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Abstract: Ecosystem engineers that increase habitat complexity are 

keystone species in marine systems, increasing shelter and niche 

availability, and therefore biodiversity. For example, kelp holdfasts 

form intricate structures and host the largest number of organisms in 

kelp ecosystems. However, methods that quantify 3D habitat complexity 

have only seldom been used in marine habitats, and never in kelp holdfast 

communities. This study investigated the role of kelp holdfasts 

(Laminaria hyperborea) in supporting benthic faunal biodiversity. 

Computer-aided tomography scanning (CT-) was used to quantify the three-

dimensional geometrical complexity of holdfasts, including volume, 

surface area and surface fractal dimension (FD). Additionally, the number 

of haptera, number of haptera per unit of volume, and age of kelps were 

estimated. These measurements were compared to faunal biodiversity and 

community structure, using partial least-squares regression and 

multivariate ordination. Holdfast volume explained most of the variance 

observed in biodiversity indices, however all other complexity measures 

also strongly contributed to the variance observed. Multivariate 

ordinations further revealed that surface area and haptera per unit of 

volume accounted for the patterns observed in faunal community structure. 

Using 3D image analysis, this study makes a strong contribution to 

elucidate quantitative mechanisms underlying the observed relationship 

between biodiversity and habitat complexity. Furthermore, the potential 

of CT-scanning as an ecological tool is demonstrated, and a methodology 

for its use in future similar studies is established. Such spatially 

resolved imager analysis could help identify structurally complex areas 

as biodiversity hotspots, and may support the prioritization of areas for 

conservation. 



 

 

 

 



11
th
 December 2015 

  

 

Dear Dr Shumway, 

We have submitted the manuscript “Application of computer-aided tomography techniques to 

visualise kelp holdfast structure reveals the importance of habitat complexity for supporting marine 

biodiversity”, which we believe to be of high relevance to your readership. We introduce a novel 

approach to quantifying three-dimensional complexity in kelp habitats, an attribute of marine systems 

widely recognized as having a fundamental role in the sustenance of marine biodiversity, but seldom 

quantitatively assessed. This work helps to elucidate, in a quantitative manner, the mechanisms 

underlying biodiversity and kelp 3D complexity. As such, this study is of great relevance to ecologists 

concerned with the conservation of biodiversity, particularly given the recent interest in the role of 

kelp beds as hot-spots for marine life.  

We introduce computer aided tomography (CT-scanning) as an ecological tool with great potential for 

development in the context of quantifying 3D complexity in kelp habitats, having recently been used 

with success in sedimentary habitats (Mazik et al. 2008). Further, we provide the mathematical 

protocol to quantify 3D complexity of holdfasts, by using fractal dimensions and borrowing 3D 

autocorrelation indices more commonly used in medicine. CT-scanning provides highly valuable 

information, and emerges as a unique tool to analyse habitat complexity quantitatively.  

We present a study rich in innovative techniques, both in data acquisition and processing, and 

successfully demonstrate its wider potential for application in marine community and ecosystem 

research. We therefore believe that this study is a fitting contribution to JEMBE.  

 

For the authors, with our kindest regards, 

Chloé Orland 

Department of Plant Sciences, University of Cambridge 

Downing St, Cambridge 

CB2 3EA, UK 

+44 (0) 7837964164 

co353@cam.ac.uk, orland.chloe@gmail.com  
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Cambridge, January 3rd 2016 
Dear Mrs. Shumway,  
 
I have modified the 5 figures according to your recommendations. I hope the 
manuscript is now fit for publication.  
 
Sincerely yours, 
Chloé Orland 

*Detailed Response to Reviewers



Highlights 

 CT-scanning was used for fine scale quantification of the 3D geometrical complexity of kelp 

holdfasts. 

 Biodiversity was strongly affected by all measures of holdfast complexity. 

 CT-scanning is an emerging and potentially powerful tool for ecological research. 
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Abstract Ecosystem engineers that increase habitat complexity are keystone species in marine 23 

systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp 24 

holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. 25 

However, methods that quantify 3D habitat complexity have only seldom been used in marine 26 

habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts 27 

(Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography 28 

scanning (CT-) was used to quantify the three-dimensional geometrical complexity of holdfasts, 29 

including volume, surface area and surface fractal dimension (FD). Additionally, the number of 30 

haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements 31 

were compared to faunal biodiversity and community structure, using partial least-squares regression 32 

and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity 33 

indices, however all other complexity measures also strongly contributed to the variance observed. 34 

Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted 35 

for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a 36 

strong contribution to elucidate quantitative mechanisms underlying the observed relationship between 37 

biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is 38 

demonstrated, and a methodology for its use in future similar studies is established. Such spatially 39 

resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and 40 

may support the prioritization of areas for conservation. 41 

 42 

Keywords   Ecosystem engineer · Fractal · Image analysis · Kelp holdfasts · 43 
Benthic fauna · Laminaria hyperborea 44 

 45 

 46 

1. Introduction 47 

 48 

The idea that habitat structure is a major influence on biodiversity (Simpson, 1949) is now well 49 

accepted, and an increase in available surface area is considered to be the main explanation for the 50 

positive correlations often observed between habitat structure and biodiversity (Connor and McCoy, 51 
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1979). This idea follows the classical theory of island biogeography (MacArthur and Wilson, 1967), 52 

whereby they explained the effects of distance and area on biodiversity. Underpinning this relationship 53 

is the understanding that the structural complexity of habitats regulates the distribution of refuges 54 

available for protection, nesting, nurseries, mating and resting (Steneck et al., 2002), food resources 55 

and foraging space, thus reducing competition and enabling the coexistence of a wide range of species 56 

(Bell et al., 1991). Given that space is a limiting resource in many shallow marine systems, large 57 

organisms which provide additional three-dimensional habitats, e.g. macrophytes (Blight and 58 

Thompson, 2008), are typically seen as key or critical species in marine systems (Jones et al., 1994; 59 

Wright and Jones, 2006; Hastings et al., 2007). As these large structure-forming organisms modify the 60 

physical and chemical structure of habitats, they can be considered as ecosystem engineers (Jones et 61 

al., 1994).  62 

Kelps were one of the first groups of species identified as structurally enriching engineers, with the 63 

loss of kelp forest due to grazing being recognized as a simplification of trophic complexity in near 64 

shore systems (Estes et al., 1998). The physical presence of kelp has numerous positive effects on 65 

species diversity by enhancing ecosystem stability spatially and temporally, modifying the distribution 66 

and abundance of resources, as well as altering current speed, light availability and nutrient cycles 67 

