1	Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea
2	
3	Andrew P. Rees ^{1*} , Kendra A. Turk-Kubo ² , Lisa Al-Moosawi ¹ , Samir Alliouane ^{3,4} ,
4	Frédéric Gazeau ^{3,4} , Mary E. Hogan ² , Jonathan P. Zehr ²
5	
6	¹ Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.
7	
8	² Department of Ocean Sciences, University of California Santa Cruz, 1156 High
9	Street, Santa Cruz, CA 95064, USA.
10	
11	³ Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire
12	océanologique, F-06230, Villefranche/mer, France
13	
14	⁴ CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche/mer,
15	France
16	
17	
18	
19	*Corresponding Author: <u>apre@pml.ac.uk</u>
20	Tel: +44 1752 633100
21	
22	
23	Keywords: Ocean acidification, nitrogen fixation, diazotrophs, mesocosm,
24	France, Corsica, Bay of Calvi
25	Abstract

2	The effects of ocean acidification on nitrogen (N_2) fixation rates and on the
3	community composition of N2-fixing microbes (diazotrophs) were examined in
4	coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm
5	enclosures of $\sim 50 \text{ m}^3$ each were deployed for 20 days during June-July 2012 in the
6	Bay of Calvi, Corsica, France. Three control mesocosms were maintained under
7	ambient conditions of carbonate chemistry. The remainder were manipulated with
8	CO_2 saturated seawater to attain target amendments of pCO_2 of 550, 650, 750, 850,
9	1000 and 1250 μ atm. Rates of N ₂ fixation were elevated up to 10 times relative to
10	control rates (2.00 \pm 1.21 nmol L ⁻¹ d ⁻¹) when <i>p</i> CO ₂ concentrations were >1000 µatm
11	and pH_T (total scale) < 7.74. Diazotrophic phylotypes commonly found in
12	oligotrophic marine waters, including the Mediterranean, were not present at the onset
13	of the experiment and therefore, the diazotroph community composition was
14	characterised by amplifying partial <i>nifH</i> genes from the mesocosms. The diazotroph
15	community was comprised primarily of cluster III nifH sequences (which include
16	possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small
17	numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The
18	implication from this study is that there is some potential for elevated N_2 fixation rates
19	in the coastal western Mediterranean before the end of this century as a result of
20	increasing ocean acidification. Observations made of variability in the diazotroph
21	community composition could not be correlated with changes in carbon chemistry,
22	which highlights the complexity of the relationship between ocean acidification and
23	these keystone organisms.
.	

- 1 **1.** Introduction
- 2

3 The impact of 250 years of industrial activity is now being detected 4 throughout our environment at scales that range from cellular to regional and even 5 global scales. The change in atmospheric carbon dioxide (CO₂) from ~280 parts per 6 million (ppm) in pre-industrial times to ~399 ppm in 2014 has impacted the Earth 7 system on several scales, not least of which are the warming of the atmosphere and 8 the oceans as a result of an enhanced greenhouse effect (IPCC, 2013). The oceans and 9 atmosphere are intimately linked so that changes to the partial pressure of atmospheric 10 CO_2 result in proportional changes in dissolved CO_2 in the marine environment. As a 11 result of this, the rise of global temperatures has been buffered by the exchange of 12 approximately ~26% of anthropogenic CO₂ into the oceans (Le Quéré et al., 2014) 13 and it is this condition that has resulted in a profound change to ocean carbonate 14 chemistry and the phenomenon of ocean acidification (OA) (Raven et al., 2005). As a 15 consequence, surface seawater pH is on average ~ 0.1 units lower than it was prior to 16 the industrial revolution, which equates to an increase in acidity of 26%. Earth system 17 models project a global additional decrease in pH by 2100 ranging from 0.06 to 0.32 18 units (15 – 110% increase in acidity) depending on our future CO₂ emissions (Ciais et 19 al., 2013). Elevated oceanic partial pressure of CO_2 (pCO₂) and the subsequent 20 decrease in pH will have direct and indirect impacts on microbial nutrient cycling and 21 carbon fixation which may fundamentally alter current biogeochemical cycles 22 (Hutchins et al., 2009)

Nitrogen (N₂) fixation is a critical process in the biogeochemical cycling of
elements in sub-tropical and tropical, nutrient poor waters (Carpenter & Capone,
2008) which has an equivocal response to OA. Research efforts into the sensitivity of

1	diazotrophic activity to OA have largely been focused on Trichodesmium. The first
2	reports showed increased rates of N_2 fixation with partial pressures of CO_2 between
3	750 and 1250 µatm relative to ambient conditions (Levitan et al., 2007, Barcelos E
4	Ramos et al., 2007, Hutchins et al., 2007, Kranz et al., 2009, Kranz et al., 2010).
5	These experimental investigations were performed under laboratory conditions using
6	a cultured organism, and most of these experiments were performed using replete
7	nutrient conditions. Hutchins et al. (2007) performed experiments under enriched and
8	limiting conditions of phosphorus (P) to find that N_2 fixation rates were stimulated by
9	higher levels of CO ₂ even in cultures experiencing severe P limitation, despite P being
10	one of the two nutrients most likely to limit N_2 fixation. Spungin <i>et al.</i> (2014) found
11	that P limitation actually led to an enhancement of the OA stimulation of N_2 fixation
12	by Trichodesmium. It would appear that limiting quantities of P might enhance
13	diazotrophy, Shi et al. (2012) found that N2 fixation rates of Trichodesmium were
14	impaired under conditions of iron depletion. Fu et al. (2008) performed similar studies
15	on the unicellular cyanobacterium Crocosphaera watsonii to find that under iron
16	replete conditions N ₂ fixation rates were enhanced at a pCO_2 of 750 µatm, compared
17	to iron deplete conditions where no effect was observed. A negative impact of OA
18	was also recorded, in Nodularia spumigena, a heterocystous diazotroph common to
19	the Baltic sea (Czerny et al., 2009), where cell division rates and nitrogen fixation
20	rates were reduced at CO ₂ levels up to 731 ppm. Results from this small number of
21	laboratory studies imply that N_2 fixation can be stimulated by OA, but that there may
22	be a relationship with the nutrient regime and particularly the bioavailable iron
23	concentration (Fu et al., 2008, Shi et al., 2012), and that this may vary between
24	different diazotrophic organisms.

1	The available evidence of OA impacts on natural communities of diazotrophs
2	is even more limited. Evidence presented by Hutchins et al. (2009) and Lomas et al.
3	(2012) showed that natural populations of Trichodesmium in the Atlantic Ocean were
4	stimulated by increases in CO_2 in a similar manner to those in culture. In contrast,
5	Gradoville et al. (2014) found no evidence, during 3 cruises and 11 experiments in the
6	North Pacific, of enhanced N_2 fixation by <i>Trichodesmium</i> under elevated levels of
7	CO ₂ and further, that there was no change from this under altered conditions of
8	phosphorus, iron or light. Similarly, Law et al. (2012) and Böttjer et al. (2014)
9	recorded no relationship between CO_2 and N_2 fixation for CO_2 amendments up to 750
10	and 1100 µatm respectively for natural diazotroph communities dominated by
11	unicellular cyanobacteria in the North and South Pacific.
12	The Mediterranean is a semi-enclosed sea, which is oligotrophic in nature and,
13	due to its short ventilation period and dense urbanisations close to the coastal areas, is
14	susceptible to anthropogenic driven influences (The Mermex Group, 2011). Recent
15	evidence (Touratier & Goyet, 2011) indicates that all water masses in the
16	Mediterranean Sea are already displaying decreases in pH of 0.05 to 0.14 units
17	(compared to the global mean decrease of 0.1), and thus appears to be one of the
18	regions that is most impacted by acidification (The Mermex Group, 2011).
19	The Mediterranean has proved enigmatic with respect to the characterisation
20	of its diazotrophy and diazotrophic communities and to date there have been only a
21	limited number of studies which have reported on this. Historically, indirect evidence
22	from nutrient budgets (Bethoux & Copinmontegut, 1986) and stable isotope studies
23	(Pantoja et al., 2002) indicate the potential for nitrogen fixation as an active process.
24	Garcia et al. (2006) and Rees et al. (2006) provided some of the earliest direct
25	measurements of N_2 fixation for the west and east basins respectively. The high rates

1	reported by Rees et al. (2006) have not been repeated and it would seem that the
2	upper limit is of the order of 17 $\text{nmolL}^{-1}\text{d}^{-1}$ as reported in the annual time-series of
3	measurements made by Garcia et al. (2006) at the DYFAMED site in the
4	northwestern basin. Krom et al. (2010) has argued that processes peculiar to the
5	eastern basin preclude the budgetary requirement for nitrogen fixation and that P
6	limitation in this region is too severe to allow diazotrophic activity. There is some
7	degree of variability in the rates that have been reported. Low N_2 fixation rates of <
8	0.15 nmol $L^{-1} d^{-1}$ have been recorded in open waters across both basins (e.g. Ibello <i>et</i>
9	al., 2010; Rahav et al., 2013; Ridame et al., 2011). During the BOUM cruise along a
10	2000km transect from west to east, the mean rates observed in the western basin were
11	higher than this at 0.63 \pm 0.45 nmol L ⁻¹ d ⁻¹ (Bonnet <i>et al.</i> , 2011), with maximum rates
12	of 1.80 ± 0.19 nmol L ⁻¹ d ⁻¹ measured in the vicinity of the plume of the River Rhone.
13	In a further time-series study at DYFAMED, Sandroni et al. (2007), recorded rates of
14	between 2 and 7.5 nmol $L^{-1}d^{-1}$, with maximum rates recorded at 10m depth during
15	August. It would seem that the higher rates of N_2 fixation reported (Bonnet <i>et al.</i> ,
16	2011, Garcia et al., 2006, Sandroni et al., 2007) are associated with nutrient replete
17	coastal environments. During a Saharan dust addition experiment in coastal waters of
18	Corsica (Ridame <i>et al.</i> , 2013) observed increases in rates of N ₂ fixation up to ~ 1.3 \pm
19	~1.0 nmol $L^{-1}d^{-1}$ from a background rate of ~0.2 nmol $L^{-1}d^{-1}$ following the addition of
20	Saharan dust to surface waters. During the BOUM cruise the diazotroph community
21	was dominated by picoplanktonic cyanobacteria affiliated to Group A,
22	Bradyrhizobium and α proteobacteria (Bonnet et al., 2011). Additionally the
23	filamentous cyanobacterium Richelia intracellularis was present at all stations
24	sampled (Bonnet et al., 2011), and also in the coastal eastern basin (Zeev et al., 2008).
25	In other coastal waters the presence of diazotrophs has been related to Archaea,

1 Proteobacteria and Cyanobacteria (Man-Aharonovich *et al.*, 2007; Le Moal &

2 Biegala, 2009).

3 The current consensus is that diazotrophy occurs throughout the 4 Mediterranean and similar to other variableswhich include oligotrophy and 5 productivity (The Mermex group, 2011) shows a decreasing trend from west to east. It 6 would appear that coastal regions might support greater rates of N₂ fixation than the open waters of the Mediterranean Sea. 7 8 We report here on a mesocosm experiment performed in the Bay of Calvi 9 (BC), Corsica, in the western basin of the Mediterranean during June and July 2012 10 during which the relationship between OA, N₂ fixation rate and diazotrophic 11 community composition was investigated. This experiment, which is described in 12 detail by Gazeau et al. (sbm, this issue - a), formed a contribution to the European 13 project 'Mediterranean Sea Acidification under changing climate' (MedSeA; 14 http://medsea-project.eu) which was launched in 2011 with the objective to assess 15 uncertainties, risks and thresholds related to Mediterranean acidification at 16 organismal, ecosystem and economical scales. 17 18 2. Methods 19

