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Abstract. Ecosystem models are often assessed using quan-

titative metrics of absolute ecosystem state, but these model–

data comparisons are disproportionately vulnerable to dis-

crepancies in the location of important circulation features.

An alternative method is to demonstrate the models capac-

ity to represent ecosystem function; the emergence of a co-

herent natural relationship in a simulation indicates that the

model may have an appropriate representation of the ecosys-

tem functions that lead to the emergent relationship. Further-

more, as emergent properties are large-scale properties of the

system, model validation with emergent properties is possi-

ble even when there is very little or no appropriate data for

the region under study, or when the hydrodynamic compo-

nent of the model differs significantly from that observed in

nature at the same location and time.

A selection of published meta-analyses are used to estab-

lish the validity of a complex marine ecosystem model and

to demonstrate the power of validation with emergent prop-

erties. These relationships include the phytoplankton com-

munity structure, the ratio of carbon to chlorophyll in phy-

toplankton and particulate organic matter, the ratio of partic-

ulate organic carbon to particulate organic nitrogen and the

stoichiometric balance of the ecosystem.

These metrics can also inform aspects of the marine

ecosystem model not available from traditional quantitative

and qualitative methods. For instance, these emergent proper-

ties can be used to validate the design decisions of the model,

such as the range of phytoplankton functional types and their

behaviour, the stoichiometric flexibility with regards to each

nutrient, and the choice of fixed or variable carbon to nitro-

gen ratios.

1 Introduction

Numerical models of the environment are used frequently for

informing policy decisions, for forecasting the impact of cli-

mate change, and to obtain a deeper understanding of nature.

In order for a model to be used for any of these purposes,

the model must first be shown to be a valid representation

of the system under study. There are two objective strate-

gies available to demonstrate that the model is a valid repre-

sentation of the system under study. The first strategy is to

reproduce the spatial and temporal distributions of historic

observations, and the second is to reproduce the functional

relationships.

There is a long history of works that demonstrate model

validation using static fields, spatial distributions and dy-

namic variability, including Droop (1973), Fasham et al.

(1990), Taylor (2001), Blackford (2004), Allen et al. (2007),

Jolliff et al. (2009), Shutler et al. (2011), Saux Picart et al.

(2012), de Mora et al. (2013), and Kwiatkowski et al. (2014).

However, validating a modern biogeochemical model using

static fields and spatial distributions may give an appropri-

ate assessment of the coupled biogeochemical and hydrody-

namic modelled system, but the performance of the biogeo-

chemical model may be obscured by deficiencies in the mod-

elled circulation. For instance, the point-to-point analysis de-

scribed in de Mora et al. (2013) is vulnerable to discrepancies

between the model and the observations in the location of im-

portant circulation features such as fronts, coastlines or up-

welling regions. These problems in the physical model may

needlessly penalise the performance of the biogeochemical

model when validating using point-to-point matching. Val-

idation methods that use historic data are also sensitive to
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initial conditions and the boundary conditions of the model.

These problems are amplified for models with coarse spatial

and temporal resolution, such as the monthly mean of a 1◦

global model. The disentanglement of the performance of the

biogeochemical model from that of the physics is a major

challenge in marine ecosystem modelling (Holt et al., 2014).

Direct comparisons of model to data inform only about

how similar the model is to the observations. Such methods

also risk compartmentalising the validation of ecosystems

and may not cover the interaction of their parts. The ability

of a model to represent present-day measurements is impor-

tant, but it does not inform about the models representation

of the behaviour of the ecosystem as a whole. Furthermore,

historical static fields may not necessarily validate a model,

which is subjected to a changing climate due to the scarce

availability of long-term time-series data sets.

As a solution to the problem of the absence of data and

presence of poorly constrained physics, Holt et al. (2014)

wrote “there is a need for metrics that assess the fidelity of

the biogeochemical processes independently of the physics”.

In that work, they identify one such functional relationship:

the link between diatom chlorophyll and total community

chlorophyll. They demonstrated that the fraction of the com-

munity chlorophyll that originates in diatoms increases with

total chlorophyll in multiple models. A relationship between

diatom concentration and total chlorophyll was also observed

in nature in Hirata et al. (2011). In effect, a relationship

seen in in situ observations also appeared in multiple bio-

geochemical models. In addition, the relationship observed

in Holt et al. (2014) was a widespread general response in all

the plankton models that was independent of local hydrody-

namic conditions. Furthermore, this relationship is a large-

scale property of the marine ecosystem, and is expected to

hold true even in regions with few historical measurements.

This relationship is important because it occurred indepen-

dently of the hydrodynamic model, and because it reflected

the functioning of the modelled ecosystem in a way that

would not be visible in a simple point-to-point comparison

of ecosystem state.

Beyond Hirata et al. (2011), there are many works that

link a large phytoplankton size class with the community

structure: Devred et al. (2011), Brewin et al. (2012, 2014,

2015). Many features of an ecosystem can affect the balance

of large phytoplankton chlorophyll against the total commu-

nity chlorophyll, such as the large phytoplankton response

to nutrients, light and temperature, competition for light and

nutrients from other phytoplankton, and predation on large

phytoplankton relative to other phytoplankton classes. Each

of these interactions between two or more components of the

ecosystem are examples of ecosystem functions. In the con-

text of marine ecosystem modelling, ecosystem functions are

physical, biological or geochemical interactions, processes

or relationships that take place within a model’s framework.

Ecosystem function in models can be both explicitly en-

forced during the model development and tuning, or they can

occur without being explicitly parameterised. The interplay

of multiple ecosystem functions can result in the emergence

of observable relationships. The link between diatom chloro-

phyll and total community chlorophyll, as shown by Holt

et al. (2014), is an example of such an emergent relationship.

These emergent relationships can be used to characterise and

validate the ecosystem and its functioning. As in the exam-

ple from Holt et al. (2014), emergent relationships are impor-

tant because they occur independently of the hydrodynamic

model, and because they reflect the functioning of the mod-

elled ecosystem in a way that would not be visible in a simple

point-to-point comparison of ecosystem state.

A selection of historically published large-scale emer-

gent relationships are proposed to illustrate the validation of

a complex ecosystem model and demonstrate the power of

emergent property validation. The example ecosystem model

used here is European Regional Seas Ecosystem Model

(ERSEM), and it is run coupled with the Nucleus for Eu-

ropean Modelling of the Ocean (NEMO) in a global hind-

cast scenario. The emergent relationships shown here are the

community structure, the carbon to chlorophyll ratio, the ra-

tio of particulate organic carbon against particulate organic

nitrogen and stoichiometric balance.