(Jones et al., 1997; Hastings et al., 2007). Therefore, identifying the physical attributes of macroalgae 68 

that contribute to the maintenance of the kelp-associated community diversity will help to elucidate 69 

the importance of keystone structures in marine habitats (Tews et al., 2004) and support conservation 70 

measurements. 71 

Within kelp habitats, it is the holdfast which provides the majority of intricate structures and hosts 72 

a vast number of associated faunal species (Christie et al., 2003; Arroyo et al., 2004). The holdfast is 73 

composed of numerous root-like haptera structures, entangling and creating spaces and gaps (Moore, 74 

1972), with new, outer hapteron layers adding to the structure as the kelp ages (Smith et al., 1996). 75 

Numerous studies have identified a relationship between holdfast size or volume and benthic faunal 76 

communities (Jones, 1971; Ojeda and Santelices, 1984; Dean and Connell, 1987; Smith et al., 1996; 77 

Torres et al., 2015). Habitat complexity has been shown to have a powerful influence on algal 78 

meiofaunal communities, as seaweed of simple structure, with more planar surfaces, attract a lesser 79 
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number of species and in lower abundance (Hicks, 1985). Additionally, it is thought that by creating 80 

microhabitats, increased complexity in kelp holdfasts augments the number of niches available, 81 

reducing in this way competition, and providing protection from physical stress (Gibbons, 1988). 82 

Species that are less dependent on drifting may therefore choose to inhabit the holdfast rather than the 83 

frond, in order to benefit from the structure’s protection against currents and potential predators 84 

(Christie et al., 2007). Furthermore, elevated complexity enhances silt accumulation, which becomes 85 

trapped in holdfasts (Moore, 1972). This may explain why both psammic and phytal organisms are 86 

found within holdfasts, adding diversity to the specialist fauna already present (Arroyo et al., 2004). 87 

Spatial complexity created by holdfast branching may cause competition for hapteron attachment sites 88 

and encourage sessile species to occupy voids created between haptera (Moore, 1986). Tubiculous and 89 

sessile fauna, like polychaetes, bivalves and sponges, also create habitats for other organisms, which 90 

can inhabit vacated tubes and benefit from increased habitable surface (Smith et al., 1996).  91 

Despite numerous studies on this topic, the general lack of quantitative ecological data has been 92 

highlighted at multiple times (Arroyo et al., 2004; Anderson et al., 2005): the relationship between 93 

habitat complexity and biodiversity can neither be fully explained by surface-area alone nor by 94 

holdfast weight or volume (Hicks, 1985; Smith et al., 1996; Norderhaug et al., 2002; Arroyo et al., 95 

2004; Hauser et al., 2006; Norderhaug et al., 2007). Current theories on habitat complexity are often 96 

based on these variables, and rarely account for other factors that influence the structure. They may 97 

thus dismiss important architectural features of the habitat. Additionally, previous studies that have 98 

established the importance of structural complexity in explaining patterns of diversity have only 99 

addressed this issue using artificial mimics (Hauser et al., 2006; Christie et al., 2007; Norderhaug et 100 

al., 2007). The fact that chemicals released by the structure may influence the species which choose to 101 

inhabit it (i.e. amount of dissolved oxygen, chemical cues and nutrient flow) and that communities 102 

may evolve over time (Bell et al., 1991) should be accounted for. 103 

Several methods have been applied in ecology to quantify complexity. Most commonly, the 104 

analysis of fractal geometry has been used in marine ecological contexts (Jeffries, 1993; Gee and 105 

Warwick, 1994a,b, McAbendroth et al., 2005; Torres et al., 2015). Fractal objects are those whose size 106 

increases as their unit of measurement decreases (Mandelbrot, 1967), and fractal geometric patterns 107 
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are observable in various naturally occurring objects like coastlines, coral reefs and leaf vegetation 108 

(Sugihara and May, 1990). The fractal dimension (FD) – the rate by which the object size increases 109 

with decreasing units – provides a quantifiable measure of complexity, independent of the nature of 110 

the structure, and accounts for habitat scale and what it represents for organisms of different sizes (Gee 111 

and Warwick, 1994b). Less explored methods include the use of indices of spatial auto-correlation, i.e. 112 

a quantification of the similarity between objects considering the proximity between them, such as 113 

Moran’s index and Geary’s coefficient (Legendre and Fortin, 1989; Corrêa da Silva et al., 2008). 114 

Similarly to fractal dimensions, spatial autocorrelation methods are multi-dimensional: so long as the 115 

factors are weighted correctly, the latter can be applied to three-dimensional spaces, such as kelp 116 

(Chen, 2013).  117 

The primary aim of the present study was to investigate the relationship between habitat 118 

complexity and faunal biodiversity in kelp holdfast communities. The application of a novel method to 119 

quantify a complex biological structure is presented. Computer-aided tomography (CT-) scanning is a 120 

technique typically applied for medical uses that has more recently been used in an ecological context 121 

to portray aspects of 3-dimensional structure and complexity (Mazik et al., 2008; Naumann et al., 122 

2009; Faulwetter et al., 2013). In the present study, CT-scanning was used for the first time to acquire 123 

detailed 3D data from holdfasts of the kelp Laminaria hyperborea and establish whether structural 124 

complexity of holdfasts relates to holdfast fauna community structure. This species of brown alga is an 125 

ideal model for studies on habitat complexity due to the intricate and ramified nature of its holdfast as 126 

well as its importance as a benthic habitat (Arroyo et al., 2004; Norderhaug et al., 2007; Christie et al., 127 

