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Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of
which has implications for predicting the environmental response to changes in climate and biodiversity.
However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology,
few assumptions can be made about the data and complex, spatially varying interactions can be recovered
from collectedfield data. In this study,we compare Bayesian networkmodelling approaches accounting for latent
effects to reveal species dynamics for 7 geographically and temporally varied areaswithin the North Sea.We also
apply structure learning techniques to identify functional relationships such as prey–predator between trophic
groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect
overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden
variable can model unmeasured group of species. The general hidden variable appears to capture changes in
the variance of different groups of species biomass. Models that include both general and specific hidden vari-
ables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmea-
sured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the
models' features and across the different spatial areas thus proposing a model that allows for spatial autocorre-
lation and two hidden variables. Our proposedmodel was able to produce novel insights on this ecosystem's dy-
namics and ecological interactionsmainly becausewe account for the heterogeneous nature of thedriving factors
within each area and their changes over time. Our findings demonstrate that accounting for additional sources of
variation, by combining structure learning from data and experts' knowledge in the model architecture, has the
potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to dis-
cover meaningful functional networks that were spatially and temporally differentiated with the particular
mechanisms varying from trophic associations through interactions with climate and commercial fisheries.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Fisheries and ecoinformatics

In recent decades it has become clear that ecosystem structure and
function can change over relatively short time scales (Scheffer et al.,
2001). Changes in the marine environment are believed to be more
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rapid in the 21st century causing both ecological and industrial implica-
tions (Fernandes et al., 2013). Therefore being able to predict the dynam-
ics of the species and their environment at spatially and temporally
resolved scales, is of growing importance for the protection of natural bio-
diversity and human resourceswhich poses new challenges for analytical
tools and computational statistics (Aderhold et al., 2012).

One way to understand ecosystem dynamics is examination of the
functional relationships (such as prey–predator, Fig. 1) between species
along with their interaction with stressors such as temperature change
and fisheries exploitation in their potential habitat (space) and across
time. In this way, learning functional relationships can provide a metric
for assessing community structure and resilience in response to natural
and anthropogenic influences (Gaston et al., 2000). If we can model the
function of the interaction rather than the species itself, data can be
used to confirm key functional relationships and to predict impacts of
forces such as fishing and climate change.
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Fig. 1. A generalized marine food web showing the functional relationships between
trophic levels where direction of links represents prey–predator interactions.
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The North Sea is a diverse ecological system with complex climate–
ocean interactions and exploited fisheries since 1900 (Smith, 1994).
Significantwarming trends are evident throughout but themost intense
are documented in the southern and eastern North Sea (Simpson et al.,
2011). Exploitation has led to significant reductions in the abundance of
some target species and non-target species have been impacted because
of incidental catch and subsequent discard (Gislason, 1994). Fishing
pressure can change the structure of marine populations and conse-
quently influence the nature of their responses to climate (Planque
et al., 2010), which could have impacts on the value of commercial fish-
eries (Perry et al., 2005). Due to the high biological productivity and
valuable fisheries resources of the North Sea, understanding the species
dynamics and modelling their interactions with external stressors over
space and time, is of primary interest in the present work.
1.2. Functional network models

Interactions among species make it difficult to predict how ecological
communities will respond to environmental degradation, yet to do sowe
must understand the functional networks that form the systems (Dunne
et al., 2002). The functional network approach to understand community
structure and resilience is an on-going approach combining known topo-
logical features of food webs with quantitative variation in species inter-
actions with their environment and surrounding stressors to predict
community stability. Recently, an approach has arisen in biology that is
capable of inferring network structures, capturing nonlinear, dynamic
and arbitrary combinatorial relationships: Bayesian networks (BNs)
(Heckerman et al., 1995). BNs have been applied to reveal gene regulato-
ry networks using genemicroarray data (Friedman et al., 2000) andwere
shown to reveal known pathways of neural information networks from
brain electrophysiology data (Smith et al., 2006). Such a flexible tech-
nique capable of identifying the complex relationships involved in bioin-
formatics potentially offers a valuable method in ecological studies
(Milns et al., 2010). Therefore, ourwork aims to adapt this novelmethod-
ology to infer the network structure directly from the collected field data.

There has been significant progress in developingmodels using clas-
sical statistical techniques (Krivtsov, 2004) to understand the structure
and stability of some ecological networks in a changing environment,
however such methods often limit the underlying interactions from
expanding beyond the current food web paradigm (Faisal et al., 2010).
Our network approach of analysing multiple associations between
groups of species and their environment presents a more comprehen-
sive route to revealing interactions within the ecosystem (Aderhold
et al., 2012) directly from the data, rather than taking an “existing”
network structure and analysing it in terms of summary statistics. BNs
are efficient in integrating variables presented at different scales
(Wooldridge et al., 2005), allow empirical data to be combined with
existing knowledge (Uusitalo, 2007), operate within a data poor
environment (Uusitalo, 2007) and integrate the uncertainty associated
with species dynamics due to the action of multiple driving factors.

The objective of this paper is to model the species dynamics and
their interactions with external stressors at geographically and tempo-
rally varied areas within the North Sea. We evaluate the potential use-
fulness of Bayesian inference for ecological data by examining the
predictive capability of different dynamic BN architectures. We correct
for spatial autocorrelation by introducing a spatial node—a parent
node representing the spatial neighbourhood of a node. We also
account for latent variable effects by introducing two hidden
variables—one general to detect overall change in the species biomass
and another specific to capture spatial unmeasured effects. We produce
a novel approach of modelling ecosystem dynamics that accounts for
the heterogeneous nature of the driving factors within each spatial area
and their changes over time. We examine the models' accuracy in
predicting biomass, in response to any changes in temperature and fish-
eries catch or given there is a change in another species group biomass
and therefore aid towards the better understanding of North Sea trophic
dynamics, which is influential for futuremanagement options and long-
term viability of populations. We investigate not just functional
relationships between groups of species but also their interactions
with external stressors that vary across space and time in order to clarify
whatmechanisms are involved in shaping the functional ecological net-
works and derive insights on the community structure and resilience.

Methods in Section 2 describe the fisheries data and the use of BN
modelling techniques applied to the data. Results in Section 3 demon-
strate the predictive capability of all applied modelling approaches,
outlining the performance of the proposed latentmodel with spatial au-
tocorrelation, with analysis on the features of the hidden variables and
species interaction networks identified by structure learning. Finally,
the use of the techniques explored in this paper (namely, BNs, dynamic
models with latent variables, spatial node) is discussed in Section 4 in
terms of the wider fisheries literature.
2. Materials and methods

2.1. Data

The analyses are based on the database of the International Bottom
Trawl Survey (IBTS) for Quarter 1 (January to March), maintained by
the International Council for the Exploration of the Sea (ICES) and con-
ducted within ICES areas between 51–62 ∘ latitude (Fig. 2, only areas 1
to 7 were considered in the study here due to limited quality and consis-
tency of the data on the remaining spatial areas). These data are publical-
ly available from the ICESDatabase of Trawl Surveys (DATRAS;www.ices.
dk). The IBTS is a scientific fishing survey that follows a standard proto-
col: at each station, a GOV trawl is towed at 3 to 4 knots for a predefined
duration. All species caught in relatively low numbers are counted and
measured, whilst for very large catches, subsamples are taken and the
resulting data scaled to the total catch. The data are recorded as length–
frequencies by tow for each species and converted to catch per unit effort
(CPUE; numbers per length class per hour) using tow durations.