The Bay of Calvi is situated in the Ligurian Sea, on the northwest coast of Corsica in the Mediterranean Sea (Fig. 1). The bay is subject to little human disturbance and has been described as pristine (Richir & Gobert, 2014) with low river and sewage discharges supplying limited nutrients (Lepoint *et al.*, 2004). The open sea provides the main external source of new nutrients, albeit seasonal, providing deep, nutrient rich waters during the N-NE winds which occur during winter and early

1	spring and nutrient-poor surface waters during the more common SW winds (Skliris
2	<i>et al.</i> , 2001). Chlorophyll levels are typically low ($<1\mu$ g Chl a L ⁻¹) except during the
3	bloom period (February to April). It is these low nutrient, low chlorophyll (LNLC)
4	conditions which account for the oligotrophic description of the waters. The water
5	column is generally well mixed for the majority of the year, with sea surface warming
6	resulting in stratification from May to October (Gazeau, et al. sbm, this issue - a).
7	Nine mesocosms of 12m depth, $\sim 50 \text{ m}^3$ volume were deployed in a water
8	column depth of 25m for a period of 30 days. Six of them (P1 to P6) were subjected
9	to different target levels of pCO_2 (550, 650, 750, 850, 1000 and 1250 µatm
10	respectively) covering the range of atmospheric pCO_2 anticipated for the end of this
11	century and beyond (Bopp et al., 2013, Ciais et al., 2013). The remaining three
12	mesocosms (C1 – C3) were unaltered with a p CO ₂ of ~ 450 µatm corresponding to the
13	pCO_2 of surface waters in June and July at BC. An experiment of this scale does not
14	logistically allow the replication of treatments to the extent that might be achieved
15	under laboratory conditions. The replication of controls was considered of paramount
16	importance, particularly due to the grouping of mesocosms in clusters of three, with
17	one control per cluster (Gazeau et al, this issue - a). The creation of a gradient of CO_2
18	conditions rather than a low number of replicates has several advantages which
19	include providing a more powerful statistical test than equivalent ANOVA-based
20	designs with a small number of replicates (Havenhand et al., 2010).
21	pCO ₂ levels were achieved by additions of CO ₂ saturated seawater. Saturated
22	seawater was prepared by bubbling 100% CO_2 directly into 25L carboys containing 5
23	mm filtered (in order to remove fish and jellyfish, whilst leaving the mesozooplankton
24	community intact) seawater, which was collected from close to the mesocosm
25	anchorage at the near surface $(1 - 2 \text{ m})$. Between 50 and 500L of CO ₂ saturated

1	seawater was added using a diffusing system to individual mesocosms in order to
2	achieve a homogenous distribution of target levels of pH/pCO_2 . Additions were
3	performed over a four day period in order to minimise stress to the biological
4	community. Conditions of pH/pCO_2 were not modified further once target levels were
5	reached to minimise disturbance to the mesocosms and to allow the system to modify
6	its environment. Due to the relatively low proportional addition of saturated seawater
7	to mesocosms (0.1 to 1% of volume), impacts of this addition were considered to be
8	insignificant and were not monitored. For comparison, selected variables are
9	presented from within and outside of mesocosms on Day 0 and Day 20 in Table 1.
10	A limited number of samples (for diazotroph analysis) were collected outside
11	of the mesocosms prior to the experiment on Day-3. The experimental sampling
12	began on the 24 th June (Day 0) as targeted levels of OA were reached. Sampling of
13	individual mesocosms was achieved using an integrating water sampler (Hydrobios)
14	which collected a 5 litre sample over the full depth of the mesocosm. CTD profiles
15	were performed within and outside of mesocosms on a daily basis using a Seabird
16	19plusV2 with sensors for dissolved oxygen, salinity, temperature, fluorescence, pH
17	and light (PAR) irradiance.
18	
19	2.1. Carbonate Chemistry and chlorophyll <i>a</i>
20	
21	Dissolved Inorganic Carbon (DIC, C_T) was determined daily using an
22	automated infra-red inorganic carbon analyser (AIRICA). $C_{\rm T}$ measurements were
23	performed, at 25 °C, on 1200 μL samples directly poisoned after sampling with a
24	saturated solution of mercuric chloride (HgCl ₂). The system was calibrated ($r^2 \ge$

0.999) using 1100, 1200 and 1300 μ L samples of a certified reference material (A.

1 Dickson, Batch 117, which had values of: salinity = 33.503, C_T = 2009.99 µmol kg⁻¹, 2 total alkalinity (A_T) = 2239.18 µmol kg⁻¹). Precision of all measurements performed in 3 triplicate (n = 240) was better than ± 3.5 µmol kg⁻¹. Accuracy and stability tests of the 4 system over the experimental period (n = 38) found a mean offset from the certified 5 reference of -0.56 µmol kg⁻¹, which is well within the excepted limit of ± 2 s.d.

6 $A_{\rm T}$ was determined using a Metrohm Titrando titrator following the procedure described in Dickson et al. (2007; SOP 3b). This parameter was measured daily from 7 8 June, 24 (day 0) to June, 27 (day 3) and every second day from June, 27 to July, 16 9 (day 20) because of its low variability. Measurements were performed on triplicate 50 10 mL samples at 25 °C, which had been filtered through GF/F filters and poisoned with 11 HgCl₂. In coastal waters samples are filtered in order to remove any inorganic debris 12 or calcified organisms which might interfere with A_{T} analysis. The electrode was 13 calibrated every second day on the total scale using TRIS buffer solutions with a salinity of 35.0. Precision (± 1 s.d.) was better than 5.5 µmol kg⁻¹ (n = 170). Accuracy 14 and stability tests of the system over the experimental period (n = 41) found a mean 15 offset from the certified reference of -1.61μ mol kg⁻¹, which is well within the 16 excepted limit of ± 2 s.d. A_T values on non-sampling days were estimated as the mean 17 18 value $(\pm 1 \text{ s.d.})$ of the previous and subsequent day.

19 The carbonate chemistry was calculated with the R package seacarb (Gattuso 20 *et al.* 2015), using in situ values of temperature, salinity, $C_{\rm T}$ and $A_{\rm T}$. The standard 21 deviation of integrated parameters were accounted for through the application of a 22 Monte-Carlo procedure. For each determination, one thousand values were randomly 23 chosen between the mean ± 1 s.d. for each measured parameter ($C_{\rm T}$ and $A_{\rm T}$). Mean 24 values ± 1 .s.d. of seawater pH_T (total scale) and *p*CO₂ were calculated for each of 25 these 1000 iterations.

1	Samples for pigments analyses (including total Chl a shown here) were taken
2	every day. Two litres of sampled seawater were filtered onto GF/F. Filters were
3	directly frozen with liquid nitrogen and stored at -80 $^{\circ}$ C pending analysis at the
4	Laboratoire d'Océanographie de Villefranche (France). Filters were extracted at -20
5	°C in 3 mL methanol (100%), disrupted by sonication and clarified one hour later by
6	vacuum filtration through GF/F filters. The extracts were rapidly analysed (within 24
7	h) by high performance liquid chromatography (HPLC) with a complete Agilent
8	Technologies system. The pigments were separated and quantified as described in Ras
9	<i>et al.</i> (2008).
10	
11	2.2. Nitrogen Fixation
12	
13	Seawater samples were collected every second day from each mesocosm
14	before sunrise into a10 L dark carboy and returned to the laboratory within one hour
15	of collection. Samples were re-distributed into a single 2.4 L polycarbonate bottle per
16	mesocosm. Bottles were filled and sealed excluding all air bubbles with a drilled cap
17	fitted with a Teflon backed septa. 2.4 mL of 15 N-N ₂ (98 atom%, Sigma-Aldrich; Lot
18	#SZ1423V) were added to each bottle, which was incubated in-situ for 24 h at 6 m
19	depth close to the mesocosms. Incubations were terminated by gentle filtration onto
20	pre-combusted (12 hours at 450°C) 25 mm GF/F filters (Whatman) which were then
21	dried at 50°C for 24 h and stored on silica gel until return to Plymouth Marine
22	Laboratory (PML) where particulate nitrogen and ¹⁵ N atom% were measured using
23	continuous-flow stable isotope mass-spectrometry (PDZ-Europa 20-20 and GSL;
24	(Owens & Rees, 1989)), with rates determined according to Montoya et al. (1996).
25	Instrument precision was better than 0.23% CV based on urea standards ((Iso-

1 Analytical Ltd) in the range $0.25 - 2.0 \mu mol N$, which were analysed during three 2 sample runs of the mass spectrometer (mean ± 1 s.d. = 0.3659 atom% ± 0.0008 , 3 n=27). The mean particulate N content of samples was 0.84 µmol. The detection limit 4 for N₂ fixation rate was calculated from the determined ¹⁵N significant enrichment 5 level and the lowest observed particulate nitrogen concentration (Ridame *et al.*, 2013) 6 and was estimated at 0.042 nmol L⁻¹d⁻¹.

7 It has been recognised that rates of N₂ fixation determined in this manner may 8 prove to be somewhat of an underestimate due to an unequal dissolution with incubation time of the ¹⁵N-N₂ bubble (Mohr *et al.*, 2010). Absolute rates may remain 9 10 the same (Rees, unpublished) or may alter by between 1.4 (Mulholland *et al.*, 2012) 11 and up to 6 times (Groszkopf et al., 2012, Wilson, 2012) with modified methodology. 12 At the time that this experiment was performed we decided on an approach similar to 13 that taken by others (Langlois et al., 2012; Law et al., 2012; Ridame et al., 2013) and 14 considered that rates determined using a bubble addition could be considered 15 conservative, but that this would not impact on the relative changes between OA 16 treatments investigated. In Groszkopf et al. (2012), the differences noted between 17 these two methodological approaches are considered to be due to regional variability 18 which is likely a function of the diazotrophic community. Whilst the data we present 19 here indicates that a diverse community of diazotrophs was present, it was quite 20 different from the Atlantic community and none of the specific reasons noted by 21 Grosskopf (e.g. Trichodesmium buoyancy) would indicate that a varied response 22 should be expected in this study.