After this introductory section, Sect. 2 contains a brief

description of the circulation model, NEMO, the ecosys-

tem model, ERSEM, and the sea ice model, CICE, used in

this study. Section 3 is a non-exhaustive list of examples of

ecosystem relationships that have been investigated in the

ERSEM ecosystem model. An expanded version of the com-

munity structure relationship described by Holt et al. (2014)

is included in Sect. 3.1. Section 3.2 shows the ratio of carbon

to chlorophyll in phytoplankton and particulate organic mat-

ter. Section 3.3 demonstrates how the model reproduces the

ratio of particulate organic carbon and nitrogen as described

by Redfield (1934), Martiny et al. (2013). Section 3.4 illus-

trates the internal stoichiometric relationships for ERSEM

for each of the nutrient currencies modelled. Finally, Sect. 4

discusses the successes, potential and limitations of these

methods.

2 The ERSEM and NEMO models

ERSEM is a lower trophic level biogeochemical cycling,

carbon-based process model that uses the functional-group

approach (Baretta et al., 1995; Blackford, 2004; Butenschön

et al., 2015). The carbon, nitrogen, phosphorus, silicon and

iron cycles are explicitly resolved. The pelagic ERSEM

model simulates four phytoplankton functional types, three

zooplankton functional types, one bacterial functional type

and six detritus size classes. It contains variable stoichiomet-

ric ratios for each of the plankton functional types. A diagram

showing the major organisms, nutrients, chemical systems,

organic matter and fluxes modelled in ERSEM is shown in

Fig. 1. ERSEM can be run in parallel with any one of a range
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Figure 1. Schematic representing the major organisms, nutrients, chemical systems, organic matter and fluxes modelled in ERSEM. Blue

connectors represent inorganic carbon, red represents nutrient fluxes, black represents predator–prey interactions and green represents the

non-living organics.

of benthic models of varying complexity, the parameterisa-

tion used for this publication uses a simple parameterisation

of remineralisation where sedimented organic matter is recy-

cled to the water column in inorganic form.

The initial nutrient conditions for nitrate, phosphorus and

silicate were taken from the World Ocean Atlas database

(Garcia et al., 2010). The initial iron concentrations were

zonally averaged interpolations of the iron data from Tagli-

abue et al. (2012). The iron dust surface deposition clima-

tology was based on Mahowald et al. (2005). The remaining

biogeochemical fields were initialised to low concentrations.

In order to be a better representation of nature, marine

ecosystem models like ERSEM are typically run in conjunc-

tion with an ocean circulation model, such as the NEMO

(Madec, 2008). NEMO is a framework of ocean related en-

gines, ocean dynamics, thermodynamics, sinks and sources,

and transport. It was designed to be a flexible tool for study-

ing the ocean and its interactions with the other components

of the earth climate system over a wide range of space and

timescales. The version of NEMO used in this study was ver-

sion 3.2 and the ocean circulation model was interfaced with

the CICE (Hunke et al., 2013). CICE has several interacting

components: a thermodynamic sub-model, an ice dynamics

sub-model, a vertical and a horizontal transport sub-model.

The coupled NEMO–ERSEM–CICE models were run si-

multaneously in the ORCA1 1◦ global tripolar grid, with 75

fixed depth layers on the UK Met Office super-computing

system (MONSooN). The atmospheric boundary conditions

were taken from the CORE2 global air–sea flux data set

(Large and Yeager, 2009). The coupled model was run for

117 years, from 1890 to 2007. The initial conditions for the

circulation model at 1890 were taken from a 60 year physics-

only climatological spin-up from a still global ocean. The

first 60 years (1890–1950) of coupled NEMO–ERSEM run-

ning were spun-up using climatological CORE2 forcing. Af-

ter 1950, the remaining 57 years were run with the inter-

annually variable version of the CORE2 forcing.

The simulation was run as part of the iMarNet project: an

inter-comparison project of six UK biogeochemical models

(Kwiatkowski et al., 2014). The ERSEM model run shown

here is an updated parameterisation relative to the ERSEM

model data used in that study. A unique requirement of this

project was that the six biogeochemical models were coupled

to identical physical models. All six biogeochemical models

were required to use identical model parameters and settings

to run the physical component of the simulation, NEMO.

Furthermore, all six models used the same computing re-

source, the same coding framework and the same initial con-

ditions for nutrients. In other words, the physical parame-

terisations were prescribed according to specific pre-defined

settings and no further changes to the physical settings were

permitted.
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3 Emergent relationships in marine

biogeochemical models

The use of emergent relationships as a tool to assess the qual-

ity of a marine biogeochemistry model is the central thesis

presented in this work. However, there are some important

caveats that should be stated. First, this method is not in-

tended to replace current validation methods, but to comple-

ment them. The standard methods such as a point-to-point

comparison should remain valid tools for objectively deter-

mining model quality. Second, the emergence of a coherent

natural relationship in a simulation is an indication that the

model has an appropriate representation of the ecosystem

functions that create the emergent relationship. However, the

ability to reproduce an emergent property does not guaran-

tee the accuracy of the model choices and parameterisation.

Only through a thorough investigation of the model structure

and behaviour can we know whether the model reproduces

the emergent property for the right reasons. Nevertheless, we

aim to demonstrate that the reproduction of emergent rela-

tionships by the model are a diagnostic tools, which may

be used to identify the origins of model strengths and weak-

nesses.

In an ideal world, this work would present a comprehen-

sive set of emergent relationships to assist the validation of

any marine biogeochemical model. However, models can dif-

fer enormously in their complexity, design choices, selection

of ecosystem functions implemented, parameterisations, lo-

cation and scope, such that each unique model would need to

be validated using a different set of emergent properties. The

emergent relationships shown here are tailored to ERSEM,

but many of these relationship may also appear in other mod-

els.

The use of emergent relationships to validate models

works best under certain conditions. The desired scenario is

when the emergent relationship has been observed multiple

times in nature with several independent data sets, is valid

over large spatial and temporal ranges, and has been reported

with a high statistical probability, if fitted to a mathematical

function. The ideal scenario regarding the model version of

the emergent relationship is that it is not purposefully and

obviously imposed a priori by the choice of model parame-

terisation, it is not a direct extrapolation of the choices made

in model design, the emergent property should not be repro-

duced in the simulation by tuning a small number of param-

eters, and the model should not be explicitly tuned to match

the data.

As emergent relationships are large-scale properties of the

system, validation with emergence is possible even when

there is very little or no appropriate data for the region un-

der study, or when the physical circulation component of the

model differs significantly from that observed in nature at the

same location and time. This is one of the strengths of the

validation with emergent properties method: it can be used

to demonstrate ecosystem model quality in the absence of

perfectly simulated physical marine environment or exten-

sive local measurements. Nevertheless, it is important that

the model and the data originate from similar marine envi-

ronments. For instance, emergent property validation cannot

compensate for a catastrophic failure of the hydrodynamic

model, nor can it be used to validate the model in regions

with unusual and understudied behaviour. However, it is not

crucial to match up the exact locations in model and data, as

used in the point-to-point study in de Mora et al. (2013).

