally averaged EO data fluxes @ scaling in the Irish Sea. The Log-Log plot shows different statistical moments as a func-
tion of scale (blue points with red line fit).
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Figure 5. The seasonally averaged FVCOM model data fluxes @ scaling in the Irish Sea. The Log-Log plot shows different statistical

moments as a function of scale (blue points with red line fit).

was near the regional scales). The scale was increased in each step by 0.5%. The fluxes were estimated on
the lowest scale by calculating Ap,/(Ap,). The flux scaling was determined from the 0 < g < 3 moments of
a cascade obtained by averaging the fluxes over bins with the area A (representing the scale £=+/A). The
moment scaling function K(q) is determined from the slope of the linear regression of the Log-Log plot of
each statistical moment as a function of scale. As mentioned in Skakala and Smyth [2015], one needs to
resolve a conceptual problem with the regional boundaries and the missing pixels (mostly land). The prob-
lem was resolved here by the same algorithm as in Skakala and Smyth [2015]. The algorithm includes bins
with lower number of pixels than A=¢2, but such bins are taken with a statistical weight proportional to the

0'4EII\\IIII\III\\III\\IIII\E
n.e%— _%
K(@) £
u.1§- —z
,méllw|||L\||||H||1H:||H§
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Figure 6. The plot shows an example of the moment scaling function K(qg) (for the
EO data from English Channel from the October 2011). The points in the plot
were calculated from the slopes of the different statistical moments and the full
line shows the UM fit.

number of relevant pixels contained in
the bin.

Finally, the scaling properties of the
selected scenes were averaged
throughout the monthly period for
each single month of 2011. The
FVCOM and EO data were then com-
pared at the level of these monthly
averages.

3. Results

We seasonally averaged the EO and
FVCOM fluctuations g =1 scaling and
the results are shown in Figures 2 and
3. The seasonally averaged fluxes are
shown for the Irish Sea in Figure 4 (EO
data) and Figure 5 (FVCOM data). Fig-
ures 2-4 demonstrate that the SST
fluctuations are well approximated for
both EO and FVCOM data by the FIF
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Table 1. The H, C;, and o FIF Model Parameters Averaged Through the 2011 Year Overpasses®

Parameter EO Irish FVCOM lrish EO English FVCOM English
(H) 0.557 0.651 0.655 0.839
(G) 0.091 0.136 0.114 0.204
(o) 1.721 1.598 167 1.485

*The table compares both EO and FVCOM parameter values in both regions (Irish Sea and English Channel).

model. Figures 2 and 3 show that the model fluctuations scale with a steeper profile than the EO fluctua-
tions. Figure 2 further shows that the EO data fluctuations remain seasonally almost unchanged, whereas
the model fluctuations depend strongly on the seasonality. The EO data fluctuations are in general larger,
with the exception of the summer period in the Irish Sea. The fluxes scaling (Figures 4 and 5) show signifi-
cant differences in the energy input scales L, (see the equation (24)) for the EO data and for the FVCOM
model data. The EO data outer scale lies in the range of 100—300km (Figure 4), whereas the model outer
scale is always larger than 500 km, with some values larger than 1000 km (Figure 5). The FVCOM model
fluxes have steeper slopes than the EO fluxes, which indicates that the model dissipates energy at a higher
rate than is observed in the EO data.

The universal multifractal (UM) fit (see the equation (7)) of the moment scaling function K(g) had relative error
<5% and in most of the cases the error was around 1%. The moment scaling function K(q) for the English
Channel and the October 2011 data is shown in Figure 6. The UM parameters were calculated for both EO
and FVCOM data. The annual ensemble averages of the values of the H, C;, and « parameters are shown
in Table 1. The table shows a consistent difference between the FVCOM model and EO UM parameters: the
model parameter C;,H values are larger than the C;,H values of the EO data (see Table 1), whereas the
opposite is true for the o parameter. The correlation between the EO and the FVCOM multifractal parameters
was relatively low, the Pearson coefficient was between 0.2 and 0.65, with larger values in the English
Channel.