A further complication to the determination of N_2 fixation rates was recently introduced by Dabundo *et al.* (2014). Here it was indicated that there were instances where commercially supplied cylinders of ¹⁵N-N₂ were contaminated with ¹⁵N

1	labelled nitrate and ammonium with obvious potential for overestimation of N_2
2	fixation rates. The 15 N-N ₂ used during this experiment (Sigma-Aldrich; Lot
3	#SZ1423V) was not investigated in the Dabundo paper and was not tested for
4	contaminants. However, we are confident that contamination by ¹⁵ N nitrate and
5	ammonium was either extremely low or entirely absent. The same cylinder was used
6	during a second mesocosm experiment performed in the Bay of Villefranche (BV),
7	France during February and March 2013 (Gazeau et al, subm this issue - a). During
8	the BV experiment mean nitrate uptake rates in control mesocosms were determined
9	at ~30 nmol $L^{-1}h^{-1}$, which would suggest comparable rates of ammonium uptake by the
10	occupying microbial community for this time of year. N_2 fixation rate determinations
11	at BV performed in an identical manner to this investigation (BC) returned mean rates
12	of 0.1 nmolL ⁻¹ d ⁻¹ , which equate to ~0.03% of nitrate uptake rates (assuming 12 hour
13	day length).
13 14	day length).
	day length). 2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of
14	
14 15	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of
14 15 16	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of
14 15 16 17	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of nitrogenase genes (<i>nifH</i>)
14 15 16 17 18	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of nitrogenase genes (<i>nifH</i>) To characterise the diazotrophic community composition throughout the
14 15 16 17 18 19	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of nitrogenase genes (<i>nifH</i>) To characterise the diazotrophic community composition throughout the mesocosm experiments, 10 L samples were collected from each mesocosm every 4 d,
14 15 16 17 18 19 20	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of nitrogenase genes (<i>nifH</i>) To characterise the diazotrophic community composition throughout the mesocosm experiments, 10 L samples were collected from each mesocosm every 4 d, and filtered onto Sterivex TM filters (Millipore, Billarica, MA, USA) using gentle
14 15 16 17 18 19 20 21	2.3. DNA extraction, quantitative PCR (qPCR) and PCR amplification of nitrogenase genes (<i>nifH</i>) To characterise the diazotrophic community composition throughout the mesocosm experiments, 10 L samples were collected from each mesocosm every 4 d, and filtered onto Sterivex TM filters (Millipore, Billarica, MA, USA) using gentle peristaltic pumping. Samples were preserved by sealing the Sterivex TM after

1	Samples from mesocosms C1, P3, P5, and P6 on days 1, 5, 9, 13, 17, and 20,
2	as well as samples from outside the mesocosms at the initiation of the experiment
3	(day -3), were chosen for molecular analyses. Nucleic acids were extracted using the
4	Qiagen All Prep kit with several modifications. After removal of RNAlater, filters
5	were transferred from the Sterivex TM cartridge into sterile tubes with a 1:1 mix of
6	0.1:0.5 mm glass beads (BioSpec Products, Bartlesville, OK, USA) and 600 μL of
7	RLT Plus buffer with β -mercaptoethanol. Cells were lysed using three freeze-thaw
8	cycles and four minutes of agitation using a mini-beadbeater-96 (BioSpec Products).
9	Manufacturer's guidelines were followed after lysis for both DNA and RNA
10	extraction. Extracted RNA was archived at -80 $^{\circ}$ C, and DNA was stored at -20 $^{\circ}$ C until
11	analysis. DNA extracts were quantified using the Quant-it TM PicoGreen® DNA assay
12	kit (Invitrogen, Carlsbad, CA, USA) according to manufacturer's guidelines.
13	DNA extracts were analysed for the presence of diazotrophic phylotypes
14	previously characterized in oligotrophic environments, including the Mediterranean,
15	using quantitative PCR targeting the <i>nifH</i> gene. All samples were screened for the
16	presence of the unicellular cyanobacterial (UCYN) groups A1 (Church et al., 2005),
17	A2 (Thompson et al., 2014), and B (Moisander et al., 2010), the Rhizosolenia-
18	associated heterocyst-forming cyanobacteria, Richelia (Het-2; (Foster & Zehr, 2006)
19	and two proteobacterial phylotypes yETSP1 and yETSP3 (Turk-Kubo et al., 2014). In
20	addition, the samples taken from outside the mesocom at the initiation of the
21	experiment were screened for Trichodesmium sp. (Church et al., 2005), the
22	Hemiaulus-associated heterosyst-forming cyanobacteria, Richelia (Het-1; (Church et
23	al., 2005), and proteobacterial phylotypes γ -24774A11 ((Moisander <i>et al.</i> , 2008) and γ
24	ETSP2 (Turk-Kubo et al., 2014). All aspects of these qPCR assays, including
25	reaction set-up, thermocycle parameters, and calculation of <i>nifH</i> gene copies from

standard curves are detailed in (Goebel *et al.*, 2010). Due to the large volumes of
 water filtered, the limit of detection (LOD) and limit of quantitation (LOQ) for these
 qPCR reactions were 2 and 10 *nifH* copies L⁻¹, respectively. Samples with *nifH* copies
 that fell between the LOD and LOQ are designated as 'detected not quantified'
 (DNQ).

6 Partial *nifH* gene fragments were PCR amplified from C1, P3, P5, and P6 7 mesocosms on days 1 and 5, as well as the day -3 samples, as described in Turk-Kubo 8 et al. (2014). Briefly, degenerate nested PCRs were carried out on DNA extracts in 9 replicate using well-established primers described in Zehr & McReynolds (1989) and 10 Zani et al. (2000). Reagent blanks were also amplified to screen for contamination. 11 Amplicons were pooled and gel purified using the QIAquick Gel Extraction Kit 12 (Qiagen, Valencia, CA, USA), cloned using an Invitrogen TOPO TA kit for 13 sequencing (Carlsbad, CA, USA) according to the manufacturer's guidelines, and 14 plasmids were isolated and purified from the resulting clone libraries using a Montage 15 Plasmid Miniprep₉₆ Kit (Millipore, Billarica, MA, USA). Recombinant plasmids were 16 sequenced using Sanger technology at the University of California Berkeley DNA 17 Sequencing Center.

18 Raw sequences were trimmed of vector contamination and low quality reads 19 using Sequencher 5.1 software (Gene Codes Corporation, Ann Arbor, MI, USA). The 20 partial *nifH* fragments remaining were imported into a *nifH* database maintained and 21 curated at UCSC (Heller et al., 2014), translated into amino acid sequences, and 22 aligned to the existing hidden markov model-aligned sequences. In order to evaluate 23 whether sequences closely related to PCR contaminants were recovered, amino acid 24 sequences were clustered at 92% identity (a conservative threshold used in other 25 studies such as Farnelid et al. (2010) using CD-HIT (Huang et al., 2010), and

neighbor joining trees were built using both amino acids and nucleotides in the ARB
software environment (Ludwig et al., 2004). In order to determine representative
sequences, amino acid sequences were clustered at 97% identity using the CD-HIT
suite (Huang et al., 2010). Maximum likelihood trees of partial nifH amino acid
sequences were built in MEGA 5.2 using the JTT matrix based model to calculate
branch lengths and a bootstrap test with 500 replicates. <i>nifH</i> cluster designations for
each phylotype follow the convention of Zehr et al. (2003a).
2.4. Nutrient Analysis
Methods for the determination of NO_3^- and PO_4^{-3-} are provided in full by Louis
et al., (subm. This issue). Briefly, seawater samples were filtered at 0.2 μm
(Nuclepore, Whatman) into clean polethylene bottles in a laminar flow cabinet and
acidified for storage to $pH < 2$ using HCl suprapur. Samples were stored and returned
to the LOV laboratory for analysis using a liquid waveguide capillary cell (LWCC)
coupled to a spectrophotometer for absorbance analysis at 710nm for PO_4^{3-} and
540nm for NO_3^- . PO_4^{-3-} and NO_3^- were determined colorimetrically according to Chen
et al. (2008) and Murphy & Riley (1962) respectively. Detection limits were
determined as 3 nmol L^{-1} for PO ₄ ³⁻ and 10 nmol L^{-1} for NO ₃ ⁻ .
2. 5. Data analysis and statistics
All data collected during this experiment are freely available on Pangaea:
http://doi.pangaea.de/10.1594/PANGAEA.810331.
Principal component analyses (PCA) were conducted using Primer v6 (Clarke

25 & Gorley, 2006). Variables, which included representative diazotroph phylotypes, N_2

fixation rate, *p*CO₂ and pH_T, were normalised by subtracting the mean value across all
 samples and dividing by the standard deviation prior to analysis.

3

4

3. Results

5

3.1. Environmental conditions

6 The temperature in each of the individual mesocosms followed very closely 7 the conditions experienced in surrounding waters (Fig. 2a). Mean water column 8 temperature on day 0 was 22.1°C, this increased steadily to a maximum of 24.7°C on 9 day 18 and then decreased to 24.3°C on day 20. There was a transient period of 10 thermal stratification in the near surface (<5m) within the mesocosms between days 5 11 and 8, which was thoroughly disrupted on Day 9 (Gazeau et al, this issue a). Surface 12 irradiance was relatively constant during the entire experiment with minimal and 13 maximal daily (sunrise to sunset) average values of 531and 735 µmol photons m-2 s-14 1. Maximum irradiance levels (~1300-1400 µmol photons m-2 s-1 were reached at 15 around 12:00 pm and the Light: Darkness (L:D) cycle was 16.5:7.5 and 16:8, 16 respectively at the start and at the end of the experiment. Chl a concentrations were 17 similar between all mesocosms (Fig. 2b) and remained low throughout the experiment and varied between 0.05 and 0.09 μ gL⁻¹ (mean 0.07 \pm 0.01 μ gL⁻¹, n=161). There was 18 19 some shading caused by the mesocosm walls which reduced values of PAR inside the 20 enclosures relative to outside. This might have been responsible for these values being 21 approximately half the concentration measured outside of the mesocosms which ranged between 0.10 and 0.19 µgL⁻¹(n=19). Phytoplankton biomass decreased during 22 23 the acidification phase in all mesocosms, independently of pCO_2 conditions, as shown 24 by fluorometric data acquired using daily CTD profiles (data not shown; see Gazeau 25 et al., sbm, this issue). This corresponded to organic matter sedimentation at the start

of the experiment (first few days) that further stabilised at low rates until the end of
 the experiment (Gazeau et al., in prep, this issue).

3 Nutrient concentrations are described in full by Louis et al. (subm this issue) 4 and summarised for day 0 and day 20 in Table 1. The initial conditions reflected the 5 oligotrophic nature of the summertime Mediterranean with mean observed concentrations for all mesocosms on day 0 of $47 \pm 14 \text{ nmolL}^{-1} \text{ NO}_3^{-1}$ and 23 ± 4 6 $nmolL^{-1}PO_4^{3-}$. There was a rapid change in nutrient conditions both within and 7 outside of mesocosms (Louis et al., this issue) so that by Day 1, the mean 8 concentration for all mesocosms was $97.5 \pm 21.9 \text{ nmol}\text{L}^{-1}$ and $9.5 \pm 0.8 \text{ nmol}\text{L}^{-1}$ for 9 NO_3^- and PO_4^{3-} respectively. Whilst PO_4^{3-} then remained stable for the duration of the 10 experiment (8.5 \pm 1.8 nmol L-1), NO₃⁻ decreased with time to reach a minimum at 11 Day 11 (9.9 nmol L-1). This saw a progressive change in NO_3^- : PO_4^{3-} between Day 1 12 13 to Day 11 of 10.4 to 1.4, with a minimum on Day 8 of 1.3. Whilst there was some 14 variability between the individual nutrients which led this heterogeneity in the 15 nutrient stoichiometry, there was no evidence of any sensitivity in nutrient dynamics 16 relative to increases in seawater pCO_2 .

17

18 **3.2.** Carbonate Chemistry

Measured A_T and C_T , were determined and used to compute daily values of pCO_2 and pH_T (Fig. 3a and b). Starting conditions of pCO_2 on day 0 were very close to the targeted levels and achieved levels of 609, 731, 790, 920, 1198 and, 1353 µatm (for P1, P2, P3, P4, P5 and P6 respectively) relative to controls of 474, 465 and 456 µatm for C1, C2 and C3 respectively (Table 1). These produced a range of pH_T values of between 8.02 to 7.61 for controls and P6 respectively. A_T values gradually increased during the experiment as a consequence of evaporation and followed the

1 variability in salinity (Gazeau et al., subm this issue - a). pCO₂ values remained more 2 or less constant throughout the experiment for control and perturbed mesocosms P1 to 3 P4. P5 and P6 showed a decrease of pCO_2 with time as a response mostly to exchange 4 with the atmosphere. pH profiles acquired using the CTD and transformed to the total 5 scale using integrated samples of $A_{\rm T}$ and $C_{\rm T}$ reflected homogeneous distribution 6 throughout the contained water columns for the duration of the experiment (Gazeau et 7 al, subm this issue - a).

- 8
- 9 3.3.