A full understanding of the causal nature of the relation-

ship is not a strict requirement in order to be informative.

There are many naturally occurring phenomena for which

an explicit explanation is not immediately available, but for

which the relationship is nevertheless stable. A well-known

example is the Redfield ratio (Redfield, 1934; Arrigo, 2005).

Unexplained relationships can inform about the validity of

some aspect of the model behaviour. Furthermore, if the

model could reproduce a natural emergent property in the

absence of a purposefully prescribed functional relationship,

then it may be possible to use the model to discover a causal

relationship.

The emergence of a coherent natural relationship in a sim-

ulation is an indication that the model has a appropriate rep-

resentation of the ecosystem functions that create the emer-

gent relationship. If the emergent relationship is not seen

in the model, this implies that the ecosystem functions that

bring about the emergence are not correctly implemented

in the model. If the emergent relationship is present in the

model, but breaks down under certain conditions, this means

that those conditions are not correctly modelled. Such break

down points can be a combination of extreme physical, bio-

geochemical, or ecosystem conditions, and can be used to

pinpoint the limitations of the simulation, allowing for pow-

erful and precise criticisms of the model. However, some

caution is required as there may also be break down condi-

tions for the emergent property in nature. Nevertheless, every

emergent property that the model fails to reproduce is a new

direction for future model development.

The remainder of this section is a non-exhaustive list of

the emergent properties that can be used to assess the quality

of the NEMO–ERSEM iMarNet hindcast. The first emergent

property shown here is an extension of the diatom chloro-

phyll relationship previously described in Holt et al. (2014).

3.1 Phytoplankton community structure

In modelling and observational marine biology, phytoplank-

ton are often grouped into size- or function-based classifi-

cations (Woodward et al., 2005). The size of a phytoplank-

ter can directly influence a range of physiological processes,

which combined together with other individuals can have

an ecosystem-wide effect. Physiologically, a cells size may

affect its nutrient uptake, metabolic rates, physiology and

light absorption (Nelson et al., 1993; Stolte and Riegman,

1995; Huete-Ortega et al., 2012; Zhang et al., 2012). At the
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Figure 2. Phytoplankton community structure for all fits including the fit to ERSEM. The panes labelled (a), (b) and (c) are diatoms and

large phytoplankton, nanophytoplankton and picophytoplankton, respectively. The least-squared fit to the three-population absorption model

to ERSEM is shown as a green line. The other coloured lines are the five fits from Hirata et al. (2011), Devred et al. (2011), and Brewin et al.

(2012, 2014, 2015). The dashed vertical line indicates a typical detection limit of HPLC and SFF methods.

ecosystem scale, these individual-level effects combine to in-

fluence large-scale observable properties such as the com-

munity primary production, export, the food web, and the

light penetration depth into seawater (Riegman et al., 1993;

Finkel et al., 2010; Huete-Ortega et al., 2012). In addition

to size classes, phytoplankton function-based classifications

are also used in modelling and observational marine biology.

Phytoplankton functional types allow for a grouping of phy-

toplankton species by their role in the ecosystem, their pre-

ferred nutrient sources, and their production, export and sink-

ing rates.

Many marine ecosystem models use a size- or function-

based classification. The phytoplankton classification in

ERSEM follows both size- and function-based classifica-

tions. There are four plankton functional types (PFTs) in

ERSEM. Three of the groups are sized based: nanophyto-

plankton, picophytoplankton and large phytoplankton. The

fourth group, diatoms, are between nanophytoplankton and

large phytoplankton in size but include a silicon component.

Each PFT has different nutritive affinities and requirements,

metabolic rates, and different palatability as a food source for

predators.

In both the ecosystem and in models, the relative abun-

dance of each class is referred to as the community structure.

The relative abundance is often measured in terms of chloro-

phyll, but it also can be gauged in units of cell count, total

cell volume, or carbon or nitrogen biomass. The community

structure in the model is dependent on a large number of fac-

tors, including the nutritive affinity and nutritional storage

capacity of each PFT relative to each nutrient, the palatabil-

ity as a food source of each PFT for each zooplankton func-

tional type, and local environmental conditions such as light,

temperature and nutritive up-welling. In ERSEM, there is no

explicit parameterisation of their absolute or relative abun-

dances; it is a property that arises out of a combination of

many ecosystem functions.

The relationship between the abundance of each plankton

functional type and the total community chlorophyll has been

presented repeatedly with data from both high performance

liquid chromatography (HPLC) and size fractionated filtra-

tion (SFF) measurements. Five examples of this relationship

are Hirata et al. (2011), Devred et al. (2011), and Brewin

et al. (2012, 2014, 2015). Each of these fits is prepared using

a different data set. Hirata et al. (2011) used multiple HPLC

databases from around the world. Devred et al. (2011) used

chlorophyll and absorption data from the northwest Atlantic

region that was collected between 1996 and 2003. Brewin

et al. (2012) used HPLC data in the Indian Ocean taken be-

tween 1995 and 2007. Brewin et al. (2014) used SFF from the

Atlantic Meridianal Transect (AMT) cruises in the Atlantic

Ocean between 1996 and 2012. Brewin et al. (2015) used

a aggregation of 16 unique globally distributed databases.

Figure 2 shows the five fits of in situ community structure

(Hirata et al., 2011; Devred et al., 2011; Brewin et al., 2012,

2014, 2015). The fit of the ERSEM simulation to the three-

population absorption model of Brewin et al. (2010) using a

least-squared fit is also shown. This fit was performed using

model data after the simulation had been completed and did

not influence the relationship of the plankton functional types

during the simulation. For all three panels, the x axes are the

total community chlorophyll, and the y axes are the percent-

age of the total chlorophyll that came from each PFT. The di-

atom and large phytoplankton functional types are summed

together in the left panel. The middle panel shows nanophy-
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Figure 3. Phytoplankton community structure. The model data

are shown as the logarithmically scaled two-dimensional data his-

togram distribution in blue scale. A least-squares fit of the model

data to the three-population absorption model of Brewin et al.

(2010) is shown as a full green line, and the fit of historic in situ

data to the three-population absorption model from Brewin et al.

(2015) is shown in a purple line. A fit to data from Hirata et al.