The models were compared with the EO data using three standard metrics: correlation coefficient,
root-mean square error, and average error. In addition to that the two newly defined metrics UM,
(equation (11)) and UM, were used. To use the UM; and UM, metrics the cutoff moments gp were
determined as gp =~ 5. The five metrics are compared in Figure 7 (Irish Sea) and Figure 8 (English

Channel). In the Irish Sea region (Fig-
] e N LN e e s o ure 7) the three standard metrics
= . (correlation  coefficient, root-mean
square error and average error) are
mutually consistent and show a par-
ticularly poor match between the EO
and the FVCOM data in the final
months of the year. This is because
the model has a tendency to over-
heat the upper ocean layer (the
mean FVCOM SST was 1-2° larger
than the EO SST). This tendency can
be to some extent observed in the
increase of UM, values, but is not
shown by the UM; metric (see Figure
7). This is an interesting example
showing that pixel-by-pixel based

Months ;
comparisons (R, root-mean square
Figure 7. Comparison of different metrics for the Irish Sea region over 2011: (red) error, average error) and structural
correlation coefficient, (blue) root mean square error, (green) absolute value taken comparisons (UM;, UM,) can lead to

from the average error, (yellow) the UM; metric comparing the overall size of fluc- . .
tuations (the metric is defined by the equation (11)), (pink) the UM, metric com- very dlffere'nt results. In the' Enghs’h
paring the scaling profiles. The values of the root mean square error and the Channel (Figure 8), the npicture is

average error are in *C, the remaining metrics are dimensionless. quite different, the values of all the
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8 10 12

6
Months

Figure 8. Comparison of different metrics for the English Channel region over
2011: (red) correlation coefficient, (blue) root mean square error, (green) absolute
value taken from the average error, (yellow) the UM, metric comparing the overall
size of fluctuations (the metric is defined by the equation (11)), (pink) the UM,
metric comparing the scaling profiles. The values of the root mean square error
and the average error are in degree Celsius, the remaining metrics are
dimensionless.

metrics, change relatively little with
time (except of fluctuations in UM,),
preserving the same seasonal profile.

To get a better insight into the typical
range of values of UM; and UM,, it is
interesting to analyze how the scaling
properties measured through UM, U
M, evolve as one introduces noise into
the data with some known properties.
Gaussian noise with changing variance
was redistributed across the data set,
where the variance of the noise was
correlated to the field value. Figure 9
compares the two data sets, the data
set with the noise and the original
data set without the noise, for different
noise amplitudes. Figure 9 shows the
values of the UM;,UM, metrics as a
function of the noise amplitude mea-
sured by the root mean square error.
Let us say that the second data set
matches well the first data set, if the

value of the root mean square error is bounded by 0.4°C, which corresponds to the noise with variance about
half of the natural variance of the data. Figure 9 then shows that the UM, and UM, values are bounded roughly
by UM; ~ 1 and UM, ~ 6. As seen from the Figures 7 and 8, the FVCOM model fulfills this bound for the UM,
metric, but not for the UM; metric. This suggests that the model captures well the overall field dynamics (data
structural scaling properties), but poorly represents the outer scale of the energy input L, (which was already dis-
cussed in the previous paragraph) and potentially also the overall size of the SST fluctuations.

4. Discussion

The selection of nighttime data minimized the effect of the upper layer stratification on the data scaling. Despite
that, the steeper slopes observed in the model data scaling can be at least partly explained by the relative thick-

2UII[}IIII\iII\III\IIW‘III

= UM 2 -

Figure 9. The figure shows the UM, (red) and UM, (green) values as a function of
data-correlated Gaussian noise with the amplitude measured by the root-mean
square error (RMS).

ness of the upper oceanic layer consid-
ered by the FVCOM model. Stratification
decreases the horizontal variability on
smaller scales and therefore tilts the scal-
ing slope towards steeper angles. The
seasonal change in stratification can also
explain the matching slopes of the EO
and FVCOM fluctuations in the winter
season (Figures 2 and 3) and the season-
al variability in model fluctuations scal-
ing (Figure 2). To explicitly confirm the
hypothesis of the effect of stratification
on the slope of the scaling, we split the
English Channel region in Figure 1 into
stratified (west) and mixed (east) regions
[Pingree and Griffiths, 1978; Simpson and
Bowers, 1981]. The scaling analysis in
each of these two parts was then able
to confirm the connection between
stratification and the slope of the model
data scaling.
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It was observed that the FVCOM model overheated the upper layer in the Irish Sea region. This explains
why the metrics values in the Irish Sea region (see Figure 7) evolve relatively rapidly with time, especially
when compared to the stationary situation in the English Channel region (Figure 8). The overheating is also
responsible for the FVCOM fluctuations being larger than the EO fluctuations during summer and vice versa
in winter (visible in the scaling analysis).