Nitrogen Fixation

10 Over the whole period of the experiment N₂ fixation rates in amended mesocosms P1 to P4 (mean ± 1 s.d.) of 2.05 ± 1.67 nmol L⁻¹d⁻¹ were comparable to 11 those determined in control mesocosms of 2.00 ± 1.21 nmol L⁻¹d⁻¹ (Fig. 4). There was 12 13 a general decrease in rates over the 20 day period from a mean value for the controls on days 0 and 2 of 3.47 ± 1.64 nmol L⁻¹d⁻¹ to 1.28 ± 1.06 nmol L⁻¹d⁻¹ on days 16 and 14 15 20. Variability in rates was largely associated with the heterogeneous distribution of 16 suspended material throughout the mesocosms, which over days 0 and 2 was reflected in particulate nitrogen concentrations of 480.7 ± 123.7 nmol L⁻¹. In contrast to the 17 18 observations of control and P1 to P4 treatments, a large increase in N2 fixation rate 19 was observed during the first 8 days in mesocosms P5 (day 2) and P6 (days 0, 4, 6, 8), 20 which were originally amended to 1198 and 1353 µatm CO₂, respectively (Fig. 4). The N₂ fixation rate reached a maximum of 23.3 nmol $L^{-1}d^{-1}$ in P6, 6 days after the 21 start of the experiment, which was approximately 10 times the background rate 22 23 determined in control mesocosms. The daily change in carbonate chemistry observed 24 in Fig. 3, as CO₂ in the mesocosms equilibrates with the atmosphere allows an 25 interrogation of daily N₂ fixation rate against a high resolution of CO₂ conditions (Fig. 5). At pCO_2 values > ~1000µatm N₂ fixation rates were generally enhanced. The maximum recorded rate was associated with 1121 µatm CO₂ (pH_T = 7.69) and seven out of nine measured rates were equal to or greater than three standard deviations of the mean control value (Fig. 5).

5

6 3.4. Diazotroph community shifts

7 Samples from mesocosms C1, P3, P5, and P6 on days 1, 5, 9, 13, 17, and 20, 8 as well as samples from outside the mesocosms at the initiation of the experiment 9 (day -3) were screened using a suite of qPCR assays targeting cyanobacterial and 10 proteobacterial diazotrophs that have been described in oligotrophic oceans, including 11 the Mediterranean Sea. In samples from outside the mesocosms (day -3), the only 12 phyloytpes detected were γ -ETSP1 and γ -ETSP3, and abundances ranged from DNQ to $2x10^2$ nifH copies L⁻¹. Although described in previous studies in the Mediterranean 13 14 (Le Moal & Biegala, 2009, Le Moal et al., 2011, Man-Aharonovich et al., 2007) there 15 was no detection of the unicellular cyanobacterial symbionts of Braarudosphaera 16 bigelowii, UCYN-A1 or UCYN-A2, throughout this study. Crocosphaerea sp. 17 (UCYN-B) was detected, but at abundances too low to quantify (DNQ; < 10 nifHcopies L⁻¹) in a majority of the samples screened. Het-2 and γ -ETSP1 were also 18 19 detected at low abundances (DNQ) starting on day 13 and day 17, respectively. There 20 was no detection of *Trichodesmium*, Het-1, γ -24774A11, or γ -ETSP2 outside the 21 mesocosms at day -3, thus no further samples were screened for these phylotypes 22 (qPCR results detailed in Supplemental Table 1). From these analyses, we concluded 23 that none of the diazotrophs targeted with the selected qPCR assays had any 24 measureable response to the experimental manipulations (if present at all), nor were

they plausible candidates for the diazotrophs responsible for peaks in N₂ fixation rates
 observed in P5 and P6.

3 Therefore, in order to characterise the diazotrophs present in P5 and P6 during 4 the period where N_2 fixation rates were stimulated as a result of pCO_2 and pH 5 changes, we amplified a partial fragment of the *nifH* gene using well-established 6 universal PCR primers. Sequences were also recovered from the Bay of Calvi (day -7 3), C1 and P3 mesocosms for comparison. Characterization of community 8 composition based on clone libraries are qualitative in nature, and due to biases 9 inherent in this approach, including the preferential amplification of proteobacterial 10 diazotrophs with this assay (Turk et al., 2011), the number of times each sequence 11 type is recovered is not necessarily indicative of starting abundances and must be 12 interpreted with caution. The diazotrophic community present in the water column 13 prior to the onset of the experiment (day -3) was comprised mainly of three 14 cyanobacterial phylotypes (cluster 1B), several putative γ -proteobacterial (cluster 1G) 15 phylotypes, as well as multiple cluster III phylotypes, which are likely to be anaerobic 16 diazotrophs (Figure 6b,c). Among the cyanobacterial phylotypes, two appear to 17 cluster with the Chroococcales: 59013A11 and 59013A17 are 99% and 98% similar 18 to the endolithic cyanobacteria Hyella sp. LEGE 07179 (AGG68340.1), respectively. 19 The third, 59013A30 has 100% amino acid similarity in the amplified region to 20 Leptolyngbya saxicola LEGE 0713 (AGG68333.1). Cluster 1G and III phylotypes 21 recovered from day -3 samples were not closely related to cultivated organisms. Of 22 the 20 different phylotypes represented at the onset of the experiment, a single cluster 23 III phylotype (59030A23) was the only one recovered at any other time point (P5, day 24 1).

1	By day 1, the diazotrophic community present in the control mesocosm
2	appeared to shift to several cluster 1G phylotypes (dominated by 59031A5,
3	59024A32, 59024A21), a single phylotype (59036A19) closely related to
4	Burkholderia spp. that clusters with other 1J/1K (represented by α -proteobacterial
5	genera including Rhizobium, Azospirillum, Rhodobacter, etc.), and a single cluster III
6	phylotype (59024A3). After 5 days of incubation, entirely different cluster 1G
7	phylotypes were present in the control mesocosms as well as two Burkholderia-like
8	cluster 1K phylotypes. The 1K phylotype, 59036A19, was the most abundant
9	sequence type recovered, and was found in a majority of the samples analyzed.
10	Although Burkholderia-like nifH sequences have been described as contaminants of
11	PCR reagents in several studies (Farnelid et al., 2009, Moisander et al., 2014, Zehr et
12	al., 2003)), a majority of the phylotypes recovered from this study shared <92%
13	nucleotide identity to described contaminants. There were 5 sequences that clustered
14	with a previously reported contaminant and were removed from our analysis (See
15	Supplemental Figure 1). It is nearly impossible to rule out any uncultivated
16	proteobacterial <i>nifH</i> sequences as a potential contaminant; however, given the lack of
17	similarity to known PCR contaminants and previous reports of Burkholderia-like
18	organisms in the Mediterranean Sea (Man-Aharonovich et al., 2007 and Le Moal et
19	al., 2011), it is reasonable to assume the Burkholderia-like phylotypes recovered in
20	this study were from an organism in the environment.
21	In the P5 and P6 mesocosms, the general diazotrophic community succession
22	is characterised by a reduction in the number of phylotypes recovered, with respect to
23	both the day -3 sample and the C1 control mesocosm. In P5, where elevated N_2
24	fixation rates peaked early (day 2) during the experiment, a cluster III phylotype
25	(59030A23) was the most abundant sequence recovered. By day 5, the cyanobacterial

1 phylotype 59030A23 which was 98% similar (amino acid) to Leptolyngbya saxicola 2 LEGE 0713 (AGG68333.1) was the most abundant sequence type recovered. In 3 contrast, in the P6 mesocosm, where elevated N₂ fixation rates peaked by day 6, the 4 diazotrophic community shifted from being primarily one cluster III phylotype 5 (59031A7; day 1) to being primarily a cluster 1K phylotype (59039A16; day 5). 6 With the exception of the cluster III phylotype 59030A23, which was present 7 in the day -3 sample, but no control mesocosms, none of the phylotypes that were the 8 dominant sequence types recovered in P5 and P6 mesocosms at days 1 and 5 were 9 found in any other treatment or the controls. In contrast, in mesocosm P3, where 10 pCO_2 did not stimulate peaks in N₂ fixation rates, the cluster 1K phylotype 11 59036A19, which is also present in the control, was the most abundant sequence 12 recovered from day 1 and day 5 samples. Thus diazotrophic community succession 13 was not as evident in this treatment. 14 15 4. Discussion 16 Although there a relatively few studies on the spatial and temporal distribution 17 of N₂ fixation in the Mediterranean Sea, and there is a very limited amount of 18 information about its diazotrophic community composition, understanding how this 19 process may be impacted by projected changes in OA over the next century is a 20 critical undertaking. Together, the susceptibility of the Mediterranean to

21 anthropogenic influences (The MerMex Group, 2011) and the indications that

decreases in pH of 0.05 to 0.14 units are already evident (Touratier & Goyet, 2011)

23 infer that microbial communities and biogeochemical cycles will become increasingly

24 pressured on a decadal time scale.

25

1	The current study provides evidence of an increase in N_2 fixation rates for
2	these waters when <i>p</i> CO2 was elevated above ~1000 μ atm and pH _T decreased below
3	7.74 and according to Fig. 5 a maximum rate is reached at conditions in the order of
4	1134 μ atm <i>p</i> CO2 (pH ~ 7.69). There is though some complexity to this situation as
5	the elevation of rates was not universally observed. N_2 fixation rates determined at
6	pCO ₂ levels of 1064 and 1082 µatm on days 10 and 16 were lower than mean control
7	rates. Whilst there is some variance in the impact of OA on N_2 fixation the sensitivity
8	of this relationship at $pCO_2 > 1000$ µatm is supported by a comparison of F test
9	results. The similarity in variance between P3 versus controls (F $= 0.903$) contrasts
10	hugely with those between P5 and P6 with controls, of $F = 6.7e^{-05}$ and $8.8e^{-07}$
11	respectively. Projections afforded by the current generation (CMIP5) models (Moss et
12	al., 2010) indicate decreasing ocean pH of between 0.07 and 0.33 units for the 2090s
13	relative to the 1990s for "high mitigation" RCP2.6 and the "business as usual"
14	RCP8.5 scenarios respectively (Bopp et al., 2013). The change indicated by RCP8.5
15	would see pH values of Mediterranean waters in the late 21 st century at ~7.70, well
16	within the affected range identified by this experiment. Our findings suggest that no
17	change in N ₂ fixation rates are likely to be seen as a result of increasing acidification
18	for several decades. However, based on the "business as usual" scenario and
19	indications of the sensitivity of the Mediterranean to OA (The MerMex Group, 2011;
20	Touratier & Goyet, 2011), there is the potential for a 10 fold change in activity by the
21	end of the 21 st century.
22	

The mean rates in control and amended (P1, P2, P3, P4) mesocosms of $2.00 \pm$ 1.21 nmol L⁻¹d⁻¹ and 2.05 ± 1.67 nmol L⁻¹d⁻¹ respectively are comparable to those published elsewhere for coastal waters of the western Mediterranean: 4 – 8 nmol L⁻¹d⁻¹