(2011) is shown in a black line. The dashed vertical line indicates

a typical detection limited of HPLC and SFF methods.

toplankton and the right panel shows picophytoplankton. The

dashed vertical line indicates a typical detection limit of

HPLC and SFF measurements of 0.1 mgChlm−3. The De-

vred et al. (2011), and Brewin et al. (2012, 2014, 2015) are

also fitted to the three-population absorption model, but the

Hirata et al. (2011) is fitted with its own community struc-

ture model. The difference between the Hirata model and the

three-population model is that the Hirata model is a best fit to

the data, whereas the three-population model is derived based

on empirical principles. Despite their differences, these fits

have little variability in the overall shape of the fit between

data sets and methodologies.

Note that only the fits are shown in Fig. 2, the in situ data

itself are not shown, nor is the model data. Showing the fit

as a smooth line hides the substantial spread of both the

in situ and model data. For instance, the data shown in the

widely published Fig. 2 of Hirata et al. (2011) has already

been smoothed with a 5-point-running mean, and that run-

ning mean is further smoothed to the fit line shown in Fig. 2.

Figure 3 is a three panel plot of phytoplankton commu-

nity structure showing the model data as a logarithmically

scaled two-dimensional data histogram distribution in blue

scale. This figure also shows a fit to the model data, and

the in situ data fits from Brewin et al. (2015), and Hirata

et al. (2011). The fit to ERSEM, the Brewin 2015 and the

Table 1. Parameters of the fits to the three-population absorption

model for the Brewin et al. (2015), and for ERSEM. Two fits to

ERSEM are shown: the first is the fit to the ERSEM data set ex-

cluding the polar, shallow and inland seas, and the second includes

all these regions to a depth of 40 m. The parameters are Cm
p, n: max-

imum piconano chlorophyll, Sp, n is the slope for piconano chloro-

phyll, Cm
p is the maximum picophytoplankton chlorophyll and Sp

is the slope for picophytoplankton.

Brewin et al. (2015) ERSEM ERSEM (top 40 m)

Cm
p, n 0.77 0.345 0.742

Sp, n 1.22 2.147 0.799

Cm
p 0.13 0.061 0.289

Sp 6.16 10.56 1.168

Hirata 2011 lines are identical in Figs. 2 and 3. For clarity,

the other fits are not shown in Fig. 3. For all three panels,

the shared x axis is the total community chlorophyll, and the

y axes are the percentage of the total chlorophyll that came

from each PFT. The model data are shown as a logarithmi-

cally scaled two-dimensional data histogram distribution in

blue scale. The diatom and large phytoplankton functional

types are summed together in the top panel. The middle panel

shows nanophytoplankton and the bottom panel shows pico-

phytoplankton. The dashed vertical line indicates a typical

detection limited of HPLC and SFF measurements. Note that

only the fits to the in situ data are shown, the in situ data itself

are not shown.

The model data in Fig. 3 were taken from the top 40 m

of the global ocean, excluding the shallow seas, inland seas,

the Southern Ocean from 45◦ south and the Arctic Ocean

from 55◦ north. The Arctic and Southern oceans were ex-

cluded from this analysis for two reasons: first, there were no

Arctic community structure data in four of the studies men-

tioned above, and Brewin et al. (2015) only includes a small

number of Southern Ocean data. Second, they were excluded

because this is a region where the physics in this model run

was particularly troublesome. As mentioned in Sect. 2, the

physics model was fully prescribed as part of the iMarNet

inter-comparison project, and no tuning of the physics was

permitted. The shallow and inland seas were excluded be-

cause a coarse 1◦ global model cannot resolve the complex

dynamics needed to reproduce these regions. The model data

and in situ data were both fit to the same three-population

absorption model (Brewin et al., 2010), and both sets of fit

parameters are shown in Table 1.

The model reproduces the overall shape of the picophy-

toplankton community structure in Fig. 3, in that the pi-

cophytoplankton contribution to community chlorophyll is

higher at low chlorophyll concentrations. However, the pico-

phytoplankton community structure is concave in the model

and convex in the three-population model. At low chloro-

phyll concentrations, the model picophytoplankton commu-
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nity structure is more similar in shape to the Hirata et al.

(2011) fit, which is the only in situ data fit from Fig. 2 not

based on the three-population model.

The three-population absorption model of Brewin et al.

(2010) can be summarised in the following equations. The pi-

cophytoplankton component of the total community chloro-

phyll, chlp, is calculated as

chlp = Cm
p · (1− exp(−Sp · chl)), (1)

where chl is the total community chlorophyll, Cm
p is the

maximum picophytoplankton chlorophyll, and Sp is the ini-

tial slope of the exponential function for picophytoplankton.

Note that Figs. 2 and 3 show the phytoplankton functional-

type contribution as a percentage of total community chloro-

phyll instead of as the chlorophyll concentration used in

Eq. (1).

The combined picophytoplankton and nanophytoplankton

chlorophyll, or piconano chlorophyll, chlp, n, is calculated in

Eq. (2).

chlp, n = Cm
p, n · (1− exp(−Sp, n · chl)), (2)

where Cm
p, n is the maximum piconano chlorophyll and Sp, n

is the initial slope of the exponential function for piconano.

The chlp, n function is not shown explicitly in either Fig. 2

or Fig. 3, but is used in the calculation of the nanophyto-

plankton, diatoms and large phytoplankton functional-type

community structure.

Unlike chlp and chlp, n, the nanophytoplankton chloro-

phyll, chln, and microphytoplankton chlorophyll, chlm, are

not explicitly fitted. Instead, their contribution to total com-

munity chlorophyll is determined from a combination of

Eqs. (1) and (2). The nanophytoplankton chlorophyll, chln,

shown in Eq. (3), is the difference between the piconano

group chlorophyll and the picophytoplankton chlorophyll.

This is shown in the middle panel of Figs. 2 and 3.

chln = chlp, n− chlp (3)

The diatoms and large phytoplankton, (together also known

as microphytoplankton) chlorophyll, chlm, are the remainder

of the total chlorophyll that is not accounted for by the pi-

conano component. It is calculated as the difference between

the piconano chlorophyll and the total chlorophyll. This is

shown in the top pane of Fig. 3.

chlm = chl− chlp, n (4)

Just to explicitly state the overarching assumption used here,

the total chlorophyll, chl, is equal to the sum of the three-

component functional-type chlorophyll.

chl= chlm+ chln+ chlp (5)

Note that the three fits of Fig. 3 are not free to vary indepen-

dently. For any given value of total chlorophyll on the x axis,

the sum of the three populations much be equal to 100 %.

Furthermore, the fits are not free to vary to any shape, they

are limited by the structure available to Eqs. (1), (3) and (4).

Equations (1) and (2) are fitted to the simulated ERSEM data

using in the least-squares fit. In addition, the fit to ERSEM

was performed such that each model point had equal weight,

while the underlying histogram distribution is shown with a

log scale. This means that the fits are logarithmically more

influenced by the high data density regions in this figure. For

these reasons, the fits may not appear to match the overall

shape of the model distribution, while still being an accept-

able fit.