2007; Blight and Thompson, 2008). By offering 3D imagery of the habitat, CT-scanning enabled in 128 

vivo visualization of both the internal and external rhizoid assemblage – spatial information otherwise 129 

difficult to acquire (Dutilleul et al., 2005). Indeed, the main advantage of CT-scanning is that it allows 130 

access to quantitative data that are extremely relevant to architectural properties of the habitat (e.g. 131 

surface, volume, fractality). The benthic fauna inhabit the holdfast’s surface and internal spaces, and 132 

thus the information acquired through this method is a reflection of the provision of substrate for fauna 133 

and associated protection from currents and predators. As the kelp holdfasts used in this experiment 134 

have geometrical patterns that lend themselves well to fractal analysis, and as the distribution of voxel 135 
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intensities in the scans is associated to some form of spatial variability (Corrêa da Silva et al., 2008), 136 

fractal dimensions and spatial autocorrelation indices were computed from the CT-scan data in order 137 

to quantify the spatial complexity of the holdfast habitat. We hypothesized that increased habitat 138 

complexity leads to increased faunal biodiversity.  139 

 140 

2. Materials and methods 141 

 142 

2.1 Sample collection 143 

Seventeen individual Laminaria hyperborea holdfasts of different sizes (5.19 - 240.42 cm
3
) were 144 

collected sub-tidally by SCUBA divers, at random positions within two kelp beds in the Plymouth 145 

Sound, UK: Andurn Point (50°19.235’ N, 004°07.820’ W) and Ramscliff Point (50°19.558’ N, 146 

004°07.820’ W) on the 22
nd

 of February 2013. Both sites are characterized by a similar degree of wave 147 

exposure and water depths (7-11m). The stipe of each individual was cut 5 cm above the holdfast with 148 

a diver’s knife and each holdfast was levered carefully from the substrate before being placed quickly 149 

into a plastic bag, which was immediately sealed with a cable-tie. Great care was taken to avoid 150 

damaging the structure of the holdfasts during collection. Each bag containing a holdfast was then 151 

placed into another bag to reduce the risk of losing the mobile fauna if the first bag was damaged. To 152 

exclude air from entering the holdfast structure, as this could affect CT-scanning results, each bag 153 

containing a holdfast was immediately placed in a bucket of seawater on retrieval to the dive boat. The 154 

holdfasts were transported in individual buckets to Plymouth Marine Laboratory, UK.  155 

 156 

2.2 Pre-scanning procedure 157 

During CT-scanning, the absorption of X-rays is sensitive to differences in the density of the materials 158 

scanned (Mazik et al., 2008; Ketcham and Carlson, 2011). The CT-value obtained is an average of the 159 

properties of the different materials, meaning the material boundaries may be blurred, and leading to 160 

what is referred to as partial-volume effects (Ketcham and Carlson, 2011). In order to limit such 161 

artifacts, which may affect the resolution of the imagery, as much of the fauna as possible was 162 

removed from the holdfasts prior to scanning. The best method to do so in a non-destructive way was 163 
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sonication. Without removing them from their plastic bags, each holdfast was placed in an ultra-sound 164 

bath for 15 min. Once the samples had been sonicated, in order to ensure the holdfasts were immersed 165 

at all times and to avoid exposure to air, they were transferred into buckets of locally collected 166 

seawater in which the rest of the procedure was carried out. The plastic bags were then cut open and 167 

the holdfasts were left to sit for 10 min, to allow fauna to escape. The fauna extracted during this 168 

procedure was sieved over a 250  m mesh and fixed in 10% buffered formaldehyde. Each holdfast 169 

was then immersed into the same formaldehyde solution within a standard plastic pot for scanning, 170 

with particular care not to introduce air bubbles into the holdfast structure. The pots were selected for 171 

their low X-ray absorption levels, to maximize the quality of the scan (Lontoc-Roy et al., 2006). Fauna 172 

samples were preserved in 75% industrial methylated spirit after 48 hours until analysis.  173 

 174 

2.3 CT-scan data acquisition and post-processing 175 

Each holdfast was scanned at the CT Suite of the Radiology Department located at Torbay Hospital, in 176 

a helical, medical high resolution CT-scanner (Discovery CT750HD, GE Healthcare). CT-scanning 177 

generates two-dimensional cross sectional images called slices using a single x-ray tube and an array 178 

of detectors that rotate around the object of study. Reconstructed slices are then used to recreate the 3 179 

dimensional structures as a composite (Dufour et al., 2005; Ketcham and Carlson, 2011). The CT-scan 180 

configuration parameters were set at 80 kV for the X-ray tube voltage and 300 mA for the X-ray tube 181 

current. Rotation speed was set at 0.7 s, the table moved at 15.1 mm/s and exposure time was 10-12 s. 182 

The image reconstruction interval was 0.625 mm, giving a voxel size of 0.244 mm
3 

(a voxel is a 183 

“volume pixel” – a unit of volume in three-dimensional space; the smaller a voxel, the higher the 184 

resolution of the image). 2D slice size was 512 x 512 pixels. Images were saved in DICOM format in, 185 

16-bits and 3D composites reconstructed using the freeware OsiriX version (Rosset et al., 2004; Fig. 186 

1a and b).  187 

 The raw CT-scan images were transformed into a set of raster files, each one encoding a 2 188 

dimensional cut through the object. In other words, the images were stored as a succession of voxels, 189 

each of which was specified by its position (x,y,z) and its brightness I(x,y,z), normalized between 0 190 

and 1. As the interest hereby lies in extracting geometrical properties of the images, the first step was 191 
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to segment the image in order to: i) remove the background noise inherent to the CT-scan; and ii) 192 

remove the image of the pot housing the kelp. Since the noise and the container correspond to low 193 

values of the brightness intensity, a threshold θ was defined such that any intensity lower than θ was 194 

set to 0, and any intensity larger was set to 1. By doing so, all the background noise was removed as 195 

well as the image of the container and all the significant voxels were set to the maximal brightness 1. 196 

Each kelp was hereafter represented by a filtered image, defined by voxels with I(x,y,z) = 0 or 1 (Fig. 197 

2). 198 

 199 

2.4 Processing of fauna and kelp samples 200 

Following scanning, the holdfasts were manually broken up and thoroughly washed over a 250  m 201 

sieve to retain the remaining fauna, which was fixed and preserved as before. All collected individuals 202 

were pooled per kelp, and all individuals were counted and identified under low power magnification 203 

(x500), to the lowest taxonomic level possible. Finally, the age of each kelp plant was determined 204 

using the method of Kain (1963), which consists of splitting the stipe in half longitudinally just above 205 

the holdfast and counting the number of growth rings present. The number of separate haptera 206 

branching out from the stipe was also recorded.  207 

 208 

2.5 Image analysis and calculation of complexity indices 209 

 210 

2.5.1 Volume 211 

Calculating the volumes of the holdfast presents an adequate measure of inhabitable space within the 212 

kelp. The volumes of the kelps were computed by drawing regions of interest (ROIs) as precisely as 213 

possible onto each 2D slice of the scanned holdfast at maximum resolution, using the image software 214 