1	¹ (Garcia <i>et al.</i> , 2006, during summer at DYFAMED); between 2 and 7.5 nmol $L^{-1}d^{-1}$
2	(Sandroni <i>et al.</i> , 2007 at DYFAMED); $1.8 \pm 0.19 \text{ nmol } \text{L}^{-1}\text{d}^{-1}$ (Bonnet <i>et al.</i> , 2011, in
3	the Rhone plume); Maximum of $1.3 \pm 1.0 \text{ nmol } \text{L}^{-1}\text{d}^{-1}$ (Ridame <i>et al.</i> , 2013, DUNE
4	experiment, Corsica). The rates of Ridame et al. (2013) were geographically closer
5	and might be expected to be similar in magnitude. Control rates reported during that
6	study were though of the order of 10 times smaller, at approximately 0.2 nmol $L^{-1}d^{-1}$.
7	That said, initial nutrient (N and P) conditions between this study and those described
8	during DUNE were quite different (Ridame et al., 2014; Luis et al, this issue). Ridame
9	described N_2 fixation limited by phosphate concentrations of $2-5$ nmol L ⁻¹ . During
10	the current study DIP on Day 0 was in the order of 20 to 30 nmol L^{-1} 4 to 15 times
11	higher and considered unlikely to be limiting diazotroph activity. DIP decreased
12	rapidly after Day 0 to an average of 8.5 \pm 0.5 nmol L ⁻¹ , though the total P availability
13	was likely supported by mean dissolved organic phosphorus (DOP) concentrations of
14	$11 \pm 2 \text{ nmol } L^{-1}$.
15	Ridame et al. (2013) indicate that the activity of the diazotroph community in
16	the Mediterranean Sea is affected by resource availability. During mesocosm
17	experiments, they (Ridame <i>et al.</i> , 2013) observed increases of up to 5.3 fold in N_2
18	fixation rates following the addition of dust to seawater in three separate mesocosm
19	experiments performed off the coast of Corsica. During those studies, initial DFe
20	concentrations of 2.3 to 3.3 nmolL^{-1} , were not thought to be limiting N ₂ fixation and
21	that DFe concentrations of the order of 1.5 nM and higher did not limit N_2 fixation in
22	the western Mediterranean Sea. During the current study DFe was not determined,
23	though previous measurements of DFe in this region indicate fairly stable
24	concentrations in the order of 2.5 nmol L^{-1} (Ridame <i>et al.</i> , 2013; Wagener <i>et al.</i> ,

25 2010; Louis et al., this issue). The iron demand from the diazotrophic community was

1 estimated by converting N-fixation rates to a carbon equivalent assuming Redfield 2 stoichiometry (Redfield, 1934) and an assumed cellular Fe:C ratio for cyanobacterial 3 diazotrophs of between50 µmol:mol (Laroche & Breitbarth, 2005) and 16µmol:mol 4 (Tuit et al., 2004). The Redfield C:N value of 6.6 might be considered to be towards the upper extreme for cyanobacterial diazotrophs (Knapp et al, 2012), though is in the 5 6 mid-range for marine bacterioplankton (Vrede et al., 2002). The iron requirements for N_2 fixation increased from between 0.2 and 0.7 pmol L⁻¹d⁻¹ in control mesocosms to a 7 maximum of 2.5 to 7.7 pmol $L^{-1}d^{-1}$ in P6 on day 8. Even if maintained for the duration 8 9 of the experiment, this would not reduce DFe to limiting concentrations identified by 10 Ridame et al., (2013), thus it is likely that the diazotrophic community was not Fe 11 limited at the time of this experiment.

12 During both a west to east transect of the Mediterranean and a dust addition 13 experiment in Corsica, Ridame et al. (2011) and Ridame et al. (2013) found clear 14 evidence that N₂ fixation was limited, or co-limited by the availability of P. During the current study, starting concentrations of $23 \pm 4 \text{ nmol}\text{L}^{-1}\text{PO}_4^{3-}$ in all mesocosms 15 16 were within the range of concentrations reported for the wider western Mediterranean 17 (e.g. (Pujo-Pay et al., 2011) and Table 3 of Louis et al. (subm this issue)), although 18 they were between ~ 4 and ~15 times greater than those reported by Ridame *et al.* (2013). According to Redfield stoichiometry, the starting ratio of NO_3^- : PO_4^{3-} 19 20 (hereafter N:P) of 1.9 (Table 1) might indicate N rather than P limitation, a condition 21 recognised to favour N₂ fixation (e.g. Bonnet et al., 2011). Following rapid decreases 22 in DIP between Day 0 and Day 1, mean N:P ratios of 10.4 ± 3.3 still indicate N rather 23 than P to be limiting. Taking the same approach as was used for Fe above, the P 24 demand required to support observed rates of N₂ fixation during this experiment was estimated (from Redfield stoichiometry) to range from 0.14 nmol L⁻¹d⁻¹ for controls to 25

1	a maximum of 1.45 nmol $L^{-1}d^{-1}$ where peak N_2 fixation rates were measured. Whilst
2	concentrations of PO_4^{3-} remained low throughout the experiment, alkaline
3	phosphatase activity (APA) was found to be positively correlated to pCO_2 and
4	remineralised PO_4^{3-} from the dissolved organic pool at rates of ~ 180 nmol L ⁻¹ h ⁻¹ for
5	the first 12 days and at ~60 nmol $L^{-1}h^{-1}$ for the remaining 8 days (Celussi et al, in
6	press, this issue), thus it is considered unlikely that the diazotrophic community was
7	experiencing either Fe or P limitation. Environmental variables such as seawater
8	temperature, stratification and incident irradiation may all play a part in controlling
9	diazotrophic activity but are considered not important to this discussion as they were
10	comparable throughout treatments and variability was equal between mesocosms (Fig
11	2 and Gazeau et al. subm this issue - a).
12	
13	None of the diazotrophs typically recognized as important N ₂ -fixers in the
14	ocean (e.g. Trichodesmium, UCYN-A, diatom-associated diazotrophs, etc.) were
15	found in the Bay of Calvi, or in the experimental treatments, instead, a diverse
16	diazotrophic community comprised of possible anaerobes (cluster III), α (1J/1K) and
17	γ (1G) proteobacteria and filamentous (or pseudo-filamentous) cyanobacteria (1B;
18	Figure 6a,b) was recovered. Cluster III phylotypes were the most abundant sequence
19	type recovered at the beginning of the experiment (Figure 6c), representing \sim 58 % of
20	the recovered sequences in day -3 samples, and 60% and 63% in P5 and P6,
21	respectively, at day 1. Although cluster III sequences have been characterized from
22	oligotrophic marine waters (Church et al., 2008, Farnelid et al., 2009, Langlois et al.,
23	2008, Turk-Kubo et al., 2014), the occurrence of these possibly anaerobic phylotypes
24	was unexpected. This was a shallow (~25 m) though well oxygenated environment,
25	mean O_2 concentrations were $226 \pm 1 \ \mu molL^{-1}$ (103% saturation). The mesocosm

1	bags were 12 m deep and were deployed in a manner not thought to disturb benthic
2	sediments. They were also allowed to flush with seawater for 2 days before the
3	enclosures were sealed (see Gazeau et al. sbm, this issue, for more details). Despite
4	calm conditions prior to the experiment and the low tidal conditions experienced in
5	the Mediterranean, coastal processes must be sufficient to mobilise and maintain these
6	bacteria within the pelagic environment. It is possible that they were associated with
7	suspended particulate material, as observed for other diazotrophs by Le Moal et al.
8	(2011) and Benavides et al. (2013), which settled fairly quickly following
9	containment of the mesocosm enclosures. Daily export fluxes determined from
10	sediment traps at the base of each mesocosm decreased from a mean rate of 7.8 mg C
11	$m^{-2}d^{-1}$ for days -1 to +1 to 3.0 mg C $m^{-2}d^{-1}$ for days 4 to 6 (Gazeau et al., in
12	preparation, this issue - b). These decreased further to 2.1 mg C $m^{-2} d^{-1}$ by the end of
13	the experiment. As there was no evidence of increased primary production or
14	phytoplankton biomass throughout this period (Maugendre et al., in press; Gazeau et
15	al., in preparation, this issue - c), it would appear that this settling fraction was detrital
16	material suspended in the water column through mixing processes associated with the
17	coastal circulation. Over the first 5 days of the experiment, there was a transition in
18	the relative abundance of recovered phylotypes from cluster III to both $\boldsymbol{\alpha}$ and
19	γ proteobacterial sequences (Fig. 6c) in both control and treatment mesocosms. The
20	disappearance of cluster III phylotypes by day 5 suggests that they may have been
21	associated with settling detrital material, the fluxes of which were maximal over this
22	period. By day 5, mesocosms C1, P3 and P6 contained populations of α and γ
23	proteobacteria only, and in P6, the phylotype 59039A16 represented 82% of the
24	community. In contrast, the diazotroph community in P5 on day 5 was dominated by a
25	<i>Leptolyngbya</i> -like cyanobacterial phylotype 59038A29 (70%) and the α

proteobacterial phylotype 59036A19, which was the most frequently occurring of the
 diazotrophs observed. Only four of the diazotroph phylotypes recovered in this
 experiment are similar (>92% nucleotide identity) to previously reported diazotrophs
 from the Mediterranean Sea, and they all belong to cluster 1J/1K (Man-Aharonovich
 et al., 2007; Le Moal *et al.*, 2011; Yogev *et al.*, 2011).

6 There is no clear association between diazotrophic community structure and 7 changes in pCO_2 or N₂ fixation rates, as shown by PCA (Fig. 7), where 74.6% of the 8 variance is explained by components 1 and 2. The molecular data does indicate a shift 9 in the diazotroph communities present in the control mesocosm (C1) during the first 5 10 days of the experiment from the community present in the day -3 water column. 11 Waters outside the mesocosms were not sampled throughout the experiment, so 12 insufficient evidence exists to determine whether the diazotroph community 13 composition changes in C1 were reflected in the natural environment or were a 14 response to containment. The molecular data also implies that the diazotrophic 15 community composition can rapidly change in response to environmental conditions. 16 Although a more in-depth sequencing effort, or the development of qPCR assays 17 targeting the most abundant phylotypes recovered, might provide additional valuable 18 information, these approaches were not pursued, as the sampling resolution would 19 have been insufficient to correlate patterns of successional change with observed 20 changes in N₂ fixation with any confidence. Furthermore, samples for molecular work 21 were not taken on days where peaks in N2 fixation rates occurred in P5 and P6 22 mesocosms.

These findings underscore the challenges of relating changes in N₂ fixation rates with successional changes in diazotroph community structure or changes in the abundances of specific groups. This is particularly true in an environment that has not

1	been well characterised, and where clone-library based approaches recover non-
2	cyanobacterial phylotypes (Turk-Kubo et al., 2014). Although these results provide
3	important insight into the diazotroph diversity in the Bay of Calvi, this qualitative data
4	must be interpreted with caution. Non-cyanobacterial diazotrophs have been
5	implicated in many studies as putative marine N2-fixers (e.g. Farnelid et al., 2011,
6	Halm et al., 2012, Le Moal, et al., 2011), yet their importance in marine N ₂ fixation
7	has yet to be proven. In rare cases where quantitative abundance data for non-
8	cyanobacterial diazotrophs exists in parallel with N_2 fixation rates, it is evident that
9	these organisms would have to sustain extremely high cellular specific rates of N_2
10	fixation to account for bulk rates, which presents a paradox in highly oxygenated
11	photic zone waters (Turk-Kubo et al., 2014).
12	In previous studies where N_2 fixation rates increased with elevated conditions
13	of OA, the overall consensus was that nitrogen fixation increased due to a decreased
14	energy demand by carbon concentrating mechanisms during cyanobacterial
15	photosynthesis, which increased the energy available for N_2 fixation (e.g. <u>Barcelos E</u>
16	Ramos et al., 2007; Hutchins et al., 2007; Kranz et al., 2010; Kranz et al., 2009;
17	Levitan et al., 2007). In a recent study (Hutchins et al., 2013) described taxon-specific
18	variability in the sensitivity of N_2 fixation to CO ₂ , whilst others have shown no
19	response under natural conditions to OA (Law et al., 2012; Böttjer et al., 2014;
20	Gradoville et al., 2014). During this experiment there were no observed changes in
21	primary production (Maugendre et al., in press, this issue), chlorophyll-a or
22	phytoplankton biomass (Gazeau et al., submitted this issue), neither were there any
23	observed changes in heterotrophic prokaryote abundance, whilst bacterial production
24	decreased with increasing CO_2 (Celussi et al., in press, this issue). It is apparent
25	therefore that increases in N_2 fixation rates observed here were de-coupled from