3.2 The carbon to chlorophyll ratio in particulate

organic matter and phytoplankton

The ratio of carbon to chlorophyll is an important indicator

of ecosystem state. This ratio has ecosystem relevance on any

scale, from an individual cellular level up to the entire com-

munity. Within a given cell, the carbon to chlorophyll ratio

is a sensitive indicator of a cells physiological state (Gei-

der, 1987) and is affected by the cells response to irradiation,

temperature and nutrient supply. In remote sensing and mod-

elling usage, this ratio also plays a significant role in the cal-

culation of phytoplankton biomass from ocean colour and in

the modelling of primary production and in Sathyendranath

et al. (2009) and Geider et al. (1997). For these reasons, much

effort has been dedicated to the study and modelling of the

carbon to chlorophyll ratio in modelling and in situ measure-

ments.

It has long been known that a single value for the carbon to

chlorophyll ratio under all environmental conditions is inap-

propriate for ecological studies (Geider, 1987). In a low-light

environment, cells can produce excess chlorophyll relative to

their carbon content in order to maximise light harvesting.

In contrast, the cells invest in different compounds to protect

the fragile parts of the cell from irradiation damage in a high

light environment (MacIntyre et al., 2002; Polimene et al.,

2014). This behaviour is known as photo-acclimation. Simi-

larly, it has long been known that the carbon to chlorophyll

ratio increases with decreasing temperature (Eppley, 1972).

While the exact pathway is not fully understood, it has been

suggested that this shift is limited by physical properties of

the components of photosynthetic apparatus. For instance, an

increase in carbon relative to chlorophyll may be required

to maintain fluidity at cold temperature, or low temperature

might impose constraints on the enzyme catalytic reactions

(Geider, 1987). Similarly, each plankton functional type re-

sponds in a different way to changes in temperature, affect-

ing the community structure, which may in turn influence the

carbon to chlorophyll ratio.

While there are many techniques available for measur-

ing total chlorophyll concentration, the direct measurement

of phytoplankton carbon biomass is difficult because of

the challenge of separating the phytoplankton from the
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other particulate organic matter (Graff et al., 2015). In-

stead, chlorophyll concentration is typically used as a proxy

for phytoplankton biomass. For obvious reasons, compar-

ing biomass derived from total chlorophyll to total chloro-

phyll is not an independent method for obtaining the car-

bon to chlorophyll ratio. However, it is possible to measure

total community chlorophyll and particulate organic carbon

(POC) simultaneously and independently.

A meta-study of simultaneous particulate organic carbon

and chlorophyll measurements was published in Sathyen-

dranath et al. (2009). The chlorophyll measurements were di-

vided according to two measurement technologies: high per-

formance liquid chromatography (HPLC) chlorophyll, and

Turner fluorometer data. The data used were taken from 16

cruises in the Labrador Sea, the Scotian shelf and the Ara-

bian Sea, between 1993 and 2001. Then they used the accu-

mulated data to produce a fit to the following relationship:

POC=m · chlp, (6)

where POC is the particulate organic carbon, chl is the total

community chlorophyll and m and p are the fitted parame-

ters.

In order to study the relationship between phytoplankton

carbon and total chlorophyll, Sathyendranath et al. (2009) ap-

plied the assumption that “at any given chlorophyll concen-

tration, the lowest particulate carbon observed represents the

phytoplankton carbon associated with that chlorophyll con-

centration.” Then, they used a 1 % quantile regression to de-

termine a relationship between the lowest particulate organic

carbon observed for each total chlorophyll concentration. Al-

though the methodology was more complex, they produced

a fit that was mathematically similar to Eq. (6):

C = n · chlq , (7)

where C is the phytoplankton carbon, chl is the total commu-

nity chlorophyll and n and q are the fitted parameters.

ERSEM employs a variant of the Geider model (Geider

et al., 1997, 1998) for describing the carbon to chlorophyll

ratio in phytoplankton. Each PFT in ERSEM has a different

parameterisation of the Geider model, allowing for phyto-

plankton carbon to chlorophyll behaviour to differ for each

plankton functional type and to vary according to local con-

ditions. In practice, the range of possible values of the phy-

toplankton carbon to chlorophyll ratio has a minimum and

maximum value for each functional type, but each phyto-

plankton carbon to chlorophyll ratio is free to vary inside

that envelope. There are no limits imposed on the commu-

nity phytoplankton carbon to chlorophyll ratio.

The total community chlorophyll in ERSEM is the sum of

the chlorophyll concentration of each phytoplankton func-

tional type. The modelled POC is the sum of the carbon

components of all four phytoplankton functional types, all

three zooplankton functional types, and the particulate detri-

tal carbon fields. Each one of these carbon compartments is

Figure 4. The ratio of particulate organic carbon to total chloro-

phyll. The model data are shown as the logarithmically scaled two-

dimensional data histogram distribution in blue scale. The full lines

indicate the two Sathyendranath et al. (2009) fits to data, and a fit

of the model to Eq. (6). The dashed lines show the two 1 % quan-

tile regression fit from the data and they indicate a theoretical lower

bound for the modelled POC : Chl field.

free to vary independently of total chlorophyll. For these rea-

sons, the ratio of POC to community chlorophyll is not an

obvious and purposefully prescribed consequence of model

choices, and cannot be tuned with a small number of param-

eters. The ratio of the particulate organic carbon against the

total chlorophyll is not explicitly restrained or parameterised

in any way.

Figure 4 shows the relationship between particulate or-

ganic carbon and total chlorophyll. The model data are

shown as a logarithmically scaled two-dimensional his-

togram distribution with in blue scale, and the model dis-

tribution is taken as all model points in the top 40 m of the

monthly climatology of the final 10 years of the simula-

tion, excluding shallow seas, inland seas, the Southern Ocean

from 45◦ south, and the Arctic Ocean from 55◦ north. A fit

of the models relationship between particulate organic car-

bon and total chlorophyll to Eq. (6) is also shown as a full

green line. The two Sathyendranath et al. (2009) fits of POC

to chlorophyll are also shown as full lines and the two 1 %

quantile regression fits representing phytoplankton carbon

against chlorophyll are shown as dashed lines. The param-

eters of these fits are shown in Table 2.