OsiriX. In principle, these measurements could also be obtained by counting the total number of 215 

voxels with brightness 1 on the filtered image, and multiplying it by the volume of a voxel     , 216 

where a is the spatial resolution of the scanner in the x, y and z direction. Indeed, the filtered encoding 217 

of the images allows for the computation of all kind of geometrical properties of the kelp. 218 

 219 
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2.5.2 Surface 220 

Since a number of organisms live on the surface of the kelp, it is interesting to retrieve information 221 

from the scans pertaining to the surface area. Using the filtered data, the surface area was extracted 222 

using two algorithms defining the surface of the kelp: 223 

 224 

1. Translation: consider the image of a kelp after threshold. This image can be translated by one voxel in 225 

a given direction (for example the z-direction, perpendicular to the planes of the CT-scan). The voxels 226 

that are different in the original and in the translated image belong to the surface of the kelp (this is 227 

true only after restricting the brightness intensity to 0 or 1). 228 

2. Neighbours: since the image is 3-dimensional, each point of the grid has 6 neighbours. A voxel 229 

belongs to the bulk of the kelp if it has exactly 6 direct neighbours with an equal brightness of 1, and 230 

belongs to its surface if its number of neighbours is smaller than 6. 231 

 232 

Both methods were tested, and these gave results that were consistent with each other. Throughout this 233 

paper, the surface areas were computed by the translation method. The total surface area of the kelp is 234 

thus equal to the number of voxels of the surface, times the area of a face of the voxel,   .   235 

 236 

2.5.3 Fractal dimension 237 

An important characteristic of a complex geometry is its fractal dimension (Mandelbrot, 1983). It 238 

quantifies the degree of branching and embedded small structures of the object. It is defined 239 

mathematically in the following way: given a geometrical object, in order to cover it with voxels of 240 

size   , one needs      such voxels. When the linear size   gets smaller (i.e. the resolution increases), 241 

a larger number of voxels      is needed to cover the object. The fractal dimension,     characterizes 242 

how the number of voxel increases when the resolution increases and is defined mathematically as the 243 

limit: 244 

       
   

        

     
 

where Log denotes the natural logarithm function.  245 
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The fractal dimension can be computed by using the “box counting” method (Mandelbrot, 1983). 246 

Starting at the highest resolution (i.e. smallest voxel size a), a voxel is said to be occupied (by kelp) if 247 

its value is 1, otherwise it is said to be empty. The total number N(a) of occupied voxels at this 248 

resolution is calculated. Now consider double sized voxels with linear size 2a. Each of these new 249 

voxels comprise 2x2x2=8 smaller original voxels. Each of these is occupied if it contains at least 4 250 

occupied smaller voxels, and empty otherwise. The number N(2a) of occupied voxels of size 2a can 251 

now be computed. This procedure is iterated by doubling the size of the voxels and computing each 252 

time the corresponding number of occupied new voxels. A log-log plot of      as a function of the 253 

resolution   can then be plotted. If the object is fractal, this plot is expected to look like a straight line 254 

with a negative slope, the slope being the fractal dimension. 255 

It is interesting to note here the relevance of the fractal dimension of the surface. Indeed, the 256 

concept of fractal dimension can be applied to the volume voxels – all the voxels of the image – or to 257 

the surface voxels, obtained by either method described above. The small hierarchical structures 258 

constituting the surface of the holdfast provide suitable habitats for small organisms, and thus it is 259 

logical to try to correlate the biological diversity with the surface fractal dimension of the kelp. The 260 

surface fractal dimension of the kelp is calculated by the box-counting method, exactly as depicted 261 

previously, except that the voxels used are those of the surface, computed by the translation algorithm 262 

described above. According to the above definition, the fractal dimension is just the opposite of the 263 

slope of the best-fit straight line. Practically, the fractal dimension was computed by doing a best 264 

linear fit for         as a function of      , where   takes the value of the resolution at each of five 265 

resolutions.  266 

 267 

2.5.4 Spatial autocorrelation 268 

Holdfast complexity was also measured using 3D extensions of 2D spatial autocorrelation indices. 3D 269 

extensions of the spatial autocorrelation indices were calculated with Moran’s I (Moran, 1950) and 270 

Geary’s C (Geary, 1954) using a custom made program in Fortran, based on equations from Marwan 271 

et al. (2012) and Corrêa da Silva et al. (2008). The Moran index I and the Geary coefficient C were 272 

computed as: 273 
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 274 

 275 

  276 

 277 

 278 

 279 

where    is the mean value of all the voxel values, N is the total number of voxels,    is the voxel value 280 

at particular point i,    is the voxel value at a particular point j (i≠j) and     is the neighbourhood 281 

matrix, equal to 1 when i and j are neighbours, and to 0 if else.  282 

 283 

2.6 Statistical analysis 284 

 285 

Diversity indices capture different aspects of biodiversity, and it is therefore customary to calculate 286 

various indices in parallel to capture those different aspects (Magurran, 2004). The total number of 287 

species (S), number of individuals – abundance – (N), species richness (Margalef’s d), species 288 

evenness (Pielou’s J) and a diversity index representing a balance between both richness and evenness 289 

(Shannon-Wiener’s H’) were calculated using the faunal abundance data. All possible pairwise 290 

correlations between explanatory and response variables were identified by carrying out a Spearman’s 291 

rank correlation (ρ ) test (Fig. 3). All of the 15 possible pairwise correlations between the 6 292 

complexity explanatory variables were significant (Fig. 3). The variable “site” from which the 293 

holdfasts were collected was not correlated to any of the explanatory variables (Fig. 3). Since the 294 

holdfasts from the two sites did not differ significantly in terms of their age or structural attributes, 295 

“site” was not included as a factor in the diversity indices analyses. Univariate measures of community 296 

assemblage do not account for the identity of species present and therefore they may be less sensitive 297 

than multivariate methods (Warwick and Clarke, 1991). As their output is under numerical form 298 

though, they can more directly be related to the indices of complexity developed here (Gee and 299 