In the study, CPUE was extracted for the time window: 1983–2010
and converted to biomass (kg per hour), using length–weight relation-
ships and summing up over the same species and within the same year
(www.fishbase.org). Next, fish species were aggregated by summing up
the biomass into the relevant trophic group: pelagics (P), small piscivo-
rous (SP) and large piscivorous and top predators (LP) (FishBase was
used as a guidance point). The nature of individual species summed
into the trophic groups varied between the spatial areas but this was
not of importance since they were always aggregated into the correct
group. This was performed for each of the 7 areas and for each year in
the timewindow.We also have available biomass data for different zoo-
plankton species (source: ICES Working Group on Integrated Assess-
ments of the North Sea—WGINOSE) but we decided to sum the

http://www.ices.dk
http://www.ices.dk
http://www.fishbase.org


Fig. 2. ICES statistical rectangles within the North Sea (areas 1 to 7 were used in this
study).
Source: ICES, Manual for the International Bottom Trawl Surveys.
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biomass from selected copepod species to represent the zooplankton for
the whole of North Sea in the time window 1983–2010.

Sea surface temperature (temperature) and net primary production
(Net PP, refers to the net production of carbon by primary level producers
such as phytoplankton) data were model outputs (averages per area and
year: 1983–2010) from the European Regional Seas Ecosystem Model
(ERSEM; for more detail: (Lenhart et al., 2010); (van Leeuwen et al.,
2013)) due to limitations in spatial and temporal resolution of these ob-
servations. Catchdata (landingsper area and year: 1983–2010),measured
in tonnes live weight, were also obtained from the ICES database (ICES
Historical Catch Statistics 1950–2010) but data was spatially combined
and assigned to the northern (areas 1 and 3), central (areas 2, 4 and
7) and southern (areas 5 and 6)North Sea due to historical changes in col-
lection and compilation of the landings data. This resulted in 6 observed
(and continuous) variables: catch, temperature, Net PP, P, SP and LP for
each spatial area and across the time window. The data was standardised
(sample mean removed from each observation, which is then divided by
the standard deviation) prior to conduction of the experiments.
2.2. Probabilistic models

Analysing datasets from ecological communities can be problematic
due to complexity of ecological events. We apply probabilistic models
because such techniques offer a natural mechanism for incorporating
expert knowledge relating to the network structure. They also allow
predictions to be made across very different platforms and organisms
(Tucker and Duplisea, 2012) through the use of a network structure
and inference that allow us to ask “what if?” type questions of the
data. For example, one could ask, what is the probability of seeing a
change in the biomass of P, given that we have observed a change in
the probability of catch and/or LP?
2.2.1 . Learning Bayesian networks
Formally, a Bayesian network describes the joint distribution (away

of assigning probabilities to every possible outcome over a set of vari-
ables, X 1…X N) by exploiting conditional independence relationships,
represented by a directed acyclic graph (DAG) (Friedman et al., 1999).
The conditional probability distribution (CPD) associatedwith each var-
iable X encodes the probability of observing its values given the values
of its parents, and can be described by a continuous or a discrete distri-
bution. In this case, the CPD is called a Conditional Probability
Table (CPT) and all the CPTs in a BN together provide an efficient
factorisation of the joint probability:

p xð Þ ¼ ∏
n

i¼1
p xijpaið Þ ð1Þ

where pa i are the parents of the node xi (which denotes both node and
variable). See Fig. 3a for an example of BN with five nodes.

Each node in the DAG is characterised by a state which can change
depending on the state of other nodes and information about those
states propagated through the DAG. By using this kind of inference,
one can change the state or introduce new data or evidence (change a
state or confront the DAGwith new data) into the network, apply infer-
ence and inspect the posterior distribution (which represents the distri-
butions of the variables given in the observed evidence). The graphical
structure of BNs is particularly convenient when we aim in describing
an ecological network to model all the interactions between species
groups and their environment that also provides a user-friendly frame-
work to communicate the results (Chen and Pollino, 2012). It is relevant
to think of the BN as a “graph”, describing groups of species as the
“nodes” within the graph, and interactions as the links or “edges” that
join the nodes (Faisal et al., 2010).

In this study, we learn the structure of static BNs from temporal data
for each of the 7 spatial areas by applying a hill-climboptimization tech-
nique that belongs to the family of local search. The search begins with
an empty network. In each stage of the search, networks in the current
neighbourhood are found by applying a single change to a link in the
current network such as add arc or delete arc and choose the one change
that improves the score the most. We perform the hill-climb with ran-
dom restart which conducts several hill-climbing runs, perturbing the
result of each one as the initial network for the next. The learned BN
links represent dependence, these are spatial relationships that are pre-
dictive in an informative, not causal aspect (Milns et al., 2010).We used
the Bayesian Information Criterion (BIC, (Schwarz et al., 1978)) for scor-
ing candidate networks:

BIC ¼ log P Θð Þ þ log P Θ Djð Þ− 0:5k log nð Þ ð2Þ

whereΘ represents themodel,D is the data, n is the number of observa-
tions (sample size) and k is the number of parameters. log P(Θ) is the
prior probability of the network model Θ, log P(Θ|D) is the log-
likelihood whilst the term k log(n) is a penalty term, which helps to
prevent over-fitting by biassing towards simpler, less complex models.
We define a confidence threshold—the minimum confidence (estimate
of the probability of finding a link) for an edge (or a link) to be accepted
as an edge in the learned network structure.

2.2.2. Dynamic Bayesian networks
Modelling time series is achieved by using an extension of the BN

known as the Dynamic Bayesian Network (DBN), where nodes repre-
sent variables at particular time slices, Fig. 3b (Friedman et al., 1999).
DBNs are directed graphical models of stochastic processes that charac-
terise the unobserved and observed state in terms of state variables,
which can have complex interdependencies (Murphy et al., 2001). The
DBN structure provides an easy way to specify such conditional inde-
pendencies between the acting variables in the study here, and hence
to provide a compact parameterization of our ecological data. DBNs
allow us to integrate heterogeneous data at different scales and make



Fig. 3. (a) A Bayesian network (BN) that encodes a joint distribution using a graphical structure and local conditional distributions. Links between variables represent conditional inde-
pendences. (b) A dynamic BN where nodes represent variables at a point in time and (c) an autoregressive hidden Markov model, where H denotes an unmeasured (hidden or latent)
variable.
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robust predictions of the temporal species dynamics and their interac-
tions with external stressors.

In addition, we also model a dynamic BN, in which we correct for
spatial autocorrelation: SDBN. Spatial autocorrelation, the phenomenon
that observations at spatially closer locations are more similar than ob-
servations at more distant locations, is nearly ubiquitous in ecology and
can have a strong impact on statistical inference (Aderhold et al., 2012).
To incorporate potential spatial autocorrelation in our SDBNmodel, we
enforce three parent nodes that represent the average biomass of the
relevant trophic group (P, SP or LP) from the spatial neighbourhood
(the three or four nearest neighbours) of the current area (Aderhold
et al., 2012).

2.2.3. Hidden Markov model
DBNs generalise hidden Markov models (HMMs) which model the

dynamics of a dataset through the use of a latent or hidden variable.
This latent variable is used to model unobserved variables and missing
data and can infer some underlying state of the series when applied
through an autoregressive link (ARHMM, Fig. 3c) that can capture rela-
tionships of a higher order (Murphy et al., 2001). This represents the
most challenging inference problem in this study aswemake computa-
tionally complex predictions involving dynamic ecological processes.
However, the hidden variable was chosen to most easily reflect such
complex interdependencies between and among species groups and
their environment. In addition, the hidden variable allows us to exam-
ine unmeasured spatial effects, that would bring further insight on the
importance of trophic dynamics to better understand community struc-
ture and resilience in an exploited ecosystem.