The two 1 % quantile regressions fits are included in Fig. 4

because they indicate a theoretical lower bound for the mod-

elled POC : Chl field. Approximately 3 % of the model data

fall below the theoretical lower limit indicated by the 1 %

Sathyendranath et al. (2009) Turner line. This is an accept-

able fraction, as the 1 % quantile regression was an arbitrary

cut-off point for the minimum POC concentration for each

chlorophyll range in the data. However, the data below this

line occur in the model only on the edges of the Arctic and

Southern oceans in the winter. When the entire model do-

main is included down to 40 m deep, including the Arctic and

Geosci. Model Dev., 9, 59–76, 2016 www.geosci-model-dev.net/9/59/2016/



L. de Mora et al.: The assessment of a global marine ecosystem model using emergent properties 67

Table 2. The parameters of the particulate organic carbon to to-

tal chlorophyll and phytoplankton carbon to chlorophyll fits to the

Eqs. (6) and (7).

Sathyendranath et al. (2009) ERSEM

HPLC Turner

Particulate organic carbon

m 180± 2 157± 2 145

p 0.48± 0.014 0.45± 0.013 0.51

Phytoplankton carbon

n 79∗ 64∗ 66

q 0.65∗ 0.63∗ 0.72

∗ These values were calculated using a 1 % quantile regression.

Figure 5. The ratio of phytoplankton carbon to total chlorophyll.

The model data are shown as the logarithmically scaled two-

dimensional data histogram distribution in blue scale. The dashed

lines show the fit to data, a fit of the model to Eq. (7), and the re-

sults of the two 1 % quantile regression from Sathyendranath et al.

(2009).

Southern oceans, and inland and shallow seas, the fraction of

data becomes as high as 11 %.

Figure 5 shows the total phytoplankton carbon against

total chlorophyll. This figure also shows the model data

as a two-dimensional histogram distribution logarithmically

scaled in blue scale and a least-squares fit of the data to

Eq. (7). In a modelling analysis, it is unnecessary to apply

the 1 % quantile regression, as it is straightforward to ex-

tract phytoplankton carbon. Figure 5 also shows the two 1 %

quantile regression fits from Sathyendranath et al. (2009) as

dashed lines as in Fig. 4. However, the model data shown in

this figure is phytoplankton carbon against total chlorophyll;

accordingly, the model data and fit are expected to match

these dashed lines. As before, the model distribution is the

top 40 m of the monthly climatology of the final 10 years

of the simulation, excluding shallow seas, inland seas and

the Arctic and Southern oceans. Both the fits and the bulk

Table 3. Statistics to describe the POC : PON distribution as re-

ported by Martiny et al. (2013), compared to the result of this study

and to the canonical Redfield Ratio.

Martiny et al. (2013) Redfield ERSEM

Mean 7.06 6.63 5.93

Mode 5.9 5.8

Median 6.5 5.84

SD 2.46∗ 0.61

∗ This standard deviation was not included in the original publication; it

was calculated based on their data set.

of the model data distribution in this figure coincide with the

two Sathyendranath et al. (2009) phytoplankton carbon to to-

tal chlorophyll relationship. This indicates that the combina-

tion of temperature, light and nutrients in the modelled global

ocean result in a reasonable and natural response of the mod-

elled phytoplankton. This natural response in the phytoplank-

ton indicates that the combination of model parameters de-

scribing the phytoplankton community in this simulation are

a valid parameter set for the modelled physical and biogeo-

chemical environment they inhabit.

3.3 Particulate organic carbon and particulate

organic nitrogen

The ratio of carbon to nitrogen in the ocean has long been

a historically important measurement and was first identified

by Redfield (1934). The interplay of carbon and nitrogen has

since been a major component of our understanding of ocean

biogeochemistry, underlying modern theories of nutrient cy-

cles, nutrient limitation in phytoplankton and stoichiometric

variability. The balance of carbon to nitrogen in the ocean has

been historically measured in the ratio of carbon to nitrogen

in particulate organic matter (POM).

A meta-study of the ratio of particulate organic carbon

(POC) against particulate organic nitrogen (PON) was pub-

lished in Martiny et al. (2013). Their paper used over 40 000

globally distributed POC–PON paired samples from 5383

unique stations in the upper 200 m of the ocean water col-

umn. They produced a frequency distribution of POC against

PON in the global ocean. The power of this figure was that it

was a clear demonstration of the discrepancy between a mod-

ern understanding of the stoichiometric balance of carbon to

nitrogen and the canonical Redfield ratio. Instead of a static

Redfield ratio, the observed POC : PON ratio varied between

2 and 20, and the canonical Redfield ratio was closer to the

median of the data set than to the mean or the mode.

The POC : PON frequency distribution from Martiny et al.

(2013) was reproduced using simulated data in Fig. 6. This

figure shows the POC : PON ratio calculated in the model,

not only the POC : PON ratio of the in situ data from Martiny

et al. (2013) but also the canonical Redfield ratio. Both the

model and the in situ histograms in Fig. 6 were normalised
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Figure 6. The ratio of particulate organic carbon to particulate or-

ganic nitrogen in the Martiny et al. (2013) in situ data set and in

the model. The Redfield ratio is also shown as a red vertical line.

The model data were taken from a monthly climatology of the top

200 m of the final 10 years of running, excluding the Arctic Ocean.

Both the ERSEM and the Martiny et al. (2013) histogram were nor-

malised to unity area.

to unity area. A summary of the statistical analysis of Fig. 6 is

shown in Table 3. The mode shown in Table 3 was calculated

by finding the most populous group after binning the model

ratio in bins of width 0.1. The bin widths used to calculate

the mode are finer than those shown in Fig. 6.

The POC of the model in Fig. 6 was calculated as the sum

of the carbon components of all phytoplankton functional

types, all zooplankton functional types and the particulate

detritus groups. These are the same groups that were used

to calculate POC in Sect. 3.2. The PON was calculated as

the sum of the nitrogen components of the same groups. An

artificial detection limit of 0.1 µmolm−3 was applied to the

modelled PON component of the ratio. The model data were

a monthly climatology of the final 10 years of the simulation

(1997–2007), excluding the Arctic Ocean and all model data

below 200 m. Unlike the data selections of Sect. 3.1 and 3.2,

the Antarctic domain, inland seas and shallow seas are in-

cluded in this data. This is because the Martiny et al. (2013)

data set does not contain any measurements from the Arc-

tic Ocean, but it does include many data from the Southern

Ocean, inland seas and shallow seas.

In nature as in models, particulate organic matter is usu-

ally composed of a combination of phytoplankton, zooplank-

ton and detritus. Experimentally, POM is typically measured

as all organic matter over a certain size that can accumu-

late in a filter. In ERSEM, POM is the sum of the all four

phytoplankton functional types, all three zooplankton func-

tional types, and the particulate detrital fields. Each phyto-

plankton functional type has an internal variable stoichiom-

etry and the ability to accumulate a luxury buffer of nitro-

gen. The micro-zooplankton and heterotrophic nanoflagel-

lates also have variable stoichiometry that are influenced by

their food source. The mesozooplankton has fixed stoichiom-

etry and exudes the excess nitrogen back into detritus. There

are six detritus size classes in ERSEM: three dissolved and

three particulate classes, but the dissolved organic matter

fields did not contribute to the POM shown here.