Warwick, 1994a).  300 
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 301 

2.6.1 Partial least squares regressions 302 

Partial least squares regression analyses (PLSRs) were carried out to quantify how much each of the 303 

explanatory variables (holdfast complexity, i.e. number of haptera per unit volume and fractal 304 

dimension of the surface, as well as kelp age, number of haptera, surface area and volume of the 305 

holdfasts) explained the variance structure of each diversity measure, separately. The PLSR algorithm 306 

finds a reduced number of components (latent variables) maximizing the percentage of variance 307 

structure of a response variable (in this case, each of the diversity indices) explained by the matrix of 308 

potential predictors (i.e. complexity proxies, Carrascal et al., 2009). This method is an extension of 309 

multiple regression methods, and is particularly suited as a tool for small sample sizes and correlated 310 

predictor variables (Carrascal et al., 2009), as is the case here. The correlations between all possible 311 

pairwise correlations suggested a PLSR analysis was appropriate, due to the large number of 312 

correlated explanatory variables and small sample size (i.e. 17 observations (individual holdfasts) and 313 

correlations identified between all predictor variables, Fig. 3). Individual PLSRs were carried out in 314 

order to determine the percentage contribution of holdfast physical attributes and indices of 315 

complexity in explaining the variance structure of each response variable. The PLSR were performed 316 

using the “pls” package (Mevik and Wehrens, 2007) in the open source statistical software R (R Core 317 

Team, 2012). 318 

 319 

2.6.2 Multivariate analysis 320 

Multivariate ordination and clustering methods were undertaken to further highlight potential 321 

differences in faunal assemblage structure between kelp holdfasts of varying complexity, using the 322 

statistical analysis software Plymouth Routines In Multivariate Ecological Research 6+ (PRIMER, 323 

Clarke and Gorley, 2006). The species abundance data was 4
th
-root transformed to down-weight the 324 

influence of heavily abundant taxa (Clarke, 1993) and the rest of the analysis was carried out on both 325 

datasets (hereafter  “transformed” and “untransformed data”). Prior to further analysis, the effect of 326 

site on fauna community structure was examined again, as holdfast collection had been carried out at 327 

two different sites. Using the PERMANOVA+ routines add-in to PRIMER 6, a preliminary non-328 
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parametric permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001) was 329 

carried out using “site” as a fixed factor and the community matrix as the response variables. This 330 

analysis showed that although the faunal assemblages differed significantly between sites, no 331 

significant interaction was found between the effect of site and the other independent variables listed 332 

in Table 1 on assemblage structure. This indicated that, despite being different, the kelp holdfast 333 

communities at each site responded similarly to the complexity measures used. As such, “site” was not 334 

considered in the subsequent multivariate analysis. To assess the similarity of the holdfast faunal 335 

communities, a non-metric multidimensional scaling (nMDS) was conducted using the Bray-Curtis 336 

similarity index (Clark and Warwick, 2001). To visualize similarities in assemblages between 337 

holdfasts, an nMDS was plotted in a two-dimensional space preserving the multidimensional distance 338 

between kelp communities based on similarity. Individual communities were labeled on the plot using 339 

circles with a diameter proportional to the values of each explanatory variable (i.e. bubble plot) to 340 

investigate possible similarity between holdfast communities and holdfast complexity attributes. 341 

Finally, a BEST analysis was carried out on the transformed data, to identify which variable, or 342 

combination of variables, best explains the patterns of faunal assemblage similarity (Clarke and 343 

Gorley, 2006).  344 

 345 

3. Results 346 

 347 

3.1 Complexity of holdfasts 348 

3.1.1 Fractal dimension 349 

Fractal dimensions of objects embedded in 3-dimensional space are comprised between 0 and 3 350 

(Mandelbrot, 1983; Russ, 2013). The values for the fractal dimension of the surface fell within this 351 

interval (Table 1). This method is a promising avenue as the use of CT-scanner does allow for a fractal 352 

analysis in full 3 dimensions whereas traditional techniques, more commonly described in the 353 

literature, are reduced to 2 dimensions. 354 

 355 

3.1.2 Spatial autocorrelation 356 
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The values for Moran’s I and Geary’s C fell within their expected values (I=[-1;1], C=[0;2]), however 357 

they were not correlated to any of the diversity indices and did not seem to be appropriate indicators of 358 

complexity in this study. They were therefore not considered further.  359 

 360 

3.2 Holdfast communities 361 

A total of 7206 individuals from 159 taxa were identified. Juvenile Nereididae (Annelida) was the 362 

most numerically dominant group, constituting 23.7% of the total abundance. Verruca stroemia 363 

(Arhtropoda) were also well represented in the assemblages (19% of the total abundance). Anomioidea 364 

(Mollusca), Hiatella arctica (Mollusca), and Nematoda formed another 22.7% of the number of 365 

individuals. Polychaete (Annelida) species (67 in total) constituted 42.1% of total species and 366 

amphipods another 20.1% with 32 different species.  367 

The number of species (S) within a holdfast ranged between 18 and 82 and abundance (N) between 368 

51 and 1082, thus exhibiting important variations between holdfasts in terms of species richness (d), 369 

which ranged between 2.52 and 11.89 (Table 1). Shannon-Wienner’s species richness and evenness 370 

values were comprised between 0.72 and 3.33 and Pielou’s evenness J between 0.21 and 0.90.  371 

On closer analysis of the raw abundance data, one of the holdfasts (sample 7) exhibited a 372 

surprisingly high total number of individuals (N=706, 618 of which are juvenile nereids) compared to 373 

its volume (48.27 cm
3
), haptera.cm

-3 
(0.50) and age (4 years old). As Shannon-Wiener’s H’ and 374 

Pielou’s J are indices of diversity that take into account evenness, they are especially sensitive to 375 

outliers in the abundance data and are strongly influenced by dominant species. Consequently, this 376 

individual holdfast showed very low values for H’ (0.72) and J (0.21) (Table 1), indicating low 377 

heterogeneity in the assemblage and a highly uneven distribution of species. The correlation plot (Fig. 378 

3) confirmed this with strongly skewed graphs and a clear outlier point in both H’ and J. Thus, this 379 

holdfast was removed in further analyses in order to avoid observing unexpected variance structures in 380 

H’ and J. 381 

 382 

3.3 Statistical analysis 383 

 384 
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3.3.1 Partial least squares regressions 385 