The scaling analysis is an important indicator of dominant dynamical drivers shaping the field distributions
[Skakala and Smyth, 2015]. One expects turbulent eddies to be one of the main factors behind the SST scale
correlations. Another important factor in the shelf seas is the overall shape of the basin described through
the bathymetry scaling exponents. As previously observed [Skakala and Smyth, 2015], the bathymetry scal-
ing profile can have a significant impact on the scaling profile of the fields. Furthermore, in the EO overpass
imagery data, tidal currents (largely shaped by the bathymetry) can play a significant role in driving the field
distributions. The bathymetry H scaling exponent is larger in the English Channel region (H = 0.526) than in
the Irish Sea (H=0.302), and this could explain larger values of the EO data H parameter in the English
Channel, when compared to the Irish Sea region.

Unfortunately, the theoretical predictions for the large scale (>1 km) oceanic turbulence are ambiguous.
There is no agreement in the literature if and how the effective two-dimensionality of the ocean at large
scales (horizontal dimensions much larger than the vertical dimension) modifies the 3D turbulent model.
This question is especially relevant in the shallow shelf seas (in our case mostly <100m). It has been sug-
gested that the scaling exponents in the horizontal will remain the same as in case of 3D turbulence [Love-
joy and Schertzer, 2010], however, elsewhere [Currie and Roff, 2006], it is suggested that the two-
dimensionality of the problem determines the value of the H exponent, which can lie anywhere between
H=0.33and H=1 (H=1 being the ideal 2D turbulence value). Here it has been observed that the EO data
scaling exponents H, C;, and « (from Table 1) do not deviate too significantly from the SST scaling expo-
nents observed on smaller scales in Lovejoy et al. [2001b]. Particularly, the o parameter values from Table 1
are within the predictions of Lovejoy et al. [2001b]: «=1.7%0.05. The model FIF parameters show larger
deviations than the EO FIF parameters, but again, this can be explained by the stratification of the upper
model layer.

5. Summary

The main purpose of this paper was to define two novel model skill evaluation metrics based on the univer-
sal scaling properties. Those metrics are scale-free and lead to an interesting structural comparison of the
EO and the model data sets. Their particular advantage over the presently used metrics lies in their connec-
tion with the dominant dynamical drivers behind the field distributions. These metrics were applied to the
FVCOM model in the shelf seas around the south-west of the UK: the paper attempts a comprehensive anal-
ysis of the model performance. Some quality bounds were estimated for the novel metrics and it was
shown that the FVCOM model captures most of the dynamical features of the EO data, but it overestimates
the outer scale of the energy input L, which leads to some discrepancies between the EO and the model
data scaling. The two metrics already provide us with significant part of the information about how the
model represents field dynamics. At present there is, however, still relatively large ambiguity in how the
field dynamics maps into the multifractal scaling. To fully exploit the information carried by these metrics,
the future research goal is to use models to obtain a more precise map between oceanographic drivers and
the three-dimensional universal multifractal parameter space.

References

Allen, J. 1., and P. J. Somerfeld (2009), A multivariate approach to model skill assessment, J. Mar. Syst. 76, 83-94.

Adams, T. P, K. Black, C. MacIntyre, and R. Dean (2012), Connectivity modelling and network analysis of sea lice infection in Loch Fyne,
west coast of Scotland, Aquaculture Environ. Interact., 3, 51-63.

Adams, T. P, D. Aleynik, and M. T. Burrows (2014), Larval dispersal of intertidal organisms and the influence of coastline geography, Ecogra-
phy, 37,698-710.

Allen, J. 1., P. J. Somerfeld, and F. J. Gilbert (2007a), Quantifying uncertainty in high resolution coupled hydrodinamic-ecosystem models, J.
Mar. Syst. 64,3-14.