3.4 Intracellular elemental stoichiometry

Stoichiometry is the balance of each element in organisms

and in the ecosystem (Sterner et al., 2002). As mentioned

previously, Redfield observed co-variability in the concen-

trations of dissolved nitrate and phosphate in seawater and

in the composition of plankton (Redfield, 1934). While fur-

ther co-variation has since been observed, considerable vari-

ability in the balance of elements in particulate organic mat-

ter and intracellular material has also been observed (Mar-

tiny et al., 2013). The ratio of each element against carbon

has been shown to vary significantly between region, taxa,

ecosystem role and physiological status (Moore et al., 2013).

The co-variability of nutrients and carbon in the ocean is

closely linked with many important metrics of ecosystem be-

haviour, such as primary productivity, community structure,

export and growth rates, and nutrient limitation.

Despite the significance of marine nutrient cycles, co-

limitation by two or more nutrients is still poorly understood,

and appears infrequently in models (Moore et al., 2013). Fur-

thermore, variable stoichiometry and co-limitation are re-

quired features in order to represent the spatial distribution

of nutrient limitation. ERSEM is one of the few models that

does implement variable stoichiometry. In addition to its car-

bon cycle, ERSEM resolves four nutrient cycles: nitrogen,

phosphorus, iron, and silicon. All four nutrients can become

limiting or co-limiting for any given phytoplankton func-

tional type, with the exception that only the diatoms interact

with silicon. In addition, nitrogen, phosphorus and iron up-

take and limitation in ERSEM are based on the Droop model

(Droop, 1973), which uses the internal nutrient concentration

to carbon ratio rather than external inorganic nutrient concen-

trations to determine phytoplankton behaviour. The silicate

limitation and uptake for diatoms is computed from the ex-

ternal availability of dissolved silicate, based on Michaelis–

Menten kinetics (Johnson and Goody, 2011).

In their meta-study, Moore et al. (2013) compiled multi-

ple data sets of simultaneous measurements of particulate or-

ganic carbon and nutrients. To visualise this data, they pre-

sented a comparison of the ratio of each element against car-

bon. For each nutrient, they plotted the typical organic nutri-

ent : carbon ratio on the x axis against the typical inorganic

nutrient : carbon ratio on the y axis. Figure 7 shows a ver-
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Figure 7. A comparison of the ratio of each modelled nutrient to

carbon ratio in organic matter against the dissolved inorganic nutri-

ent to carbon ratios. This figure shows a colour-coded distribution of

the modelled nitrogen, phosphorus, iron and silicon to carbon ratios.

The model distribution means are indicated by circular markers,

and the typical in situ value and observed range from Moore et al.

(2013) are shown as square markers with horizontal bars. The ver-

tical bars associated with the square markers were calculated from

World Ocean Atlas data (Garcia et al., 2010) and GEOTRACES

(Henderson et al., 2007).

sion of this figure produced using the four ERSEM nutrients.

This figure shows the model distribution with the mean of the

model data in circular markers, and the typical in situ value

and observed range from Moore et al. (2013) in square mark-

ers with black bars.

The organic component of Fig. 7 was calculated as the

ratio of particulate organic nutrient to particulate organic

carbon for each nutrient. The POC was calculated in the

same way as in Sect. 3.2 and 3.3: where POC is the sum

of the carbon components of all phytoplankton functional

types, all zooplankton functional types and the particulate de-

tritus groups. The particulate organic nitrogen, phosphorus

and iron were calculated as the sum of the nitrogen, phos-

phorus and iron components of the same groups. Although

ERSEM includes four pelagic silicon fields (diatom silicon,

inorganic silicate, and medium and large particulate detrital

silicon), the calculation of particulate organic silicon follows

the methods of Moore et al. (2013), and only uses the silicon

component of diatoms.

As previously described, the modelled ratio of particulate

organic nutrient to carbon can vary according to local con-

ditions such as light, temperature and predation. For all of

these interlocking and competing components to reproduce

the stoichiometric variability of the global ocean, all phyto-

Table 4. Table showing the typical, minimum and maximum or-

ganic and inorganic ratios against carbon for Moore et al. (2013)

and for the ERSEM simulation.

Observed ERSEM

N : C 0.13 0.17

Mean P : C 0.008 0.02

organic Si : C 0.13 0.14

Fe : C 6.1×105 5.4×106

N : C [0.05, 0.17 (0.5a)] [0.09, 0.21 ]

Range P : C [0.001, 0.026] [0.006, 0.039]

organic Si : C [0.08, 1.01] [0.13, 0.15]

Fe : C [2.1×106, 2.6×104] [1.5×106,3.5×105]

N : C 0.013 0.0008

Mean P : C 0.00089 0.0002

inorganic Si : C 0.044 0.0053

Fe : C 2.4×107 2.8×107

N : C [8.9×108, 0.02]b [5.0×105, 0.012]

Range P : C [8.9×108, 0.01]b [2.8×106, 0.0008 ]

inorganic Si : C [1.7×107, 0.06]b [5.4×106, 0.036]

Fe : C [8.7×109, 2.6×106]c [6.8×109, 2.4×106 ]

All observation data are taken from Moore et al. (2013) except: a indicates values from

Martiny et al. (2013), which were not taken into account in Moore et al. (2013); b indicates

data calculated using World Ocean Atlas data (Garcia et al., 2010); and c indicates data

calculated using GEOTRACES data (Henderson et al., 2007).

plankton functional types, zooplankton functional types and

detrital fields and their interactions need to be parameterised

sensibly. The overall particulate organic matter stoichiome-

try in ERSEM is not susceptible to tuning via a small number

of parameters.

The inorganic component of the model data were taken

directly from the output of the simulation. The dissolved in-

organic carbon (DIC) cycle in the model is described in Ar-

tioli et al. (2012). There are no explicit limitations of the up-

per or lower limits of inorganic nitrogen, phosphorus or sili-

con in the model. However, there is a soft cut-off for iron at

0.6 nM to take into account for hydroxide precipitation (Au-

mont et al., 2003) and a firmer upper limit of 2 nM to take

into account for the saturation concentration.