The loading plots of the PLSR analyses for each response variable revealed that the majority of the 386 

variance structure in each biodiversity index was best explained by components for which volume had 387 

the highest loading among all potential explanatory variables (Fig. 4). However, the contribution of 388 

the other 5 variables for the best component– age, surface area, fractal dimension, haptera number and 389 

haptera.cm
-3

 – closely followed that of volume, with approximately equal loading values, indicating 390 

they all played an important role in explaining the variance observed in each response variable 391 

explained by that component.  392 

The most important findings of the PLSR analyses are presented in Table 2. The same relationships 393 

were observed for S and d, as these indices were strongly correlated to each other (Fig. 3). Despite 394 

yielding slightly lower values of variance explained by the PLSR on S, N and d, the variance 395 

structures for both H’ and J showed comparable patterns to that of the other biodiversity indices. 396 

In sum, volume influenced biodiversity the most, followed by age, and the fractal dimension of the 397 

surface (Fig. 4; Table 2). It is interesting to note that the full models with 5 components explained 398 

between 37.17% and 81.19% of the variance structure, meaning that other factors not included in this 399 

analysis must account for the remaining variance. 400 

 401 

3.3.2 Multivariate analysis 402 

The BEST analysis suggested that the combination of surface area and number of haptera per unit of 403 

volume of holdfast explained most of the similarity structure in the community matrix, and this effect 404 

was more evident in the less abundant species (4
th
 root transformed data, ρSpearman = 62.1% and 405 

p<0.05) than in the numerically dominant species (untransformed data, ρ  Spearman = 38.0% and 406 

p<0.05). This pattern was evident in the nMDS plots (Fig. 5), suggesting that number of haptera per 407 

unit of volume (Fig. 5a and c) and surface area (Fig. 5b and d) have opposite effects on community 408 

structure. This observation is evidenced by the results from the correlation analysis (Fig. 3): high 409 

surface area coincides with low haptera.cm
-3

, and is negatively correlated to all the other explanatory 410 

variables too.  411 
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The nMDS plots yielded stress values between 0.08 and 0.13, indicating the data were well 412 

represented by the two-dimensional plots and that reliable interpretations could be made from them 413 

(Clarke, 1993). 414 

 415 

4. Discussion 416 

 417 

Using indices of complexity that had never been applied in this context previously, the relationship 418 

between habitat complexity and marine biodiversity was demonstrated while investigating structural 419 

features of Laminaria hyperborea holdfasts. This study also demonstrated the great potential of CT-420 

scanning as a tool for ecological studies concerned with habitat complexity, particularly in the study of 421 

kelp systems. The 3D imaging post-processing techniques described here represent a first approach to 422 

examine a quantitative relationship between faunal diversity and kelp holdfast 3D complexity. In 423 

particular, the surface area of the kelp holdfasts could be easily calculated – a measurement otherwise 424 

extremely difficult to obtain – and rarer indices of complexity like fractal dimensions (volume or 425 

surface) and spatial autocorrelation indices could be computed. Albeit frequently overlooked in 426 

ecological studies, partial least squares regression (PLSR) analysis were shown to be an appropriate 427 

and promising statistical tool for spatial analyses like this one, which often require using numerous, 428 

correlated variables (Rossi and Van Halder, 2010) – in this case, by enabling the identification of those 429 

spatial attributes that were most consistently linked to diversity attributes. The PLSR analyses showed 430 

that volume explained the majority of the variance structure observed in all the fauna biodiversity 431 

indices. Community structure was, however, best explained by surface area and haptera per unit 432 

volume of the holdfast.  433 

The fact that volume emerged as the most important explanatory variable agreed with previous 434 

studies (Jones, 1973; Ojeda and Santelices, 1984; Smith et al., 1996; Blight and Thompson 2008; 435 

Torres et al., 2015). Volume constitutes a good measure of the amount of living space available for 436 

organisms; an increase in volume implies there are more niches to colonize, and is likely to reflect also 437 

an increase in resources. Rather than indicating how much living space is available, surface area 438 

reveals how much attachment space is provided for individuals and haptera per unit volume represents 439 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 17 

the amount of inter-haptera space created by the structure. These measures are therefore good indices 440 

of complexity as they account for the multiplicity of microhabitats created by the branching of the 441 

haptera, and these indices were expected to be important drivers of community structure. Our 442 

multivariate analysis revealed this to be true, with different faunal assemblages responding differently 443 

to varying levels of complexity. The fact that less abundant species were more responsive to the effect 444 

of surface area and haptera.cm
-3

 than dominant ones could have been expected because these species 445 

will benefit the most from increases in attachment space complexity, whilst dominant species will 446 

occupy the majority of the attachment space available. 447 

The strong correlation observed between kelp age and volume, surface area, haptera number and 448 

haptera.cm
-3

 underlines the importance of determining the age structure of kelp forests in order to 449 

define adequate conservation measures in this type of habitat. Indeed, since knowing the age of kelp 450 

can help estimate its level of complexity, which itself has been shown in the current study to be linked 451 

to biodiversity levels, age should be a determinant factor when restoring previously damaged kelp 452 

beds, and when electing which beds to prioritize for management or fishing (Bell et al., 1991). 453 

Additionally, as volume and surface area were negatively correlated to haptera per unit volume, we 454 

hypothesized that as the kelps grows, it adds volume and surface more quickly than it adds new 455 

haptera at the stipe. This would suggest that the complexity of the holdfast arises from the multiplicity 456 

of haptera emerging from extant haptera, rather than from the addition of new haptera at the stipe.  457 

The composition of the faunal communities recorded here is similar to that reported by Moore 458 

(1973), in which Syllidae, Nereididae, Terebellidae, Corophiidae and Ischyroceridae were identified as 459 

the families with the highest abundance in Laminaria hyperborea holdfasts. The holdfast is an ideal 460 

environment for amphipods which feed on sediment particles rich in organic matter and for gastropods 461 

that graze on the algae or filter-feed passively (Moore, 1973). Numerous juvenile individuals, mainly 462 

from the Nereididae family and the Mollusca, as well as juvenile crabs and ophiuroids, were identified 463 

in the holdfasts. Kelp holdfasts thus seem to provide ideal nursing grounds for benthic organisms. This 464 

is not surprising given that holdfasts offer physical protection from waves and predators, and trap 465 

sediment rich in nutrients (Dean and Connell, 1987; Steneck et al., 2002). Similarly to the findings of 466 