Allen, J. 1., J. T. Holt, J. Blackford, and R. Proctor (2007b), Error quantification of a high-resolution coupled hydrodinamic-ecosystem coastal-
ocean model: part 2. Chlorophyll-a, nutrients and SPM, J. Mar. Syst. 68(3-4), 381-404.

SKAKALA ET AL.

MULTIFRACTAL METRICS FOR MODELS 5498


http://https://www.neodaas.ac.uk
http://https://www.neodaas.ac.uk
http://www.nodc.ac.uk/products/external_products/celtic_seas/and
http://www.nodc.ac.uk/products/external_products/celtic_seas/and
http://www.nodc.ac.uk/products/external_products/celtic_seas/and
http://www.gebco.net/
http://www.gebco.net/
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep
http://https://data.gov.uk/dataset/surface-water-temperature-archive-up-to-20071
http://https://data.gov.uk/dataset/surface-water-temperature-archive-up-to-20071
http://https://data.gov.uk/dataset/surface-water-temperature-archive-up-to-20071
http://hypeweb.smhi.se/europehype/
http://hypeweb.smhi.se/europehype/

@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011741

Allen, J. 1, T. J. Smyth, J. R. Siddorn, and M. Holt (2008), How well can we forecast high biomass algal bloom events in a eutrophic coastal
sea?, Harmful Algae, 8, 70-76.

Bak, P., C. Tang, and K. Wiesenfeld (1987), Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett., 59, 381-384.

Blackford, J. C., R. Torres, P. Cazaneve, and Y. Artioli (2013), Modelling dispersion of CO, plumes in sea water as an aid to monitoring and
understanding ecological impact, Energy Proc., 37, 3379-3386.

Cazenave, P. W., R. Torres, and J. I. Allen (2016), Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf
seas, Prog. Oceanogr., 145, 25-41.

Chen, C, H. Liu, and R. C. Beardsley (2003), An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Appli-
cation to coastal ocean and estuaries, J. Atmos. Ocean Tech., 20, 159-186.

Chen C, H. Huang, R. C. Beardsley, H. Liu, Q. Xu, and G. Cowles (2007), A finite volume numerical approach for coastal ocean circulation
studies: Comparisons with finite difference models, J. Geophys. Res., 112, C03018, doi:10.1029/2006JC003485.

Currie, W. J. S., and J. C. Roff (2006), Plankton are not passive tracers: Plankton in a turbulent environment, J. Geophys. Res., 111, C05S07,
doi:10.1029/2005JC002967.

de Montera, L., M. Jouini, S. Verrier, S. Thiria, and M. Crepon (2011), Multifractal analysis of oceanic chlorophyll maps remotely sensed from
space, Ocean Sci., 7, 219-229.

Doney, S. C, I. Limaa, J. K. Mooreb, K. Lindsayc, M. J. Behrenfeldd, T. K. Westberryd, N. Mahowalde, D. M. Glovera, and T. Takahashif (2008),
Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data, J. Mar.
Syst., 76,95-112.

Donnelly, C,, J. Rosberg, and K. Isberg (2012), A validation of river routing networks for catchment modelling from small to large scales,
Hydrol. Res., 44, 917-925.

Egbert, G. D., and S. Y. Erofeeva (2002), Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19,

183-204.

Egbert, G. D., A. F. Bennett, and M. G. G. Foreman (1994), TOPEX/POSEIDON tides estimated using a global inverse model, J. Geophys. Res.,
99, 24,821-24,852.

Gagnon, J. S., S. Lovejoy, and D. Schertzer (2006), Multifractal earth topography, Nonlin. Processes Geophys., 13, 541-570.

Gurvitch, A. S., and A. M. Yaglom (1967), Breakdown of eddies and probability distributions for small-scale turbulence, Phys. Fluids, 10, 59—
65.

Harte, D. (2001), Multifractals: Theory and Applications, Chapman and Hall, N. Y.

Huang, H. (2011), Finite volume coastal ocean model (FVCOM) 3D hydrodynamic model comparison, Tech. Rep., La. State Univ., report num-
ber: 0904830891, The Portal to Texas History, UNT Libraries, Baton Rouge, La.