2.3. DBN with two hidden variables and spatial nodes: HSDBN

We designed a dynamic BN model in which we incorporated two
hidden variables: one discrete to model the general trophic dynamics
(general HV) and another continuous specific hidden variable (specific
HV) to see if we can learn the trophic level of zooplankton, which is
missing in the model due to limited spatial resolution but will be vali-
dated against the measured zooplankton for the whole of North Sea.
This approach discourages the appearance of implicit interactions by in-
cluding the unobserved latent variables. From now on we will be refer-
ring in the text to this model as HDBN, for whichwe propose a balanced
architecture between structure learning from data and experts' knowl-
edge.We use constrained structure learning as hill-climbing and exploit
expert knowledge on zooplankton dynamics, represented in this model
by the specific HV. The HDBN is a functional network model in which
nodes represent species groups and edges (connections between
nodes) represent potential interactions of species groups with other
groups, with abiotic factors (e.g. temperature) and anthropogenic fac-
tors (e.g. commercial catch) that influence the species groups biomass.
The strengths of such influences vary geographically and temporally.

Next, we further improved the HDBN by allowing for spatial auto-
correlation and learning another dynamic BN model: HSDBN. Similarly
to HDBN, the HSDBN structure represents a potential “end-to-end” eco-
systemmodel of each area's dynamics by incorporating structure learn-
ing from data and expert knowledge on zooplankton dynamics but in
addition we enforce three parent nodes: P sp., SP sp. and LP sp., that
represent the spatial nodes (from Section 2.2.2 Dynamic Bayesian net-
works) to account for the effect of spatial autocorrelation. Connectivity
of the spatial nodes to the trophic levels: P, SP and LP, was determined
through hill-climbing. In the HSDBN modelling approach, we account
for the heterogeneous nature of the driving factors (both biotic and
abiotic) within each area and their changes over time. Hence, we can
explore multiple species associations, model their dynamics with inter-
actions from external stressors such as temperature and fisheries
exploitation and compare the predictive performance of the model
with HDBN and other probabilistic models already being used in the
literature. The HSDBN structure for each area varies (individual area
matrix size: 11 × 28) but the general form is presented in Fig. 4. We in-
corporated the sameunobserved latent variables from theHDBN: gener-
al HV and specific HV. The specific HVwas always connected to P and Net
PP and temperature to Net PP (according to expert). In this way, we can
inspect the state of the two HVs to see if they reflect any spatial and
temporal changes in the trophic dynamics or capture spatial unmea-
sured effects which are not purely found within the constrained
model structure.

2.4. Experiments

The experiments described here evaluate the performance of differ-
ent DBN architectures including our HSDBN approach in predicting bio-
mass of species groups and modelling trophic dynamics across space
and time. We conduct all experiments using the Bayes Net Toolbox in
MATLAB (Murphy et al., 2001). Flowchart of the main steps that consti-
tute the experiments is shown in Fig. 5.

2.4.1 . Generating species biomass predictions
Given a graphical structure, BNs naturally perform prediction using

inference. The experiments involved prediction of aggregated species
biomass for P, SP and LP by inferring dynamic Bayesian architectures:
ARHMM, DBN, SDBN, HDBN and HSDBN (Table 1).

The network structure for ARHMM was fixed for all areas (Fig. 3c,
due to ARHMM features) whilst the network architectures for the
other models were imposed by using structure learning from data



Fig. 4. General structural form of the HSDBN model. Solid line represents fixed edges
across areas. The three spatial nodes (P sp., SP sp., LP sp.), general HV, catch and temperature
are individually linked to either P, SP or LP (represented by the dotted surrounding), de-
pending on the spatial area (grey line). Connectivity between P, SP and LP also differs spa-
tially. Edges between nodes (or variables) represent dependence relationships.

Fig. 5. Flowchart of the main steps that constitute the experiments. These are ordered
based upon their sequence of completion. Each step is explained indetail in Section 2.4 Ex-
periments. (Table 1)
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(compared with the expert and diet matrices based upon stomach
surveys) in combination with external expertise on the North Sea zoo-
plankton dynamics in the case of HDBN and HSDBN. The network
architecture varied with the models and spatial areas but the method
of predicting the biomass was universal across both models and areas.
Given the probability distribution over X[t] where X = X1 … Xn are
the n variables observed along time t, to predict the biomass of each
trophic group, we inferred the biomass at time t by using the observed
evidence (or available data) from t − 1. We used an exact inference
method: the junction tree algorithm (Murphy, 1998). Non-parametric
bootstrap (re-sampling with replacement from the training set,
(Friedman et al., 1999)) was applied 250 times for each modelling ap-
proach to obtain statistical validation in the predictions for each area
(number of iterations was found to be optimum through experimenta-
tion). Model performance, in terms of sum of squared error (SSE), was
assessed for each model. This allowed for a quick analysis and compar-
ison of the predicting accuracies of the models in terms of species-
specific accuracies and the overall spatial areas accuracies.

2.4.2 . Modelling latent variables
We also predict a pre-selected variable (here species dynamics, rep-

resented by the hidden variable) from each modelling approach based
on the values of other variables (here biomass of species groups). We
want to compute P(Ht|Xt, Xt − 1), where Ht represents the hidden
variable and Xt represents all observed variables at times t. We use the
predicted variable states (or species groups biomass) from time t to
infer the hidden state at time t. The hidden variable was parameterised
using the Expectation Maximization (EM) algorithm (Bilmes et al.,
1998). In the first step of the EM, the hidden variable is inferred using
the predicted biomass, whilst in the second step the estimated likeli-
hood function is maximised. When the algorithm converges to a local
maximum, the parameters are estimated.

The hidden variable from everymodel was statistically tested for the
presence of an increasing or decreasing trend using the Mann Kendall
test (Jennings et al., 2002) and the distribution of the hidden variable
was compared to the observed variable it might represent (e.g. group
of species biomass or zooplankton biomass) using the Mann–Whitney
U test. The null hypothesis, that is being tested by Mann–Whitney U,
is that the distributions of two groups (here, hidden variable and bio-
mass) are identical. Note, if the p value is small (p b .05), we reject the
null hypothesis and conclude that the two distributions are distinct,
however if the p value is large (p N .05), the data do not give us any rea-
son to reject the null hypothesis which does not necessarily mean that
the two distributions are identical but there is no compelling evidence
that they differ significantly (Cheung and Klotz, 1997). All statistical
tests were reported at 5% significance level.

2.4.3 . Structure learning
First, we used the learned hidden variable from ARHMM to incorpo-

rate it into the relevant spatial dataset in a structure learning hill-climb
to identify trophic interactions between species groups and with their
environment. The hill-climb was conducted with 10 random restarts.
Random restarts were preferred to conditional independence tests as
we wanted to measure the confidence of each interaction being in the
network, not just examine the dependency relationships. In addition,
to learn the network structure for each year in the time window, the
hill-climbing was conducted on a window of data (size of window =
10). In this way, we would be able to capture any significant functional
interactions over the previous 10 years. Then, we apply the learning for
500 iterations, in the case of the network learning for individual areas
alone (7 areas, each matrix with the size of 7 × 28). We use the same
hill-climb procedure to learn the connections of each P, SP and LP spatial
node in the relevant spatial network (each matrix with size of 9 × 28).
We found the window size and number of iterations through experi-
mentation to be optimum when dealing with limited time series.

Next, we apply the structure learning to identify functional relation-
ships between groups of species, without the influence of stressors. The
trophic aggregated speciesmatrix (21×32, longer time series)was con-
ducted through the hill-climb for 4000 iterations. We defined interac-
tions of high confidence in time as those in which we have the



Table 1
Summary of the applied dynamic BN models in the study. Models are ordered based upon complexity level in regards to number of hidden variables (HVs) and spatial nodes.