Smith et al. (1996) on Ecklonia radiata holdfasts, the apparent increased abundance of serpulids (e.g. 467 
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Spirobranchus species) and barnacles in holdfasts of higher complexity may further facilitate increase 468 

in other species (e.g. syllids), which are able to colonize empty calcareous tubes provided by these 469 

organisms.  470 

Further investigation of the links between taxonomic groups, dispersal modes and feeding 471 

strategies with complexity of the holdfast might shed light on the dynamics of colonization and 472 

community succession in this habitat (Smith et al., 1996). A number of holdfasts investigated here 473 

exhibited particularly high abundance of certain taxa – for instance, hundreds of juvenile nereids but 474 

much fewer other species of polychaetes. This finding may be indicative of founder effects, by which 475 

the multiplication and predominance of certain species of early colonizers is facilitated. Since a large 476 

number of species were found in both simple and complex holdfasts, yet more complex holdfasts 477 

hosted a larger number of species, it is reasonable to suggest that succession occurred through the 478 

addition of species over time rather than species replacement, as suggested by Smith et al. (1996) and 479 

Ojeda and Santelices (1984).  480 

The CT-scanning data significantly improved our ability to quantify habitat complexity in this 481 

study, and to predict changes in biodiversity with spatial heterogeneity. The usefulness of CT data was 482 

clearly maximized by the computation of otherwise unavailable, or very hardly achievable 483 

measurements. Indeed, surface area and the fractal dimension of the surface are both strongly 484 

positively correlated to species richness, abundance and diversity, and together contribute to about 485 

20% of the variance structure observed in the response variables. Both spatial autocorrelation 486 

coefficients showed high positive autocorrelation within holdfasts and very little variance between 487 

holdfasts of differing size, suggesting the existence of a “typical” holdfasts structure, that was fairly 488 

homogenous between individuals, with low variation at a global and local level. Unfortunately, these 489 

values could not provide explanation towards the biological diversity investigated, and are possible not 490 

promising avenues for future studies with aims similar to ours. Conversely, fractal dimensions gave 491 

biologically meaningful information. By providing an interpretation of habitat size in relation to the 492 

scale of measurement, these measures have also been found to be good predictors of body size in 493 

fauna assemblages in other studies (Gee and Warwick, 1994a,b). While larger volumes may provide 494 

more occasions to find resources and partners to mate with, more fractal surfaces suggest more 495 
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opportunities to avoid stress and predators, through increased intricacy and hiding areas. The fact that 496 

the biodiversity hereby responded to the surface fractal dimension of the holdfasts suggests that this 497 

variable has ecological implications in benthic communities. Additionally, a study on coralline algal 498 

turf gastropod assemblages found that there may exist an upper threshold of habitat complexity 499 

beyond which species diversity does not increase (Kelaher, 2003). Reduced interstitial space 500 

associated with architecturally more complex habitats, leading to decreased amount of light, food and 501 

space available for organisms, may be particularly important for larger sized fauna, and there may be 502 

an optimal level between the provision of attachment space for fauna, and the complexity of that 503 

habitat space.  504 

A future avenue that deserves attention should be to fully develop the potential of data extracted 505 

from CT-scanning. A method that could provide additional insightful information in terms of faunal 506 

diversity appears to be the one described by Mazik et al. (2008). In their study of scanned sediment 507 

cores, they extracted information on the burrow volumes and surface areas, as well as on the mean 508 

burrow diameter, mean number of burrows and mean density. It would be interesting to obtain similar 509 

data on the 3D geometry of inter-haptera space, as this would provide a robust measure of the 510 

properties of the holdfast and of the amount of living space available for the fauna (i.e. volumes of the 511 

spaces created by the structure, mean number of spaces and their dimensions which relate to the 512 

probability of having a certain number of spaces of a certain size). Such parameters could provide 513 

another set of indices of complexity, and could be linked more directly to body size distribution of the 514 

fauna, offering considerably more information than that available without scanning. Marwan et al. 515 

(2009; 2012) investigated structural complexity using CT-scanning in a medical context and 516 

developed a method of differentiating shapes with the same volume but different surface areas. In the 517 

present study, quantifying the shapes of the inter-haptera spaces, as well as the variety of these shapes 518 

in relation to the volume, could supplement the analysis well, by providing data relatable to the 519 

morphological diversity of the faunal samples.  520 

Despite explaining up to 81% of the variance structure observed, the complexity measures 521 

investigated did not fully explain the variance structure observed in the biodiversity indices, with 522 

lowest correspondence between complexity and community evenness. This finding would suggest that 523 
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dominance of holdfast communities is not related to holdfast structural complexity. Future work could 524 

also investigate measurements of complexity in the faunal community that were not used here. For 525 

instance, recording the biomass and size of the faunal samples should provide precious information on 526 

the type of fauna expected to be found in habitats of a certain complexity, as suggested by Warwick 527 

and Clarke (1984), who showed that specific traits in animals, and more precisely in benthic fauna, 528 

can be favoured according to their body size. The presence of epiphytes on the stipe of the kelp was 529 

not recorded but numerous studies have previously shown it had a negligible effect on the faunal 530 

community in the holdfast (Dean and Connell, 1987; Norderhaug, 2002; Hauser et al., 2006).  531 

Interestingly, encrusting organisms were easily identified on the scanned images. Indeed, due to the 532 

distinct density of fauna shells and skeletons, one could localize organisms like echinoderms and 533 

sessile mollusks on the holdfast scans alone. Such data could prove to be particularly interesting in the 534 

frame of ocean acidification, a chemical process by which the reduction in pH and consequent 535 

decrease in carbonate ions strongly diminishes the ability for organisms to sustain carbonated 536 

skeletons (Fabry et al., 2008). Recent research has already began to make use of this approach 537 

(Queirós et al., 2015), and the present study shows that this could be extended to kelp holdfast 538 

communities.  539 

In conclusion, there are many promising extensions for the techniques and approaches presented 540 

here. Understanding community structure in keystone habitats such as kelp forests will be critical 541 

when trying to preserve and restore ecosystems and their associated ecological processes (Steneck et 542 

al., 2002). Through the modulation of resources and their strong interactions with faunal communities, 543 

the loss of ecosystem engineers like kelp, can have cascading effects on biodiversity (Coleman and 544 