- inorganic and organic C acquisition and were limited by some factor after day 8,
 when all amended and control mesocosms showed similar rates.
- 3 We speculate that this may be a result of either some direct effect on the 4 diazotroph population or indirectly through the availability of a limiting nutrient. 5 Bacterial enzymatic activity has been observed to increase under lower seawater pH 6 in coastal waters (Grossart et al., 2006) and from this study, Celussi et al., (in press, 7 this issue) report on a community of CTC+ (highly active) prokaryotes whose 8 abundance relative to total prokaryotes was positively correlated to pCO_2 . Not only 9 did the percentage CTC+ increase at elevated levels of pCO_2 but there was a decrease 10 in this number over the time of the mesocosm period in a manner which is positively correlated to N_2 fixation rates ($r^2 = 0.85$). Ridame et al., (2011, 2013) showed that 11 whilst Fe was not limiting to diazotrophy in Mediterranean coastal waters, N_2 fixation 12 13 was limited or co-limited by the availability of DIP or an unidentified trace element. 14 The bioavailability of trace metals may be affected by OA (Hoffmann et al., 2012). 15 Whilst the concentrations of DIP and DOP coupled with high rates of APA during this 16 experiment suggest that P is unlikely to be the controlling nutrient, the bioavailability 17 of a limiting trace element which increased at elevated levels of OA might have 18 provided the driver for the elevated rates of N₂ fixation observed. 19 This study is the first to investigate the impact of OA on a mixed population of 20 coastal diazotrophs, but questions remain regarding the mechanisms and diazotroph(s) 21 responsible for the elevated N₂ fixation rates observed. Coastal waters of the 22 Mediterranean remain enigmatic with regards to the characterisation of their
- 23 diazotrophic communities, the heirarchy of nutrients which are controlling their
- 24 activity and indeed their sensitivity to OA. Whilst these observations indicate the
- 25 potential for enhanced N_2 fixation in Mediterranean coastal waters under pCO_2

1	conditions projected for the end of this century, this study argues strongly for greater
2	characterisation of diazotrophs and diazotrophy under fixed conditions of pCO_2 and
3	under controlled conditions of nutrient stoichiometry.
4	
5	
6	Acknowledgements
7	This work was funded by the EC FP7 project 'Mediterranean Sea
8	Acidification in a changing climate' (MedSeA; grant agreement 265103), the project
9	European Free Ocean Carbon Enrichment (eFOCE; BNP-Paribas foundation), the
10	MISTRALS-MERMEX program (Institut des Sciences de l'Univers, INSU), the
11	Corsican local authorities and the Rhone-Mediterranean and Corsica Water Agency
12	(<u>http://www.eaurmc.fr</u>). It is a contribution to the Surface Ocean - Lower Atmosphere
13	Study (SOLAS) and Integrated Marine Biogeochemistry and Ecosystem Research
14	(IMBER) projects. The STARESO marine station in Corsica is gratefully
15	acknowledged for its assistance and boat support carried out within the framework of
16	the STARECAPMED project funded by the Rhone-Mediterranean and Corsica Water
17	Agency. We would like to thank Justine Louis and Cécile Guieu for nutrient analyses
18	and Denise Cummings for her assistance with the fieldwork.
19	
20	
21	
22	

1 Figure Legends

2

3

4	
5	Fig. 2 Temporal evolution of a) temperature (mean value for depth 0 to 10 m) and b)
6	chlorophyll a in 3 control (C1 to C3) and 6 amended mesocosms (P1 to P6) relative to
7	waters outside of the mesocosm enclosures (OUT) during the MedSeA ocean
8	acidification experiment, Bay of Calvi (Corsica, France), June – July 2012.
9	
10	Fig. 3 Temporal evolution of a) pCO_2 and b) pH_T (total scale) in 3 control (C1 to C3)
11	and 6 amended mesocosms (P1 to P6) relative to waters outside of the mesocosm
12	enclosures (OUT) during MedSeA ocean acidification experiment, Bay of Calvi
13	(Corsica, France), June – July 2012.
14	
15	Fig. 4 Nitrogen fixation rates in 6 amended mesocosms (P1 to P6) relative to mean
16	control (C) \pm 1 standard deviation (SD) during MedSeA ocean acidification

Fig. 1 Location of the Bay of Calvi, Corsica, in the Northwestern Mediterranean Sea

17 experiment in the Bay of Calvi (Corsica, France), June – July 2012. Filled red circles

18 indicate the days when partial *nifH* sequences were investigated in the control

19 mesocosm C1, and the amended mesocosms P3, P5 and P6.

20

21 Fig. 5 Daily nitrogen fixation rates plotted against instantaneous values of pCO_2

22 from all treatments during MedSeA ocean acidification experiment in the Bay of

23 Calvi (Corsica, France), June – July 2012. The solid line represents the mean value of

all control rate measurements, the dashed line represents the mean plus 3 standard

25 deviations of all control measurements.

2	Fig. 6 Maximum likelihood phylogenetic trees of cluster I (a) and cluster III (b)
3	partial <i>nifH</i> sequences obtained from day -3 outside of mesocosms as well as
4	mesocosms C1 (control), P3, P5 and P6 (CO ₂ enriched) on days 1 and 5. Bootstrap
5	values are reported on nodes from 500 replicate trees. The number of sequences that
6	cluster with each representative (at 97% amino acid identity) are in parenthesis, when
7	>10 sequences were recovered. Diazotroph community structure changes throughout
8	the experiment, and prior to the initiation of the experiment (day -3), according to
9	nifH cluster designation of each phylotype (c).
10	
11	Fig. 7 Principal component analysis for diazotroph clusters, CO_2 , pH and N_2 fixation
12	for mesocosms C1, (control), P3, P5 and P6 (CO_2 enriched) on days 1 and 5, and
13	outside of the mesocosms on day -3.

1	Gazeau, F.,	, Sallon, A.	, Pitta, P.	, Tsiola,	A.,	Pedrotti,	ML	., Marro,	S.,	Guieu,	С.,
---	-------------	--------------	-------------	-----------	-----	-----------	----	-----------	-----	--------	-----

- 2 2015. Limited impact of ocean acidification on phytoplankton community structure in
- 3 an oligotrophic environment: results from two mesocosm studies in the Mediterranean
- 4 Sea. Estuar. Coast. Shelf Sci. (in prep, in this issue-c).
- 5
- 6

References

2	Barcelos E Ramos, J., Biswas, H., Schulz, K. G., Laroche, J. and Riebesell, U. (2007)						
3	Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer						
4	Trichodesmium. Global Biogeochemical Cycles, 21.						
5	Benavides, M., Aristegui, J., Agawin, N. S. R., Lopez Cancio, J. and Hernandez-						
6	Leon, S. (2013) Enhancement of nitrogen fixation rates by unicellular						
7	diazotrophs vs. Trichodesmium after a dust deposition event in the Canary						
8	Islands. Limnology and Oceanography, 58, 267-275.						
9	Bethoux, J. P. and Copinmontegut, G. (1986) Biological Fixation of Atmospheric						
10	Nitrogen in the Mediterranean-Sea. <i>Limnology and Oceanography</i> , 31 , 1353-						
11	1358.						
12	Bonnet, S., Grosso, O. and Moutin, T. (2011) Planktonic dinitrogen fixation along a						
13	longitudinal gradient across the Mediterranean Sea during the stratified period						
14	(BOUM cruise). <i>Biogeosciences</i> , 8 , 2257-2267.						
15	Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran,						
16	P., Heinze, C., Ilyina, T., Seferian, R., Tjiputra, J. and Vichi, M. (2013)						
17	Multiple stressors of ocean ecosystems in the 21st century: projections with						
18	CMIP5 models. Biogeosciences, 10, 6225-6245.						
19	Böttjer, D., Karl, D. M., Letelier, R. M., Viviani, D. A. and Church, M. J. (2014)						
20	Experimental assessment of diazotroph responses to elevated seawater pCO2						
21	in the North Pacific Subtropical Gyre. <i>Global Biogeochemical Cycles</i> ,						
22	2013GB004690.						
23	Carpenter, E. J. and Capone, D. G. (2008) Nitrogen fixation in the marine						
24	environment. In: D. B. M. Mulholland, D. Capone & E.J. Carpenter (ed)						
25	Nitrogen in the Marine Environment. Elsevier Press, pp. 141-198.						
26	Chen, G., Yuan, D., Huang, Y., Zhang, M. and Bergman, M. (2008) In-field						
27	determination of nanomolar nitrite in seawater using a sequential injection						
28	technique combined with solid phase enrichment and colorimetric detection.						
29	Analytica Chimica Acta, 620, 82-88.						
30	Church, M. J., Bjorkman, K. M., Karl, D. M., Saito, M. A. and Zehr, J. P. (2008)						
31	Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean.						
32	Limnology and Oceanography, 53 , 63-77.						
33	Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M. and Zehr, J. P. (2005)						
34	Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic						
35	North Pacific Ocean. Applied and Environmental Microbiology, 71, 5362-						
36	5370.						
37	Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A.,						
38	Defries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R.						
39	B., Piao, S. and Thornton, P. (2013) Carbon and Other Biogeochemical						
40	Cycles. In: T. F. Stocker, D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. and						
41	A. N. Boschung, Y. Xia, V. Bex and P.M. Midgley (eds) Climate Change						
42	2013: The Physical Science Basis. Contribution of Working Group I to the						
43	Fifth Assessment Report						
44	of the Intergovernmental Panel on Climate Change. Cambridge University Press,						
45	Cambridge, United Kingdom and New York, NY, USA.						
46	Clarke, K. R. and Gorley, R. N. (2006) PRIMER v6: User Manual/Tutorial. Vol.,						
47	PRIMER-E, Plymouth.						

1	Czerny, J., Barcelos E Ramos, J. and Riebesell, U. (2009) Influence of elevated CO2
2	concentrations on cell division and nitrogen fixation rates in the bloom-
3	forming cyanobacterium Nodularia spumigena. <i>Biogeosciences</i> , 6 , 1865-1875.
4	Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A.,
5	Moisander, P. H. and Granger, J. (2014) The Contamination of Commercial
6	N-15(2) Gas Stocks with N-15-Labeled Nitrate and Ammonium and
7	Consequences for Nitrogen Fixation Measurements. Plos One, 9.
8	Farnelid, H., Oeberg, T. and Riemann, L. (2009) Identity and dynamics of putative N-
9	2-fixing picoplankton in the Baltic Sea proper suggest complex patterns of
10	regulation. Environmental Microbiology Reports, 1, 145-154.
11	Farnelid, H., Tarangkoon, W., Hansen, G., Hansen, P. J. and Riemann, L. (2010)
12	Putative N-2-fixing heterotrophic bacteria associated with dinoflagellate-
13	Cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquatic Microbial
14	<i>Ecology</i> , 61 , 105-117.
15	Foster, R. A. and Zehr, J. P. (2006) Characterization of diatom-cyanobacteria
16	symbioses on the basis of nifH, hetR and 16S rRNA sequences.
17	Environmental Microbiology, 8, 1913-1925.
18	Fu, F. X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P. W., Warner, M.
19	E., Sanudo-Wilhelmy, S. A. and Hutchins, D. A. (2008) Interactions between
20	changing pCO2, N2 fixation, and Fe limitation in the marine unicellular
21	cyanobacterium Crocosphaera. <i>Limnology and Oceanography</i> , 53 , 12.
22	Garcia, N., Raimbault, P., Gouze, E. and Sandroni, V. (2006) Nitrogen fixation and
23	primary production in western Mediterranean. Comptes Rendus Biologies,
24	329, 742-750.
25	Gazeau, F., Sallon, A., Maugendre, L., Louis, J., Dellisanti, W., Gaubert, M., Lejeune,
26	P., Gobert, S., Alliouane, S., Taillandier, V., Louis, F., Obolensky, G.,
27	Grisoni, J-M. & Guieu, C. First mesocosm experiments to study the impacts of
28	ocean acidification on plankton communities in the NW Mediterranean Sea
29	(MedSeA project). Estuarine and Coastal Shelf Science, this issue - a.
30	Gazeau, F., Sallon, A., Maugendre, L., Giani, M., Celussi, M., Michel, L., Gobert, S.,
31	Borges, A.V., 2015. Impact of elevated CO2 on pelagic production and
32	elemental budgets in a Mediterranean mesocosm study. Estuarine and Coastal
33	Shelf Science, this issue - b.
34	Gazeau, F., Sallon, A., Pitta, P., Tsiola, A., Pedrotti, ML., Marro, S., Guieu, C.,
35	Limited impact of ocean acidification on phytoplankton community structure
36	in an oligotrophic environment: results from two mesocosm studies in the
37	Mediterranean Sea. Estuarine and Coastal Shelf Science, this issue - c.
38	Goebel, N. L., Turk, K. A., Achilles, K. M., Paerl, R., Hewson, I., Morrison, A. E.,
39	Montoya, J. P., Edwards, C. A. and Zehr, J. P. (2010) Abundance and
40	distribution of major groups of diazotrophic cyanobacteria and their potential
41	contribution to N-2 fixation in the tropical Atlantic Ocean. Environmental
42	<i>Microbiology</i> , 12 , 3272-3289.
43	Gradoville, M. R., White, A. E., Boettjer, D., Church, M. J. and Letelier, R. M. (2014)
44	Diversity trumps acidification: Lack of evidence for carbon dioxide
45	enhancement of Trichodesmium community nitrogen or carbon fixation at
46	Station ALOHA. Limnology and Oceanography, 59, 645-659.
47	Groszkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M. M.,
48	Lavik, G., Schmitz, R. A., Wallace, D. W. R. and Laroche, J. (2012) Doubling
49	of marine dinitrogen-fixation rates based on direct measurements. Nature, 488,
50	361-364.