Model Name HVs Spatial nodes Comments

1. ARHMM Autoregressive hidden Markov model 1 None Fixed structure
2. DBN Dynamic Bayesian network 1 None Flexible structure but possible information loss due to having only a single HV
3. GHDBN Global hidden dynamic Bayesian network 1 None Highlights trophic dynamics at a wider scale
4. SDBN Spatial dynamic Bayesian network 1 3 Highlights the spatial effect
5. HDBN Hidden dynamic Bayesian network 2 None Highlights heterogeneity of the driving factors
6. HSDBN Hidden spatial dynamic Bayesian network 2 3 Highlights heterogeneity of the driving factors and the spatial effect

Table 2
Sum of squared error (SSE) of P, SP and LP biomass predictions generated by ARHMM (a),
DBN (b), SDBN (c), HDBN (d) andHSDBN (e). The * indicatesmost accurate predictions for
individual species groups.

Area P SP LP

(a) ARHMM
1. 24.79 24.71 27.29
2. 20.57 31.02 20.05
3. 21.87 20.16 25.68
4. 33.14 19.54* 33.07
5. 27.38 21.52 26.68
6. 30.12 25.52 12.79*
7. 24.53 22.49 27.27

(b) DBN
1. 22.88* 20.31 33.86
2. 32.82 33.95 26.55
3. 21.51 15.35 22.57
4. 25.80 22.65 26.71
5. 27.02 32.28 32.38
6. 26.82 30.95 20.88
7. 27.76 25.77 24.35*

(c) SDBN
1. 34.26 25.66 27.17
2. 13.13* 30.38 17.04*
3. 25.16 19.76 30.38
4. 26.83 26.25 27.48
5. 27.31 20.77 26.86
6. 29.41 20.21 14.72
7. 23.75* 21.09* 27.36

(d) HDBN
1. 23.52 24.33 33.54
2. 20.92 31.99 24.20
3. 19.15 19.40 20.52*
4. 26.46 23.08 25.02
5. 31.05 22.93 25.14*
6. 27.09 26.52 21.15
7. 29.21 28.50 32.71

(e) HSDBN
1. 23.46 20.11* 25.46*
2. 20.38 30.05* 25.03
3. 18.32* 14.90* 21.59
4. 25.65* 21.35 23.69*
5. 26.75* 20.76* 34.16
6. 24.85* 19.48* 14.67
7. 30.86 22.53 30.14
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greatest mean confidence of being in the generated network
(threshold ≥ 0.2). During this hill-climb, we generate a dynamic BN,
which we will refer to as global hidden DBN: GHDBN, the structure for
which was imposed by only incorporating the resulting data learned
species group interactions during the same hill-climb .

3. Results

In the following,we showhowourHiddenSpatial Dynamic Bayesian
Network (HSDBN) model outperforms the other tested methods on
predictive capability of species groups biomass but the predictive per-
formance varied across spatial areas and with species aggregation. We
explore the latent variables characteristics outlining the successful per-
formance of our model, when reflecting on the trophic dynamics across
space and time. Our results demonstrate spatial heterogeneity and high
variability of species groups biomass in time. Finally, we present discov-
ered interactions between species groups from collected field data and
confirm on key mechanisms involved in shaping the underlying func-
tional networks.

3.1. Comparative evaluation of biomass predictions

The produced biomass predictions of species groups showed great
variability in their predictive accuracy from the applied probabilistic
models: ARHMM (Table 2a), DBN (Table 2b), SDBN (Table 2c), HDBN
(Table 2d) and HSDBN (Table 2e). Comparison of the predictive perfor-
mance across all model types indicates varying spatially predictive ac-
curacy which is a reflection of the models' features in combination
with the spatially specific characteristics of each area and species
aggregation.

When comparing the overall biomass (least SSE per area), the
HSDBN model (Table 2e) managed to perform most accurately in cer-
tain spatial areas (1, 3, 4 and 6), compared to the other testedmodelling
approaches, which is reassuring that the inference scheme can handle
the increased model complexity. HSDBN reported predictions with
highest accuracy for most of the individual species groups (look at * in
Table 2e). Interestingly, P and SP species were predictedmore accurate-
ly compared to LP, highlighting the importance of species-specific
effects in their habitat following external disturbances. For the remain-
ing areas (2, 5 and 7), the Spatial Dynamic Bayesian Network model
(SDBN, Table 2c) produced better overall predictions. Although the gen-
eral improvement in predictive accuracy of the HSDBN model over the
competing probabilistic models, we notice the similar level of accuracy
(least SSE difference: ≤5.0, between the generated overall predictions of
two models) for some of the areas. For example, the Hidden Dynamic
Bayesian Network (HDBN) and Dynamic Bayesian Network models
(DBN) performed respectivelywith a similar level of accuracy, following
the HSDBN for areas 3 and 4 (Table 2b, d, e).

Finally, the biomass predictions generated during the BN structure
learning for the whole of North Sea by the Global Hidden Dynamic
Bayesian Network model (GHDBN, Table 1, Appendix A) were overall
less accurate compared to HSDBN. Interestingly, the GHDBN performed
with similar level of accuracy to the SDBN for areas 2 and 7, confirming
the significance of the spatial relationship between these areas and their
neighbours. The GHDBN will not be further addressed as a competing
model in the discussion, we simply wanted to state the overall predic-
tive accuracy during the learning process of a static BN.

Biomass predictions from all models were sensitive to the observed
variables incorporated as the study involved work with generally noisy
ecological data due to the complex natural processes involved in
generating such data and some sampling variation for the survey data
(according to experts). We reported some higher SSEs (for example
area 1 in Table 2c) which are not only due to structural uncertainties
of themodels but also due to empirical data uncertainties (for example,
the outliers in some of the plots from Figs. 6 and 7). In addition, there
was some similarity in accuracy of generated biomass predictions
from different models that might be attributed to the similar effects of
changing climate on many species (Fernandes et al., 2013). However,
our comparative evaluation of multiple model architectures, that reflect



(e) LP, HSDBN (f) LP, HDBN

(a) P, HSDBN (b) P, HDBN

(c) SP, HSDBN (d) SP, HDBN

Fig. 6. Observed standardised biomass of P, SP and LP and their predictions generated by HSDBN (a,c,e) and HDBN (b,d,f) for area 3. Note the negative scale is due to standardisation. Di-
agonal represents perfect prediction.
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the different hypothesis of the North Sea system, is one way of dealing
with structural uncertainty.

We now look at the groups of species: pelagics (P), small piscivo-
rous (SP) and large piscivorous (LP) and their biomass predictions in
time for some of the areas on which the HSDBN performed most ac-
curately and compare these with some of the inferior competing
models (we focus on models with the least SSE difference: ≤5.0,
between the overall biomass predictions). The imposed HSDBN net-
work structures for these areas are shown in Fig. 9 (more discussion
on these structures in Section 3.3 Structural analysis). We also illus-
trate our model's predictive accuracy through the use of “what if”
type descriptions of the network structures in these areas in re-
sponse to actual data changes (ICES DATRAS database and ERSEM
model outputs).