Jolliff, J. K., J. C. Kindleb, I. Shulmanb, B. Pentab, M. A. M. Friedrichsc, R. Helberb, and R. A. Arnoneb (2009), Summary diagrams for coupled
hydrodynamic-ecosystem model skill assessment, J. Mar. Syst. 76, 64-82.

Kohonen, T. (2000), Self-Organizing Maps, 3rd ed., 528 pp., Springer, Berlin, Germany.

Kolmogorov, A. N. (1941), Local structure of turbulence in an incompressible liquid for very large Reynolds numbers, Proc. Acad. Sci. URSS,
30, 299-303.

Lavalee, D., Lovejoy, S., Schertzer, D., and Ladoy, P. (1993), Nonlinear variability and landscape topography: Analysis and simulation, in Frac-
tals in Geography, edited by L. deCola and N. Lam, pp. 171-205, Prentice Hall, N. J.

Lovejoy, S. (2014), A voyage through scales, a missing quadrillion and why the climate is not what you expect, Clim. Dyn., 44, 3187-3210.

Lovejoy, S., and D. Schertzer (2010), Towards a new synthesis for atmospheric dynamics: Space-time cascades, Atmos. Res., 96, 1-52.

Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, Cambridge Univ. Press, Cambridge,
U.K.

Lovejoy, S., D. Schertzer, and J. D. Stanway (2001a), Direct evidence of multifractal atmospheric cascades from planetary scales down to
1 km, Phys. Rev. Lett., 86(22), 5200.

Lovejoy, S., W. J. S. Currie, Y. Tessier, M. R. Claereboudst, E. Bourget, J. C. Roff, and D. Schertzer (2001b), Universal multifractals and ocean
patchiness: phytoplankton, physical fields and coastal heterogeneity, J. Plankton Res., 23(2), 117-141.

Mandelbrot, B. (1974), Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid
Mech., 62, 331-358.

Mandelbrot, B. (1982), The Fractal Geometry of Nature, W. H. Freeman and Co., N. Y.

Mandelbrot, B. (1997), Fractals and Scaling in Finance, Springer, N. Y.

Novikov, E. A, and R. Stewart (1964), Intermittency of turbulence and spectrum of fluctuations in energy dissipation, lzv. Akad. Nauk. SSSR,
Ser. Geofiz., 3, 408-412.

Obukhov, A. (1949), Structure of the temperature field in a turbulent flow, Izv. Akad. Nauk. SSSR, 13, 55-69.

Orr, H. G, et al. (2010), Changing water temperatures: A surface water archive for England and Wales, in Role of Hydrology in Managing Con-
sequences of a Changing Global Environment, edited by C. Kirby, Br. Hydrol. Soc, U. K.

Pingree, R. D., and D. K. Griffiths (1978), Tidal fronts on the shelf seas around the British Isles, J. Geophys. Res., 83, 4615-4622.

Radic, V., and G. Clarke (2011), Evaluation of IPCC models’ performance in simpulating late twentieth-century climatologies and weather
patterns over North America, J. Clim., 24, 5257-5274.

Richardson, L. F. (1922), Weather Prediction by Numerical Processes, Cambridge Univ. Press, Cambridge, U. K.

Saux Picart, S., Butenschon, M., and J. D. Shutler (2012), Wavelett-based spatial comparison technique for analysing and evaluating two-
dimensional geophysical model fields, Geosci. Model Dev., 5, 223-230.

Schertzer, D., and S. Lovejoy (1987), Physical modelling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J.
Geophys. Res., 92, 9693-9714, doi:10.1029/JD092iD08p09693.

Schertzer, D., and S. Lovejoy (1988), Multifractal simulations and analysis of clouds by multiplicative processes, Atmos. Res., 21, 337-361.

Schertzer, D., and S. Lovejoy (1997), Universal multifractals do exist!, J. Appl. Meteorol., 36, 1296-1303.

Schertzer, D., and S. Lovejoy (2011), Multifractals, generalized scale invariance and complexity in geophysics, Int. J. Bifurcation Chaos,
21(12), 3417-3456.

Schmitt, F., D. Schertzer, S. Lovejoy, and Y. Brunet (1993), Estimation of universal for atmospheric turbulent multifractal indices velocity
fields, Fractals, 01, 568.