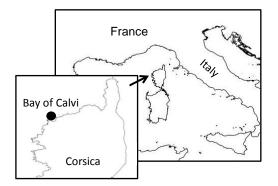
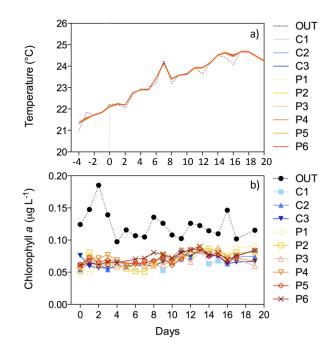
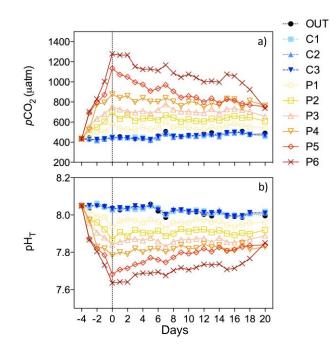
1	Grossart, H. P., Allgaier, M., Passow, U. and Riebesell, U. (2006) Testing the effect
2	of CO_2 concentration on the dynamics of marine heterotrophic
3	bacterioplankton. <i>Limnology and Oceanography</i> , 51 , 1–11.
4	Havenhand, J., Dupont, S. and Quinn, G. P. (2010) Designing ocean acidification
5	experiments to maximise inference. Vol., Publications Office of the European
6	Union, Luxembourg.
7	Heller, P., Tripp, H. J., Turk-Kubo, K. and Zehr, J. P. (2014) ARBitrator: a software
8	pipeline for on-demand retrieval of auto-curated nifH sequences from
9	GenBank. Bioinformatics, 30, 2883-2890.
10	Hoffmann, L. J., Breitbarth, E., Boyd, P. W. and Hunter, K. A. (2012) Influence of
11	ocean warming and acidification on trace metal biogeochemistry. Marine
12	Ecology Progress Series, 470, 191-205.
13	Huang, Y., Niu, B., Gao, Y., Fu, L. and Li, W. (2010) CD-HIT Suite: a web server for
14	clustering and comparing biological sequences. <i>Bioinformatics</i> , 26 , 680-682.
15	Hutchins, D. A., Fu, FX., Webb, E. A., Walworth, N. and Tagliabue, A. (2013)
16	Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide
17	concentrations. Nature Geoscience, 6, 790-795.
18	Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K.,
19	Bernhardt, P. W. and Mulholland, M. R. (2007) CO2 control of
20	Trichodesmium N-2 fixation, photosynthesis, growth rates, and elemental
21	ratios: Implications for past, present, and future ocean biogeochemistry.
22	Limnology and Oceanography, 52 , 1293-1304.
23	Hutchins, D. A., M.R. Mulholland and Fu., F. (2009) Nutrient cycles and marine
24	microbes in a CO2-enriched ocean. Oceanography, 22, 128-145.
25	Ibello, V., Cantoni, C., Cozzi, S. and Civitarese, G. (2010) First basin-wide
26	experimental results on N-2 fixation in the open Mediterranean Sea.
27	Geophysical Research Letters, 37.
28	IPCC (2013) Summary for Policymakers. In: Stocker and D. Q. T.F., GK. Plattner,
29	M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.
30	Midgley (eds) Climate Change 2013: The Physical Science Basis.
31	Contribution of
32	Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
33	Climate Change. Cambridge, United Kingdom and New York, NY, USA.
34	Kim, JM., Lee, K., Shin, K., Yang, E. J., Engel, A., Karl, D. M. and Kim, HC.
35	(2011) Shifts in biogenic carbon flow from particulate to dissolved forms
36	under high carbon dioxide and warm ocean conditions. Geophysical Research
37	Letters, 38 , L08612.
38	Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A. and Capone, D. G. (2012)
39	Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii
40	abundance and N_2 fixation rates to varying NO_3^- and PO_4^{-3} - concentrations in
41	batch cultures. Aquatic Microbial Ecology, 66, 223-236.
42	Kranz, S. A., Levitan, O., Richter, KU., Prasil, O., Berman-Frank, I. and Rost, B.
43	(2010) Combined Effects of CO2 and Light on the N-2-Fixing
44	Cyanobacterium Trichodesmium IMS101: Physiological Responses. Plant
45	<i>Physiology</i> , 154 , 334-345.
46	Kranz, S. A., Sueltemeyer, D., Richter, KU. and Rost, B. (2009) Carbon acquisition
47	by Trichodesmium: The effect of pCO(2) and diurnal changes. <i>Limnology and</i>
48	<i>Oceanography</i> , 54 , 548-559.
49 50	Krom, M. D., Emeis, K. C. and Van Cappellen, P. (2010) Why is the Eastern
50	Mediterranean phosphorus limited? Progress in Oceanography, 85, 236-244.

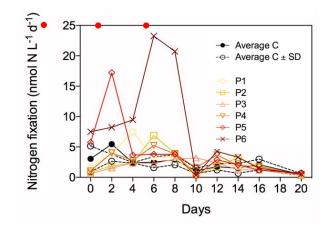
1	Langlois, R. J., Huemmer, D. and Laroche, J. (2008) Abundances and distributions of
2	the dominant nifH phylotypes in the Northern Atlantic Ocean. Applied and
3	Environmental Microbiology, 74 , 1922-1931.
4	Langlois, R. J., Mills, M. M., Ridame, C., Croot, P. and Laroche, J. (2012)
5	Diazotrophic bacteria respond to Saharan dust additions. Marine Ecology
6	Progress Series, 470, 1-14.
7	Laroche, J. and Breitbarth, E. (2005) Importance of the diazotrophs as a source of new
8	nitrogen in the ocean. Journal of Sea Research, 53, 67-91.
9	Law, C. S., Breitbarth, E., Hoffmann, L. J., Mcgraw, C. M., Langlois, R. J., Laroche,
10	J., Marriner, A. and Safi, K. A. (2012) No stimulation of nitrogen fixation by
11	non-filamentous diazotrophs under elevated CO2 in the South Pacific. Global
12	<i>Change Biology</i> , 18 , 3004-3014.
13	Le Moal, M. and Biegala, I. C. (2009) Diazotrophic unicellular cyanobacteria in the
14	northwestern Mediterranean Sea: A seasonal cycle. Limnology and
15	<i>Oceanography</i> , 54 , 845-855.
16	Le Moal, M., Collin, H. and Biegala, I. C. (2011) Intriguing diversity among
17	diazotrophic picoplankton along a Mediterranean transect: a dominance of
18	rhizobia. <i>Biogeosciences</i> , 8 , 827-840.
19	Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P.,
20	Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans,
21	P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G.,
22	Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K.,
23	Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A.,
24	Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G. H., Pfeil, B.,
25	Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger,
26	J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., Van Heuven,
27	S., Viovy, N., Wanninkhof, R., Wiltshire, A. and Zaehle, S. (2014) Global
28	carbon budget 2013. Earth Syst. Sci. Data, 6, 235-263.
29	Lepoint, G., Gobert, S., Dauby, P. and Bouquegneau, J. M. (2004) Contributions of
30	benthic and planktonic primary producers to nitrate and ammonium uptake
31	fluxes in a nutrient-poor shallow coastal area (Corsica, NW Mediterranean).
32	Journal of Experimental Marine Biology and Ecology, 302, 107-122.
33	Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., Prasil, O.
34	and Berman-Frank, I. (2007) Elevated CO2 enhances nitrogen fixation and
35	growth in the marine cyanobacterium Trichodesmium. Global Change
36	<i>Biology</i> , 13 , 531-538.
37	Lomas, M. W., Bm, H., Jl, L., De, R., Dl, S., Y, X. and Fmm, M. (2012) Effect of
38	ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquatic
39	Microbial Ecology, 66, 211-222.
40	Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner,
41	A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart,
42	A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T.,
43	Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis,
44	A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A. and Schleifer,
45	K. H. (2004) ARB: a software environment for sequence data. <i>Nucleic Acids</i>
46	<i>Research</i> , 32 , 1363-1371.
47	Man-Aharonovich, D., Kress, N., Bar Zeev, E., Berman-Frank, I. and Beja, O. (2007)
48	Molecular ecology of nifH genes and transcripts in the eastern Mediterranean
49	Sea. Environmental Microbiology, 9, 2354-2363.