HSDBN outperformed the other probabilistic models in predicting
species biomass for area 3 (Fig. 6a,c,e) and was followed by the HDBN
(Fig. 6b,d,f) with relatively similar accuracy. The HSDBN managed to
capture the species biomass variations in time (Fig. 8a,c,e), specifically
reflecting on the general decline of the P group, although, both compet-
ingmodels failed to pick up someof the outlier observations for P and LP
(Fig. 6a,b,e,f). Our HSDBNmodel predicted the general P and late 1990s
SP biomass decline (Fig. 8a,c) when the fisheries catchwas high, howev-
er this started to change in more recent years in response to fisheries
catch becoming low, which led to some increase only in the SP biomass.
Interestingly, we notice some similarity in the reproduced individual
year effects between SP and LP (Fig. 8c,e),which coincidedwith increase
in the SP biomass and surrounding spatial P biomass in recent years.

The HSDBN produced most accurate predictions also for area 1,
reflecting on the declining trend specifically for SP and LP and generally
strong individual year effects for P (Fig. 8g,h,i). The model was able to
reproduce the decline in the SP and LP biomass, when temperature
was increasing and fisheries catch was declining in combination with
strongly varied year effects of the surrounding spatial P biomass.

Our results showedmost accurate predictions by the HSDBN for area
6 (Fig. 7a,c,e)whichwas followedwith similar performance by the SDBN
(Fig. 7b,d,f). We notice some of the outlier points for SP and LP, which
both models did not manage to capture perfectly, whilst predictions for
P were generally better. Even some of the outliers, that the HSDBN did
not detect perfectly, we can see from Fig. 8b,d,f, that the model reflected
on the temporal biomass variations of P and explicit decline of the SP and
LP groups. Similarly to area 1, ourmodelwas able to re-create the decline
in the SP and LP biomass when fisheries catch started to decline in late
1990s to early 2000 and the surrounding spatial P biomass started to in-
crease. Again similarly to area 1, the reproduced individual year effects
for the P biomass were relatively strong, although we see some increase
in early 2000 when the surrounding spatial SP biomass started to in-
crease but the spatial LP biomass continued to decline.

To summarise, we can see that our model provided reliable predic-
tions at spatially and temporally resolved scales, highlighting the
species-specific effects following interactions between and among



(a) P, HSDBN (b) P, SDBN

(c) SP, HSDBN (d) SP, SDBN

(e) LP, HSDBN (f) LP, SDBN

Fig. 7. Observed standardised biomass of P, SP and LP and their predictions generated by HSDBN (a,c,e) and SDBN (b,d,f) for area 6. Note the negative scale is due to standardisation. Di-
agonal represents perfect prediction.
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species groups and their environment. The HSDBN reliability of model-
ling biomass variations allowed us to identify patterns in the species
dynamics of different spatial areas (for example areas 1 and 6) and the
mechanisms (either biotic, abiotic or both) involved in shaping the un-
derlying ecological networks. Our approach has further highlighted the
importance of distributional heterogeneity and spatial autocorrelation
when building predictive models of such diverse and exploited ecosys-
tems. We encountered time lag in some of the confidence interval plots
from Fig. 8 for areas 6 and 1, which we believe is to be explained with
structural and parameter uncertainties that are specific to either spatial
areas or species aggregation type. Although, we encountered some
time lag, the data preparation and analysis such as standardisation,
non-parametric bootstrap and spatial autocorrelation further account
for confidence in our results and HSDBN structure applied.

3.2. Latent variable analysis

To recall, in our HSDBN approach, we inspect the states of the two
HVs—one general tomodel the general trophic dynamics and a specif-
ic HV to learn the spatial effect of zooplankton as it wasmissing in the
model (due to limitation in spatial resolution) but is here validated
against the measured zooplankton for the whole of North Sea. We
analyse the hidden variables' features from all areas, however for
some of the areas, we also report results with respect to the inferior
competing models from Section 3.1 Comparative evaluation of bio-
mass predictions.

The general HV for areas 1 and 6 (figure not shown) captured some
of the species biomass characteristics and it successfully managed to re-
flect on a temporal decline (trend identified, p b .05) in the series, coin-
ciding with decline in the SP biomass for area 1 (Z=1.59, d.f. = 26, p=
0.11) and LP biomass for area 6 (Z=0.4, d.f. = 26, p=0.34), whilst for
area 2 the HVwas complex andmuch less explicit (absence of statistical
trend, figure not shown). The specific HV from these areas is capturing
the zooplankton dynamics with high similarity: area 1 (Z = 0.17,
d.f. = 26, p = 0.86, Fig. 10a), area 6 (Z = 1.02, d.f. = 26, p = 0.31,
Fig. 10c) and area 2 (Z=−0.88, d.f. = 26, p = 0.38). The zooplankton
is characterised by a distinct decline until late 1990s which was cap-
tured by the specific HV from area 2 (trend identified, p b .05), whilst
no statistical trend was identified for areas 1 and 6.

Results from our approach for area 7 failed to identify any statistical
similarity or trend by the general HV however the specific HV (Fig. 10d)
performed more accurately in terms of reflecting on the zooplankton
biomass (Z = 0.02, d.f. = 26, p = 0.99). It captured the declining
trend (p b 0.05) in time with the lowest values found around late



(a) P, Area 3 (b) P, Area 6

(c) SP, Area 3 (d) SP, Area 6

(e) LP, Area 3 (f) LP, Area 6

(g) P, Area 1 (h) SP, Area 1

(i) LP, Area 1

Fig. 8. Biomass predictions of P, SP and LP generated by the HSDBN for areas 3 (a,c,e), 6 (b,d,f) and 1 (g,h,i). Solid line indicates predictions and dotted line indicates standardised observed
biomass. 95% confidence intervals report bootstrap predictions' mean and standard deviation. Note the negative scale is due to standardisation.

150 N. Trifonova et al. / Ecological Informatics 30 (2015) 142–158
1990s. Results from both HDBN and HSDBN for area 5 showed that the
zooplankton was actually modelled by the general HV, rather than the
specific HV, the opposite of what we were aiming to find. Although the
general HV managed to reflect on some zooplankton variations in time
(Fig. 10b), no temporal trendswere found in either HV and no statistical
similarity was found with either zooplankton or other species group
biomass. Following the SDBN (failed to identify any statistical similarity
or trend by the general HV), it was the ARHMM that produced most ac-
curate biomass predictions for areas 7 and 5 and the HVs generated by
this model were characterised by a temporal decline (trend identified,
p b .05), coinciding with decline in the P biomass for both area 7 (Z =
0.56, d.f. = 26, p = 0.73) and area 5 (Z = −0.71, d.f. = 26, p = 0.48).

For areas 3 and 4, HSDBN performed well in terms of the specific HV
learning the zooplankton dynamics (area 3: Z=1.40, d.f.=26, p=0.16



(a) Area 1

(b) Area 3

(c) Area 6

Fig. 9.HSDBN network structure for areas 1 (a), 3 (b) and 6 (c). HV stands for hidden var-
iable. Spatial nodes are abbreviated as P sp., SP sp. and LP sp. Edges between nodes (or var-
iables) represent dependence relationships, the edges shown by a dotted line are defined
by the expert.
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and area 4: Z = 0.10, d.f. = 26, p = 0.92) whilst the general HV was
much less explicit and clear, failing to identify statistical similarity
with the observed trophic biomass.
(a) Area 1

(c) Area 6

Fig. 10. The expected value of the specific HV (solid line) for areas 1 (a), 6 (c), 7 (d) and gener
zooplankton (dotted line). The solid line indicates upper and lower 95% confidence intervals, ob
scale is due to standardisation.
Comparative evaluation of biomass predictions from Section 3.1 in-
dicated that species groups biomass is predicted with relatively similar
accuracy for areas 3 and 4 by the DBN. The general HV generated by the
DBN for area 3 (Fig. 11a) managed to capture some of the temporal dy-
namics of the area (trend identified, p b .05) and specifically, the HV
identified similarity with the declining pattern in time of the P (Z =
0.61, d.f. = 26, p = 0.54) and LP biomass (Z = 1.12, d.f. = 26, p =
0.26). For area 4, the general HV from DBN, Fig. 11b (absence of statisti-
cal trend)was characterised by initial temporal increase until late 1990s
which coincides with increase in the P biomass (Z = −0.69, d.f. = 26,
p= 0.49), followed by temporal decline in more recent years observed
for both P and LP biomass (Z = −0.73, d.f. = 26, p = 0.47).