Williams, 2002; Hastings et al., 2007). By reducing the amount of time that would otherwise be 545 

needed to manually slice kelp holdfasts, and by providing information of much higher resolution, CT-546 

scanning offers a rapid and powerful technique for faunal community monitoring (Mazik et al., 2008) 547 

and a suitable way to assess anthropogenic impacts on macrophyte systems. In particular, it allows 548 

detailed visualization of complex systems in their natural state and with minimal disturbance (Dufour 549 

et al., 2005), an impossible task when using artificial structures as proxies of holdfast complexity. 550 

Indeed, it makes it feasible to study kelp populations that have matured over time, which is 551 
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particularly meaningful in perennial species. It also accounts for the chemicals released by the kelp, 552 

some of which are responsible for the growth of biofilm which facilitate faunal attachment (Hellio et 553 

al., 2000), and others which influence the nutritional value of the kelp (Norderhaug et al., 2003; Toth 554 

et al., 2005). Importantly, it is the only way to estimate the holdfast surface area precisely. Therefore, 555 

CT-scanning provides highly valuable information, and emerges as a unique tool to analyze habitat 556 

complexity. Further research could focus on the use of higher resolution devices, improving the extant 557 

methods of calculating complexity and developing new ones. The scanning procedure developed here 558 

will undeniably prove useful in future ecological research, by providing valuable data for conservation 559 

purposes, though the identification of structurally complex communities as biodiversity hotspots, 560 

which can help to support efficient design of marine protected areas. Appreciating how the spatial 561 

distribution of organisms relates to structural complexity of habitats has great relevance in ecological 562 

modeling and can support the projection of the potential consequences of environmental change for 563 

the benthos (Tilman, 1994).  564 
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Table 1 Summary of data, including holdfast number, age, volume, 

surface area, haptera number, indices of complexity (haptera.cm
-3

, fractal 

dimension,) and biodiversity indices (S – number of species, N – 

abundance, d – Margalef’s species richness, H’ – Shannon-Wienner’s 

species evenness and richness, J – Pielou’s species evenness).  

 

Holdfast 

Age 

(years) 

Surface 

(cm
2
) 

Volume 

(cm
3
) 

Number 

of 

haptera 

Haptera 

per cm
3
 

Fractal 

dimension 

of surface S N d J H’ 

1 2 25.99 10.01 18 1.80 1.89 13 116 2.52 0.77 1.98 

2 4 90.81 32.94 21 0.64 1.93 22 125 4.35 0.73 2.25 

3 4 43.84 16.44 20 1.22 2.01 22 74 4.88 0.78 2.42 

4 5 99.22 18.76 22 1.17 1.69 20 113 4.02 0.79 2.36 

5 7 224.23 105.82 22 0.21 1.98 43 240 7.66 0.74 2.76 

6 7 104.46 35.36 26 0.74 1.92 27 184 4.99 0.65 2.15 

7 4 108.09 48.27 24 0.50 1.96 31 706 4.57 0.21 0.72 

8 7 252.42 118.89 32 0.27 1.94 54 275 9.44 0.83 3.33 

9 5 95.11 41.81 22 0.53 2.05 18 51 4.32 0.86 2.48 

10 6 473.39 201.10 39 0.19 2.04 48 269 8.40 0.79 3.05 

11 6 322.49 110.97 30 0.27 2.08 49 437 7.90 0.78 3.04 

12 5 256.32 98.72 22 0.22 2.02 62 734 9.25 0.62 2.54 

13 5 344.40 132.46 32 0.24 2.08 67 1082 9.45 0.53 2.23 

14 5 196.18 72.91 28 0.38 2.02 45 543 6.99 0.61 2.32 

15 1 22.60 11.41 11 0.96 1.84 24 74 5.34 0.85 2.70 

16 5 329.36 137.78 24 0.17 2.02 53 437 8.55 0.76 2.30 

17 1 58.32 5.20 12 2.31 1.72 19 53 4.53 0.90 2.65 
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Table 2 Percentage of the variance of each response variable explained 

by each partial least squares analyses component (numbers) given with the 

associated explanatory variable (volume, haptera number, age, haptera.cm
-3

, 

surface area and the fractal dimension of the surface) which had the highest 

loading for that component.  

  

  S N d H' J 

Volume 68.52 38.51 69.34 26.14 20.95 

Haptera Number 0.34 4.79 N/A 4.03 5.08 

Age  7.81 7.96 9.91 1.13 N/A 

Haptera.cm
-3

  N/A N/A 1.92 2.28 2.64 

Surface area 0.94 N/A N/A N/A N/A 

FD Surface 1.36 5.83 0.02 17.18 5.58 

Variance 

explained  

78.97 58.55 81.19 50.76 37.17 
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Fig. 1 3D reconstruction of a scanned kelp using OsiriX (using a blood-

vessel and bone mask to aid visualization - red-brown: kelp; white-gray: 

calcifying fauna). A) Lateral view of the holdfast. B) View of the base of 

the holdfast where calcifying fauna can be seen in white, exhibiting 

densities similar to human bone. 

 

Fig. 2 A) One of the 141 slices constituting the outcome of the CT-

scanning of an individual kelp holdfast. B) The similar slice following the 

cropping of the stipe and bucket after setting a threshold θ. Only the 

holdfast remains. Non-black voxels were considered as the foreground; 

black voxels were considered as background and therefore excluded from 

the surface and fractal dimension calculations.  

 

Fig. 3 Correlations between the variables used in the statistical analysis (both 

explanatory and response variables). The pie charts depict the strength of the 

correlations between variables, solid pies indicating a positive correlation and 

striped pies indicating a negative correlation.  

 

Fig. 4 Loading plots showing the loading value of each variable for the first 

three main components (values written inside each graph, see table 2 for the 

percentage contribution of each component). Variables: 1 = surface area, 2 = 

FD of surface, 3 = age, 4 = number of haptera, 5 = volume, 6 = haptera.cm
-3

.  

 

Fig. 5 Two-dimensional nMDS ordination (Bray-Curtis similarity index) on 

holdfast assemblages (N=17), after transformation (A and B) and before 

transformation (C and D), on haptera per unit volume (A and C) and on 

surface area (B and D). 
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