Seuront, L, and Y. Lagadeuc (1997), Characterization of space-time variability in stratified and mixed coastal waters (baie des Chaleurs,
Québec, Canada): Application to fractal theory, Mar. Ecol. Prog. Ser., 259, 81-85.

Seuront, L., and F. G. Schmitt (2005a), Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbu-
lence; Part |. Theory, Deep Sea Res., Part Il, 52, 1308-1324.

SKAKALA ET AL.

MULTIFRACTAL METRICS FOR MODELS 5499


http://dx.doi.org/10.1029/2006JC003485
http://dx.doi.org/10.1029/2005JC002967
http://dx.doi.org/10.1029/JD092iD08p09693

@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011741

Seuront, L., and F. G. Schmitt (2005b), Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbu-
lence; Part Il. Applications, Deep Sea Res., Part Il, 52, 1325-1343.

Seuront, L., F. Schmitt, Y. Lagadeuc, D. Schertzer, S. Lovejoy, and S. Frontier (1996a), Multifractal analysis of phytoplankton biomass and
temperature in the ocean, Geophys. Res. Lett., 23(24), 3591-3594.

Seuront, L. et al. (1996b), Multifractal intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields, Non-
linear Processes Geophys., 3, 236-246.

Seuront, L., et al. (1999), Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: Example of phytoplankton
distribution in turbulent coastal waters, J. Plankton Res., 21, 877-922.

Seuront, L., H. Yamazaki, and F. Schmitt (2005), Intermittency, in Marine Turbulence, edited by H. Baumert, J. Simpson, and J. Sundermann,
pp. 66-79, Cambridge Univ. Press, Cambridge, U. K.

Simpson, J. H,, and D. Bowers (1981), Models of stratification and frontal movement in shelf seas, Deep Sea Res., Part A, 28, 727-738.

Shutler, J. D, T.J. Smytha, S. Saux-Picarta, S. L. Wakelinb, P. Hyderc, P. Orekhova, M. G. Granta, G. H. Tilstonea, and J. . Allen (2011), Evaluat-
ing the ability of a hydrodynamic ecosystem model to capture inter- and intra-annual spatial characteristics of chlorophyll-a in the
north east Atlantic, J. Mar. Syst., 88, 169-182.

Skakala, J., and T. J. Smyth (2015), Complex coastal fields can be described by universal multifractals, J. Geophys. Res., 120, 6253-6265, doi:
10.1002/2015JCO11111.

Smagorinsky, J. (1963), General circulation experiments with the primitive equations I: The basic experiment, Mon. Weather Rev., 91, 99-
164.

Stow, C. A, J. Jolliffb, D. J. McGillicuddy Jr., S. C. Doneyc, J. I. Allend, M. A. M. Friedrichse, K. A. Rosef, and P. Wallheadg (2009), Skill assess-
ment for coupled biological/physical models of marine systems, J. Mar. Syst., 76, 4-15.

Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106(7), 7183-7192.

Torres, R, and R. J. Uncles (2011), Modeling of Estuarine and Coastal Waters, vol. 2, Elsevier, Perth, Australia.

Umlauf, L., and H. Burhcard (2005), Second-order turbulence closure models for geophysical boundary layers. A review of recent work,
Cont. Shelf Res., 25, 795-827.

Yaglom, A. M. (1966), The influence on the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval,
Sov. Phys. Dokl., 2, 26-30.

Yang, Z., and K. Tarang (2008), Modeling of salt intrusion, intertidal mixing, and circulation in a braided estuary, J. Coastal Res., 52, 171-180.

Yang, Z., T. Wang, and A. E. Copping (2013), Modeling tidal stream energy extraction and its effects on transport processes in a tidal chan-
nel and bay system using a three-dimensional coastal ocean model, Renewable Energy, 50, 605-613.

Zheng, L., and R. H. Weisberg (2012), Modeling the west Florida coastal ocean by downscaling from the deep ocean, across the continental
shelf and into the estuaries, Ocean Model., 48, 10-29.

SKAKALA ET AL.

MULTIFRACTAL METRICS FOR MODELS 5500


http://dx.doi.org/10.1002/2015JC011111

	l
	l
	l
	l