To summarise, the general HV managed to capture changes in the
variance of species groups biomass but that variedwith the HSDBN pre-
dictive accuracy in different spatial areas. For example in areas 1 and 6,
the general HVmodelled a decline, reflective of the underlying biomass
changes, whilst in areas 2 and 7, the general HVwas less explicit. These
results outline the importance of the spatially-specific driving factors on
species dynamics and provide insights on spatial patterns in terms of
ecological stability and resilience. The specific HV from our HSDBNman-
aged to learn the zooplankton biomass variations in all areas (general HV
for area 5), further giving us confidence in the novel methods presented
here in terms of modelling unmeasured spatial effect, that provides us
with more accuracy on the structure and functioning of the underlying
ecological networks and significance of the species-specific dynamics in
their habitat.

3.3. Structural analysis

3.3.1. Discovered interactions within a spatial area
We now investigate trophic associations and interactions with key

stressors (temperature and commercial catch) identified within each
area by the hill-climb structure learning fromdata. To recall, we only re-
port interactions of high confidence (confidence threshold defined in
Section 2.4.3 Structural analysis).

Results from Table 3 showed that interactions of species groupswith
both anthropogenic and environmental factors, are of key importance
when determining the local trophic dynamics and functional networks.
(b) Area 5

(d) Area 7

al HV for area 5 (b) generated by HSDBN with the observed standardised biomass for the
tained from bootstrap predictions' overall mean and standard deviation. Note the negative



(a) Area 3 (b) Area 4

Fig. 11. The expected value of the general HV (solid line) for area 3 (a) and area 4 (b) generated by DBNwith the observed standardised biomass for the P trophic group (dotted line). The
solid line indicates upper and lower 95% confidence intervals, obtained from bootstrap predictions' overall mean and standard deviation. Note the negative scale is due to standardisation.
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In particular, there were high confident links identified between catch
and all groups of species in areas 2, 3 and 7. In areas 1, 4 and 6 interaction
with catch was found only for some of the species groups. Conversely,
area 5 was the only area in which there were no confident links found
with either one stressor. In this area, a single trophic interaction was
found. Interestingly, there were high confident links identified between
temperature and some of the higher trophic level species groups rather
than Net PP on which temperature has a direct influence. The hill-
climbperformedwell in termsof identifying correct trophic interactions
in all areas (according to expert knowledge). In particular, for areas 3, 4
and 7we found all expected predator–prey interactions, including some
other interactions of indirect influence: Net PP–P and Net PP–LP. Going
back to Fig. 9 (HSDBN structure for some of the areas on which the
model performed most accurately), we can see that interactions be-
tween catch and SP and P species were consistently learned in all
three areas, along with the trophic associations: P–SP and SP–LP.

3.3.2. Discovered interactions between spatial areas
Wenow look at the discovered interactions across the whole of North

Sea for each type of functional relationship: P–SP, P–LP and SP–LP. The
majority of confident links were identified for P–SP, followed by P–LP.
Results presented in Fig. 12 show that links of high confidencewere dis-
covered between areas 1–3 (P–SP and P–LP), 2–5 (P–SP and SP–LP),
areas located relatively spatially closer to each other. However at the
same time we found high confident links between areas 1–6 (all func-
tional relationships) and 1–7 (P–SP and P–LP), located at further
distances.

Next, we present the temporal variations of the identified relation-
ships between some of the areas from Fig. 12, note we generally chose
to present only some areas but based upon the ordered confidence of
the estimated relationship. Individual year effects were very strong for
all relationships, however we notice the spatially-specific differentiation.
The P–SP (Fig. 13a) relationship was generally characterised with some
temporal decline around late 1990s to early 2000 followed by increase
over recent years but that was more evident between areas 1–3 and 1–
7, rather than 2–5, which was generally of higher confidence (≥0.5) in
time, except for some decline occurring in more recent years. Similarly,
Table 3
Learned trophic associations and interactions with key stressors (catch and temperature) for eac
hill-climb for the time window: 1993–2010, is reported in brackets). The time window starts f

Areas Catch Tem

1 P (0.26) SP
2 P (0.51), SP (0.39), LP (0.41) SP

3 P (0.21), SP (0.27), LP (0.28) No
4 Net PP (0.42), LP (0.44) P (0
5 None No
6 Net PP (0.21), LP (0.23), SP (0.44) SP
7 Net PP (0.32), P (0.45), SP (0.46), LP (0.48) SP
P–LP (Fig. 13b) was characterised by a declining trend again between
areas 1–3, whilst 2–3 was consistently increasing in time. The SP–LP
(Fig. 13c) relationship had a general trend of temporal increase from
early 2000 which was evident between all areas.

To summarise, results from our experiments showed that there was
great spatial and temporal variation of the trophic dynamics in this eco-
system, however the high predictive accuracy of our HSDBN and its suc-
cessful latent variable characteristics in modelling the biomass changes
and spatial unmeasured effect help us define thismodel as a final choice,
out of the presentedmodels, that we propose for further use by experts
when looking at trophic dynamics in different ecosystems. Here, the
HSDBN is the most thorough and comprehensive model choice which
incorporates the effect of spatial autocorrelation but also the impact of
fishing and environmental stressors when modelling the spatial and
temporal food web dynamics within the North Sea. The model has fur-
ther highlighted the importance of spatial heterogeneity in modelling
trophic dynamics, the value of accounting for latent effects in learning
biomass changes across space and time but also the need for further
understanding species-specific effects in their habitat following anthro-
pogenic disturbances. Expert knowledge is important, however when-
ever possible a comparison of different modelling structures should be
performed as we have done here which allowed us to identify patterns
in the characteristics of different spatial areas andmechanisms involved
in shaping the functional ecological networks, adding up knowledge to
the current expert and especially in terms of planning on future man-
agement effort.

4. Discussion

4.1. Summary of modelling approaches

In this study, the most challenging problemwas to try assessing the
network reconstruction on real data for which the true interaction net-
work is not well understood (Faisal et al., 2010). However, the fact that
our Hidden Spatial Dynamic Bayesian Network (HSDBN) approach
showed consistently accurate biomass predictions indicates that the in-
creased model complexity applied here has resulted in revealing
h of the 7 spatial areas (the estimatedmean confidence of each interaction, learned by the
rom 1993 due to the windowing required during the hill-climb.

perature Trophic

(0.46) SP–LP (0.55)
(0.54) P–SP (0.70)

Net PP–SP (0.44)
ne P–SP (0.35), SP–LP (0.36), Net PP–P (0.22)
.22) Net PP–LP (0.24), P–SP (0.22), P–LP (0.42), SP–LP (0.25)

ne P–LP (0.31)
(0.44) P–SP (0.56)
(0.54) Net PP–P (0.38), P–SP (0.64), P–LP (0.66)