1	Mermex Group: De Madron, X. D., Guieu, C., Sempere, R., Conan, P., Cossa, D.,
2	D'ortenzio, F., Estournel, C., Gazeau, F., Rabouille, C., Stemmann, L.,
3	Bonnet, S., Diaz, F., Koubbi, P., Radakovitch, O., Babin, M., Baklouti, M.,
4	Bancon-Montigny, C., Belviso, S., Bensoussan, N., Bonsang, B., Bouloubassi,
5	I., Brunet, C., Cadiou, J. F., Carlotti, F., Chami, M., Charmasson, S.,
6	Charriere, B., Dachs, J., Doxaran, D., Dutay, J. C., Elbaz-Poulichet, F.,
7	Eleaume, M., Eyrolles, F., Fernandez, C., Fowler, S., Francour, P., Gaertner, J.
8	C., Galzin, R., Gasparini, S., Ghiglione, J. F., Gonzalez, J. L., Goyet, C.,
9	Guidi, L., Guizien, K., Heimbuerger, L. E., Jacquet, S. H. M., Jeffrey, W. H.,
10	Joux, F., Le Hir, P., Leblanc, K., Lefevre, D., Lejeusne, C., Leme, R., Loye-
11	Pilot, M. D., Mallet, M., Mejanelle, L., Melin, F., Mellon, C., Merigot, B.,
12	Merle, P. L., Migon, C., Miller, W. L., Mortier, L., Mostajir, B., Mousseau, L.,
13	Moutin, T., Para, J., Perez, T., Petrenko, A., Poggiale, J. C., Prieur, L., Pujo-
14	Pay, M., Pulido, V., Raimbault, P., Rees, A. P., Ridame, C., Rontani, J. F.,
15	Pino, D. R., Sicre, M. A., Taillandier, V., Tamburini, C., Tanaka, T., Taupier-
16	Letage, I., Tedetti, M., Testor, P., Thebault, H., Thouvenin, B., Touratier, F.,
17	Tronczynski, J., Ulses, C., Van Wambeke, F., Vantrepotte, V., Vaz, S.,
18	Verney, R. and Mermex, G. (2011) Marine ecosystems' responses to climatic
19	and anthropogenic forcings in the Mediterranean. Progress in Oceanography,
20	91, 97-166.
21	Mohr, W., Grosskopf, T., Wallace, D. W. R. and Laroche, J. (2010) Methodological
22	Underestimation of Oceanic Nitrogen Fixation Rates. Plos One, 5.
23	Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson,
24	C. A., Montoya, J. P. and Zehr, J. P. (2010) Unicellular Cyanobacterial
25	Distributions Broaden the Oceanic N-2 Fixation Domain. Science, 327, 1512-
26	1514.
27	Moisander, P. H., Beinart, R. A., Voss, M. and Zehr, J. P. (2008) Diversity and
28	abundance of diazotrophic microorganisms in the South China Sea during
29	intermonsoon. Isme Journal, 2, 954-967.
30	Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A. and Zehr, J. P. (2014)
31	Gammaproteobacterial diazotrophs and nifH gene expression in surface waters
32	of the South Pacific Ocean. Isme Journal, 8, 1962-1973.
33	Montoya, J. P., Voss, M., Kahler, P. and Capone, D. G. (1996) A simple, high-
34	precision, high-sensitivity tracer assay for N-2 fixation. Applied and
35	Environmental Microbiology, 62, 986-993.
36	Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van
37	Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
38	Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J.,
39	Thomson, A. M., Weyant, J. P. and Wilbanks, T. J. (2010) The next
40	generation of scenarios for climate change research and assessment. Nature,
41	463, 747-756.
42	Mulholland, M. R., Bernhardt, B. W., Blanco-Garcia, J. L., Mannino, A., Hyde, K.,
43	Mondragon, E., Turk, K., Moisander, P. H. and Zehr, J. P. (2012) Rates of
44	dinitrogen fixation and the abundance of diazotrophs in North American
45	coastal waters between Cape Hatteras and Georges Bank. Limnology and
46	<i>Oceanography</i> , 57 , 1067-1083.
47	Murphy, J. and Riley, J. P. (1962) A modified single solution method for the
48	determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-
49	36.

1	Owens, N. J. P. and Rees, A. P. (1989) Determination of N-15 at Submicrogram
2	Levels of Nitrogen Using Automated Continuous-Flow Isotope Ratio Mass-
3	Spectrometry. Analyst, 114 , 1655-1657.
4	Pantoja, S., Repeta, D. J., Sachs, J. P. and Sigman, D. M. (2002) Stable isotope
5	constraints on the nitrogen cycle of the Mediterranean Sea water column.
6	Deep-Sea Research Part I-Oceanographic Research Papers, 49 , 1609-1621.
7	Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J. F.,
8	Goyet, C., Moutin, T. and Prieur, L. (2011) Integrated survey of elemental
9	stoichiometry (C, N, P) from the western to eastern Mediterranean Sea.
10	Biogeosciences, 8, 883-899.
11	Rahav, E., Herut, B., Stambler, N., Bar-Zeev, E., Mulholland, M. R. and Berman-
12	Frank, I. (2013) Uncoupling between dinitrogen fixation and primary
13	productivity in the eastern Mediterranean Sea. Journal of Geophysical
14	Research: Biogeosciences, 118 , 195-202.
15	Ras, J., Claustre, H. and Uitz, J. (2008) Spatial variability of phytoplankton pigment
16	distributions in the Subtropical South Pacific Ocean: comparison between in
17	situ and predicted data. Biogeosciences, 5, 353-369.
18	Raven J.A., Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Reibesell U,
19	Shepherd J, Turley C and A, W. (2005) Acidification due to increasing carbon
20	dioxide. The Royal Society, London.
21	Redfield, A. C. (ed) (1934) On the proportions of organic derivations in sea water
22	and their relation to the composition of plankton, Vol. University Press,
23	Liverpool.
24	Rees, A. P., Law, C. S. and Woodward, E. M. S. (2006) High rates of nitrogen
25	fixation during an in-situ phosphate release experiment in the Eastern
26	Mediterranean Sea. Geophysical Research Letters, 33.
27	Richir, J. and Gobert, S. (2014) A reassessment of the use of Posidonia oceanica and
28	Mytilus galloprovincialis to biomonitor the coastal pollution of trace elements:
29	New tools and tips. Marine Pollution Bulletin, 89, 390-406.
30	Ridame, C., Dekaezemacker, J., Guieu, C., Bonnet, S., L'helguen, S. and Malien, F.
31	(2014) Contrasted Saharan dust events in LNLC environments: impact on
32	nutrient dynamics and primary production. <i>Biogeosciences</i> , 11 , 4783-4800.
33	Ridame, C., Guieu, C. and L'helguen, S. (2013) Strong stimulation of N2 fixation in
34	oligotrophic Mediterranean Sea: results from dust addition in large in situ
35	mesocosms. Biogeosciences, 10, 7333-7346.
36	Ridame, C., Le Moal, M., Guieu, C., Ternon, E., Biegala, I. C., L'helguen, S. and
37	Pujo-Pay, M. (2011) Nutrient control of N-2 fixation in the oligotrophic
38	Mediterranean Sea and the impact of Saharan dust events. <i>Biogeosciences</i> , 8,
39	2773-2783.
40	Sandroni, V., Raimbault, P., Migon, C., Garcia, N. and Gouze, E. (2007) Dry
41	atmospheric deposition and diazotrophy as sources of new nitrogen to
42	northwestern Mediterranean oligotrophic surface waters. Deep-Sea Research
43	Part I-Oceanographic Research Papers, 54, 1859-1870.
44	Shi, D., Kranz, S. A., Kim, JM. and Morel, F. M. M. (2012) Ocean acidification
45	slows nitrogen fixation and growth in the dominant diazotroph
46	Trichodesmium under low-iron conditions. Proceedings of the National
47	Academy of Sciences, 109 , E3094–E3100.
48	Skliris, N., Goffart, A., Hecq, J. H. and Djenidi, S. (2001) Shelf-slope exchanges
49	associated with a steep submarine canyon off Calvi (Corsica, NW

1	Mediterranean Sea): A modeling approach. Journal of Geophysical Research-
2	Oceans, 106 , 19883-19901.
3	Spungin, D., Berman-Frank, I. and Levitan, O. (2014) Trichodesmium's strategies to
4	alleviate P-limitation in the future acidified oceans. Environmental
5	Microbiology, n/a-n/a.
6	Thompson, A., Carter, B. J., Turk-Kubo, K., Malfatti, F., Azam, F. and Zehr, J. P.
7	(2014) Genetic diversity of the unicellular nitrogen-fixing cyanobacteria
8	UCYN-A and its prymnesiophyte host. Environmental Microbiology, 16,
9	3238-3249.
10	Touratier, F. and Goyet, C. (2011) Impact of the Eastern Mediterranean Transient on
11	the distribution of anthropogenic CO2 and first estimate of acidification for
12	the Mediterranean Sea. Deep-Sea Research Part I-Oceanographic Research
13	Papers, 58, 1-15.
14	Tuit, C., Waterbury, J. and Ravizza, G. (2004) Diel variation of molybdenum and iron
15	in marine diazotrophic cyanobacteria. <i>Limnology and Oceanography</i> , 49 , 978-
16 17	990. Tarda Kaba K. A. Kanana handani M. Canana D. C. and Zaha J. D. (2014) The
17	Turk-Kubo, K. A., Karamchandani, M., Capone, D. G. and Zehr, J. P. (2014) The
18	paradox of marine heterotrophic nitrogen fixation: abundances of
19 20	heterotrophic diazotrophs do not account for nitrogen fixation rates in the
20 21	Eastern Tropical South Pacific. <i>Environmental Microbiology</i> , 16 , 3095-3114.
21	Vrede, K., Heldal, M., Norland, S. and Bratbak, G. (2002) Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited
22	bacterioplankton. Applied and Environmental Microbiology, 68 , 2965-2971.
23 24	Wagener, T., Guieu, C. and Leblond, N. (2010) Effects of dust deposition on iron
25	cycle in the surface Mediterranean Sea: results from a mesocosm seeding
26	experiment. <i>Biogeosciences</i> , 7 , 3769-3781.
27	Wilson, S. T., Böttjer, D., Church, M.J., and Karl, D.M. (2012) Comparative
28	assessment of nitrogen fixation methodologies conducted in the oligotrophic
29	North Pacific Ocean. Applied and Environmental Microbiology
30	Yogev, T., Rahav, E., Bar-Zeev, E., Man-Aharonovich, D., Stambler, N., Kress, N.,
31	Beja, O., Mulholland, M. R., Herut, B. and Berman-Frank, I. (2011) Is
32	dinitrogen fixation significant in the Levantine Basin, East Mediterranean
33	Sea? Environmental Microbiology, 13, 854-871.
34	Zani, S., Mellon, M. T., Collier, J. L. and Zehr, J. P. (2000) Expression of nifH genes
35	in natural microbial assemblages in Lake George, New York, detected by
36	reverse transcriptase PCR. Applied and Environmental Microbiology, 66,
37	3119-3124.
38	Zeev, E. B., Yogev, T., Man-Aharonovich, D., Kress, N., Herut, B., Beja, O. and
39	Berman-Frank, I. (2008) Seasonal dynamics of the endosymbiotic, nitrogen-
40	fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean
41	Sea. <i>The ISME journal</i> , 2 , 911-23.
42	Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O. and Jenkins, B. D.
43	(2003) Nitrogenase genes in PCR and RT-PCR reagents: implications for
44	studies of diversity of functional genes. <i>Biotechniques</i> , 35 , 996-+.
45	Zehr, J. P. and Mcreynolds, L. A. (1989) USE OF DEGENERATE
46	OLIGONUCLEOTIDES FOR AMPLIFICATION OF THE NIFH GENE
47	FROM THE MARINE CYANOBACTERIUM TRICHODESMIUM-
48	THIEBAUTII. Applied and Environmental Microbiology, 55 , 2522-2526.
49 50	
50	


Fig. 1

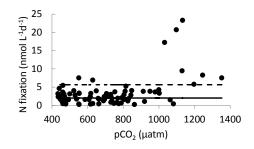
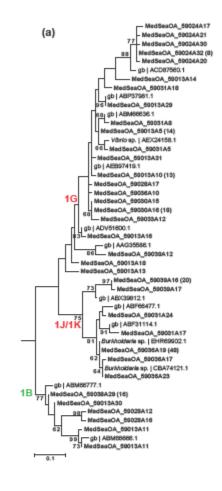
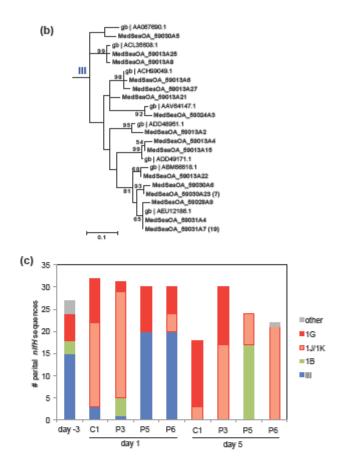




Fig 5

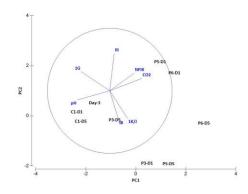


Fig 7