(a) P-SP (b) P-LP

(c) SP-LP

Fig. 12. Learned trophic interactions P–SP (a), P–LP (b) and SP–LP (c) for all 7 spatial areas (numbered in figure). The estimated mean confidence by the hill-climb, for the time window:
1993–2014 (to recall, longer time series here), is shown above or below the links. Note the links represent dependence, not causality. The time window starts from 1993 due to the
windowing required during the hill-climb.
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genuine patterns of the species interaction networks and dynamics. Our
comparative evaluation of species groups biomass predictions and la-
tent variable analysis indicated the expected differences across the spa-
tial areas reflective of the underlying heterogeneity.
In general, more complex models like HSDBN and SDBN, resulted in
better predictive performance, suggesting that accounting for additional
sources of variation removed spurious interactions and let to a more
plausible network structure (Faisal et al., 2010). The difference in



(a) P-SP (b) P-LP

(c) SP-LP

Fig. 13. Estimated confidence by the hill-climb of each functional relationship occurring across the whole of North Sea: (a) P–SP between areas 1–3 (solid line), 1–7 (dashed) and 2–5
(dotted); (b) P–LP between areas 1–3 (solid), 2–3 (dashed) and 4–5 (dotted); (c) SP–LP between areas 1–6 (solid), 3–4 (dashed) and 4–6 (dotted). Note the time window starts from
1993 due to the windowing required during the hill-climb.
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predictive accuracy is to be expected as the autoregressive hiddenMar-
kov model (ARHMM) undertakes relatively simple modelling assump-
tions and fixed structure, that are unable to describe the species
dynamics as accurately as our HSDBN. The general HSDBN improve-
ment over DBN underlines the negative effect of information loss
when only incorporating a single hidden variable and the similar perfor-
mance of theHDBN toHSDBN for some of the areaswas due to structur-
al similarity and increased modelling complexity but also due to less
prominent spatial effects. The HSDBNwas able to performwell because
it evaluates the relative influence of different driving factors when
modelling trophic dynamics. The successful performance of the model
highlights the heterogeneous nature of the species dynamics and gives
us more accurate insights on the structure of the underlying local eco-
logical networks. Conversely, the successful performance of the SDBN
highlights the uniform nature of the local trophic dynamics, because
the importance of the driving factors is understated by the significance
of the spatial relationship between neighbouring areas. Such results
allowed us to identify patterns in the different spatial areas in terms of
importance of the mechanisms involved in modelling the trophic dy-
namics, which we discuss in detail for each area below.

We imply that when there is genuine spatial heterogeneity, more
comprehensive models are required to model the food web dynamics,
as already suggested by (Aderhold et al., 2012). Themore explicit influ-
ence and resulting complex species-specific effects of climate and fish-
ing pressure have been extensively discussed for some of the areas
(such as 1, 2 and 6) comparing to others (Perry et al., 2005);
(Simpson et al., 2011) and (Jennings et al., 1999). Our results showed
that the general HV for areas 1 and 6managed to reflect on the temporal
decline, specifically for the LP group,whilst the general HV for area 2was
much less explicit, outlining spatial differences in the ecological stability
and resilience, even the comparable influence from external stressors in
these areas. The specific HV for these areas managed to capture with
high accuracy some of the zooplankton characteristics, adding better
understanding to the structure of the local functional networks when
modelling trophic dynamics. Such diverse areas seem to exhibit a
range of discontinuous disturbances which would be more difficult to
interpret by a single hidden variable or simpler modelling architecture
like the ARHMM. In addition, our results of predictive accuracy in
terms of “what if” type descriptions from Section 3.1 further outline
the heterogeneous nature of the species dynamics in areas 1 and 6, fol-
lowing themutual influence of external disturbances and trophic inter-
actions and their importance for the structure and stability of the local
functional network. Interestingly, better biomass predictions for area 2
were produced by the SDBN, suggesting the stronger spatial relation-
ship that the neighbouring areas might have with the species dynamics
in area 2 but also its potential importance for habitat suitability, which
could be further investigated by experts in terms of management
schemes.

In the absence of spatial heterogeneity, when there is no room for
improvement, HSDBN shows relatively similar performance as DBN,
for example in the case of areas 3 and 4, where biomass predictions
were reported with similar accuracy between the two models
(Tables 2e,b). The general HV from HSDBN was much less explicit but
the HV from DBN successfully managed to capture the underlying tro-
phic dynamics of these geographically similar areas, which could be ex-
plained with the less influential spatial differentiation but high
similarity of the undergoing mechanisms involved in shaping the local
food web dynamics and more explicit ecological resilience compared
to other areas. The predictive consistency in bothmodelling approaches
at a relatively small spatial scalewould suggest changes in trophic inter-
actions to be of key importance compared to local fisheries exploitation,
as previously suggested (Daan et al., 2005). Spatial heterogeneity im-
plies that in some regions prey are more affected by predators than in
others (Aderhold et al., 2012). Also, major predators like cod (Gadus
morhua) migrate and disperse on an annual basis at a comparable
scale (Daan, 1978). Hence, for little spatial heterogeneity but stronger
predation, as implied by (Aderhold et al., 2012), our approach might
perform at a similar level as DBN for areas 3 and 4, however we still rec-
ommend the HSDBN as it accounts for the effect of spatial autocorrela-
tion and anthropogenic and environmental disturbance and captures
the spatial unmeasured effect with high accuracy.

Comparative evaluation of the modelling approaches revealed that
the SDBN produced most accurate biomass predictions for area 7, fur-
ther outlining the importance of the spatial relationship between
neighbouring areas, when modelling trophic dynamics. The specific HV
from the HSDBN managed to accurately capture temporal variations of
the zooplankton biomass, but better general HV characteristics of the
underlying food web dynamics, were actually learned by the simpler
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modelling assumptions of the ARHMM, providing us insights on the
spatial ecological complexity and structure of the underlying network.
Hence, the biomass predictions and HV characteristics of modelling
the local trophic dynamics, suggest that area 7 is characterised by little
spatial heterogeneity (Aderhold et al., 2012) but with stronger spatial
relationship between its surrounding neighbours.

Similarly to area 7, most accurate biomass predictions for area 5
were reported by the SDBN, followed by the ARHMM, which was the
one to learn the general HV to be modelling the trophic dynamics of
the area. In addition, theHSDBN showed that the zooplanktonwas actu-
allymodelled by the general HV, rather than the specific HV, the opposite
of what the model was aiming to find. The specific HV modelled the P
biomass variations, highlighting the importance of species-specific dy-
namics for the ecological stability and that some species groups are
more important for the functioning of the local ecological networks,
compared to others. Such latent variable findings for this area suggest
the existence of strong regional differences, which are partly related to
differences in abundance and species composition of local communities,
as shown previously by (Rogers et al., 1998). The consequence of distri-
bution–abundance relationships is that heavily fished populations tend
to aggregate into smaller areas (Blanchard et al., 2005) which will re-
duce the area in which trophic interactions occur (Planque et al.,
2010). The limited size and relatively low trophic complexity of area 5
suggest why the simpler modelling assumptions of the ARHMM
would perform better here in learning the spatial dynamics. However,
in terms of accurate biomass predictions, complex models like the
SDBN performed better, similarly to area 7, further implying the
dominance of less elaborate food webs that are significantly affected
by their spatial neighbours, which adds more accuracy to the current
expertise on such areas and how that can influence decision making.
4.2. Identification of key stressors and species interactions

The identified functional relationships confirmed most of the
important trophic interactions that we expected to find, giving
us confidence in the applied methods here. We also managed to
identify some indirect links and interactions with fisheries catch
and temperature that allowed us more accuracy on the spatial in-
terpretation of the mechanisms involved in shaping the local net-
works. At the same time, we report some new insights on the
spatial and temporal differentiation of the underlying functional
networks.

One influential factor for all trophic groups was their respective
fisheries catch. This is not surprising as it is already well documented
that fishing can have a strong direct effect on fish populations (Cook
et al., 1997; Daan et al., 1996; Pope and Macer, 1996). Our results
showed the most confident interactions occurred between fisheries
catch and the LP group, followed by P. However, this varied spatially
across the areas and although fishing has an important influence on
the species biomass, it is not a deterministic response, as we found
highly confident interactions between groups of species and with
their environment.

A notable difference between the trophic groups was that confi-
dent interactions with temperature occurred only with the SP group
in all areas, except for area 4, where we found interaction with the
P group. This has already been found in other studies and was sug-
gested to be a reflection of the extensive linkages of the SP species
to both P and LP species (Heath et al., 2012). Direct effects of temper-
ature on fish are well documented, however larval stages are proba-
bly influenced by climate indirectly through bottom-up effects
impacting the plankton (Heath et al., 2012). Although we found indi-
rect interactions such as Net PP–P and Net PP–SP, we are not in a po-
sition to make conclusions about the influence of the bottom-up
effect due to the spatially-specific and seasonally complex hydrody-
namics of the areas.
We managed to identify highly confident functional relationships:
P–SP, P–LP and SP–LPwithin individual areas, outlining the importance
of trophic associations for the functioning of the local ecological dynam-
ics. Our produced functional networks across the whole of North Sea
showed the highest number of confident links for P–SP, which further
confirms the extensive linkages of the SP group. In addition, the extent
of the discovered networks for P–SP, followed by P–LP, could be
explained by some seasonal migrations that pelagic species
undertake—fishmigrate north in wintertime and south in summertime,
reflecting on the seasonal temperature gradient in the North Sea (Beare
et al., 2004). The SP–LP network had the lowest number of confident
links, which could be explained with the general biomass decline of LP
species (size-specific removal of larger individuals), resulting in overall
reducedmigration due to reducedmean energy storage levels (Planque
et al., 2010). Furthermore, spatial differences in recruitment and surviv-
al, prey availability and reproductive output, coupled with some influ-
ence on migrations, are more likely to influence the produced
network outputs here (Engelhard et al., 2014).

There was spatial consistency in the identified functional networks:
highly confident links from all three functional relationships were
found between areas 1–3, 1–6 and from only two of the relationships:
1–4, 5, 7 and 2–3, 5, and 4–5, 6, highlighting the fact that relationships
are scale dependant but also the high importance and quality of the
local habitat for regional food web dynamics. Such spatial consistency is
outlining the metapopulation structure of species in the North Sea, likely
to provide a buffer through local adaptations (Engelhard et al., 2014). At
the same time trophic interactions between areas, like 1–6 and 2–6, could
refer to the similarity of the species dynamics due to comparable anthro-
pogenic influence and spatial heterogeneity in these areas. Conversely,
individual year effects were very strong for the functional relationships
with distinguished temporal trends found only for some of the interac-
tions rather than overall for the North Sea. Such spatial heterogeneity
could result from habitat fragmentation leading to decreased dispersal
or the optimal habitat being located in a more restricted area, leading to
increased aggregation (Frisk et al., 2011). Our findings of temporal in-
crease for SP–LP, we suggest to be due to site specific fisheries exploita-
tion targeting particular species and resulting in predation release of
small abundant species (Frisk et al., 2011). Interestingly, the decline
that we found in late 1990s to early 2000s for some of the interactions
could be explained with some functional changes that have been
discussed by experts before for the North Sea but again, such temporal
variation of the interactions was set apart in geographically-specific
order.

5. Conclusion

In this study, we have addressed the problem of revealing trophic
dynamics and functional networks by comparing different modelling ap-
proaches accounting for unmeasured latent effects and anthropogenic
influence. We have exploited the use of BNs with spatial nodes which
proved significant in terms of predictive accuracy of species groups bio-
mass. Overall, more complexmodels like ourfinal HSDBNmodel choice,
accounting for additional sources of variation, seemed to better reflect
on the underlying ecological dynamics, however the spatial characteris-
tics of the areas and interaction processes like dispersal and migration
are of importance as well. The general HV, fitted to the HSDBN, appears
to capture the relevant food web dynamics, whilst a second specific HV
models the dynamics of a taxon, that was missing from the model as
an observed variable. Our results show highly confident but spatially
and temporally differentiated ecological networks that indicate spatial
relationship of species and habitat with the particular mechanisms
varying from facilitation through trophic interactions. Revealed trophic
associations and interactions of species groups with their environment
were considerably better than random but we note that perfect recon-
struction is unlikely due to the noisy data and complex ecological pro-
cess involved (Faisal et al., 2010). However, our findings complement



Fig. 2 General structural form of the DBN model. Solid line represents fixed edges across
areas. The hidden variable (H), catch and remaining observed variables (not shown due
to optimum visualisation) are individually linked to either P, SP or LP (represented by
the dotted surrounding), depending on the spatial area (grey line). Connectivity between
P, SP and LP also differs spatially. Edges between nodes (or variables) represent depen-
dence relationships.
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traditional methods and have extended our knowledge into the com-
plexity of North Sea dynamics and its ecological structure and stability.
For a given area, reorganisation of the fishing fleet and management
strategies will be required to ensure that the right species are targeted
and harvested sustainably (Simpson et al., 2011). Management strat-
egies must also take into account the local population dynamics and
processes in a wider sense in order to maximise biodiversity and sur-
vival. Future work will involve informative priors based upon avail-
able expertise to create scenarios for an environmentally-oriented
management. This prior notion can be incorporated into the model
by adding a species dependent prior on the average biomass,
recently being investigated in the context of molecular biology
(Grzegorczyk and Husmeier, 2012).
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Appendix A
Table 1
Sum of squared error (SSE) of P, SP and LP biomass predictions generated by GHDBN.

Area P SP LP

1. 26.84 24.03 27.69
2. 14.65 29.20 19.90
3. 27.07 29.33 20.99
4. 26.08 23.72 28.56
5. 27.66 24.50 31.17
6. 26.19 21.31 15.14
7. 27.92 16.16 29.74
Fig. 1 Structural form of the ARHMMmodel. The model structure is fixed across all areas. H
stands for the hidden variable. Edges between nodes (or variables) represent dependence re-
lationships.Wedecidednot to showall observed variables only due to optimumvisualisation.

Fig. 3 General structural form of the SDBNmodel. Solid line represents fixed edges across
areas. The hidden variable (H), three spatial nodes (P sp., SP sp. and LP sp.), catch and re-
maining observed variables (not shown due to optimum visualisation) are individually
linked to either P, SP or LP (represented by the dotted surrounding), depending on the spa-
tial area (grey line). Connectivity between P, SP and LP also differs spatially. Edges between
nodes (or variables) represent dependence relationships.



(a) GHDBN map

(b) GHDBN general structure

Fig. 4 ICES statistical rectangles within the North Sea with the trophic groups: P, SP and LP,
shown within each area, used in the study (a). These groups are individually linked (repre-
sented by dotted surrounding) to either P, SP or LP across the different spatial areas (grey
line). Links or edges are not represented with a direction arrow due to the high number of
possible combinations of species interactions at a wider scale. The general structural form
of the GHDBN is shown in (b). Solid line represents fixed edges. The hidden variable (H) is
individually linked to P, SP and LP (represented by the dotted surrounding). Connectivity be-
tween P, SP and LP is varied (grey line). Edges between nodes (or variables) represent depen-
dence relationships.

Fig. 5 General structural form of the HDBNmodel. Solid line represents fixed edges across
areas. The general hidden variable (General HV), catch and temperature are individually
linked to either P, SP or LP (represented by the dotted surrounding), depending on the spa-
tial area (grey line). Connectivity between P, SP and LP also differs spatially. Edges between
nodes (or variables) represent dependence relationships.
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