The minimum, maximum and mean values of each ratio

against carbon in Fig. 7 are shown in Table 4. This table in-

cludes the typical Moore et al. (2013) data mean and range,

and the data from the model run. Moore et al. (2013) did not

include any measure of variability in the inorganic data; the

inorganic range shown in Fig. 7 and Table 4 was included

here as another test of the model. The variability in the in-

organic axis is due to the co-variability in the dissolved in-

organic carbon and the dissolved inorganic nutrient. How-

ever, the range of variability in DIC is usually of the order of

15 %, but dissolved inorganic nitrogen, phosphorus, iron and

silicon can vary by several orders of magnitude. This means

that most of the variability in the y axis is mostly due to the

inorganic nutrient, not the DIC. The ranges of the ratio were

estimated using the Moore et al. (2013) typical value as a
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constant value for the DIC, and the minimum and maximum

values of the nutrients contribution to the inorganic nutrient

to DIC ratio were taken from data from the World Ocean At-

las (Garcia et al., 2010) for nitrogen, phosphorus and silicon,

and GEOTRACES for iron (Henderson et al., 2007). This

means that the ranges are not the most extreme values ever

recorded, but reflect the most extreme values of inorganic

nutrient concentration seen on a gridded climatological data

product.

Furthermore, the range of variability in the organic nutri-

ent : carbon ratios might not reflect the most current knowl-

edge. As stated in Moore et al. (2013), “maximum and min-

imum values will typically correspond to nutrient replete

or limited cultures respectively and ranges could potentially

be extended through observations of other taxa and growth

conditions.” For instance, Moore et al. (2013) cited an ob-

served maximum phytoplankton N : C quota of 0.169, but

the Martiny et al. (2013) data set has observational data all

the way down to their cut-off point, which was a C : N ratio

of 2 : 1. Note that Moore et al. (2013) used the N : C ratio,

but Martiny et al. (2013) used a C : N ratio. Also note that

the model data do not show any histogram distribution, only

presence/absence. The presence/absence model data in Fig. 7

is extracted from the top 40 m of the global model between

1997 and 2007 and excludes the shallow seas, inland seas

and the Arctic and Southern oceans. The model data were

not further sub-sampled to match the sampling locations of

the in situ data. This data have a monthly time resolution and

are not climatologically averaged.

In addition, it has been shown by Karl et al. (1998) that

measurements of particulate organic matter may be exagger-

ated by contributions from dissolved organic matter. Whereas

the ratio calculated in the model does not include any contri-

bution from dissolved organic matter.

4 Discussions

It has been shown that the ERSEM global hindcast success-

fully reproduced many natural behaviours of the ecosystem.

Each of these behaviours has covered a different aspect of

ecosystem function, and when combined together they illus-

trate the potential of model validation with emergent proper-

ties and ecosystem function.

4.1 Phytoplankton community structure

In the top panel of Fig. 3, there is a cluster of points where the

diatom and large phytoplankton functional types unexpect-

edly dominate the community structure at low total chloro-

phyll. These points account for less than 0.2 % of the data, af-

ter the cuts described above were applied. Furthermore, they

only appear adjacent to the excluded shallow and polar seas.

While there is also some evidence of the proportion of large

cell increase in the polar regions (Sosik and Olson, 2002),

we postulate that it is a combination of multiple factors that

creates this excess microphytoplankton. First, in the polar re-

gions there is an abundance of nutrients, and especially sili-

con, caused by excessive mixing in the physical model. Sec-

ond, the model is parameterised to favour diatoms in low-

light regions. These factors collude to create an abundance

of diatoms and large phytoplankton at low total chlorophyll.

When the polar, shallow and inland sea regions are included

in the model, the number of points included in these regions

of the figure increases. As an example, the fit to the three-

population model was performed to all the model data from

the top 40 m of the surface. The results of this fit are shown

in the ERSEM (top 40 m) column of Table 1. Relative to the

Brewin et al. (2015) fit, the fit of the ERSEM model data to

the three-component model shows an overabundance of di-

atoms and large phytoplankton and an underestimate of pico-

phytoplankton at almost all chlorophyll concentrations. Nev-

ertheless, it is important to stress that the three-population

community model is an appropriate emergent property for

open ocean outside the polar regions.

Similarly, both Figs. 2 and 3 show that the model also

has a modest surplus of diatoms and large phytoplankton

at low chlorophyll concentrations in this simulation, which

coincides with a low proportion of picophytoplankton. It is

likely that this fault is caused by the same factors that cause

the microphytoplankton PFT to dominate the community in

a small number of cases. However, it is likely to be mitigated

in most of the ocean by a lower silicate concentrations lead-

ing to slightly stronger silicate limitation for diatoms.

The model data were limited to the top 40 m of the sur-

face ocean, and the relationship breaks down in Arctic wa-

ters in the model. Hints of the breakdown of the community

structure appear in the in situ data (Brewin et al., 2015), but

are seen clearly in the model. It became clear that the large

phytoplankton and diatom functional types are in excess at

low chlorophyll concentrations in the modelled community

structure. In addition, the picophytoplankton chlorophyll as

a fraction of the community behaves much more like the con-

cave empirical fit to data seen in Hirata et al. (2011) than like

the convex three-population model of Brewin et al. (2010) at

low chlorophyll concentrations.

Despite these limitations, ERSEM was very successful at

reproducing the overall shape of the community structure

and natural balance of phytoplankton abundance between the

four PFTs. This means that the combination of the nutrient

affinity, growth rates, photosynthetic behaviour and preda-

tion rates ecosystem functions were modelled appropriately

enough to bring out a natural emergent community structure.

This is a robust and well-known emergent property that can

be reproduced successfully by ERSEM, despite the problems

in the prescribed physical simulation.
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4.2 The carbon to chlorophyll ratio

Together, the particulate organic carbon to chlorophyll and

phytoplankton carbon to chlorophyll ratios from Sect. 3.2

demonstrate that the phytoplankton biomass forms an

appropriate fraction of the particulate organic matter. This

means that the balance of producers to the rest of the organic

matter, including zooplankton and detritus, is similar to na-

ture over the range of observed total community chlorophyll.

In both Figs. 4 and 5, there is a region where the phyto-

plankton carbon is much less than the Sathyendranath et al.

(2009) fit, and this group of data appear to have a different

slope than the bulk of the data. The phytoplankton carbon in

the data points are almost entirely composed of diatoms and

large phytoplankton, near the polar regions, and account for

approximately 2.5 % of the data set. Similarly to Sect. 3.1,

this region highlights that the issues of the abundance of sili-

cate caused by excessive mixing, the favouring of diatoms in

low-light regions and the relatively low grazing pressure on

microphytoplankton from zooplankton at low phytoplankton

biomass concentrations. When the polar, shallow and inland

sea regions to a depth of 40 m are included in the analysis,

the number of points included in these regions increases up

to approximately 11 % of the data set. This is another indi-

cation that either the model has not captured the behaviour

of the high latitude regions, or the emergent property breaks

down in these regions. Unfortunately, Sathyendranath et al.

(2009) did not include any data from Polar regions in the

winter that could be used to test this hypothesis.

The carbon to chlorophyll relationship has many knock-

on effects in the model: it influences the entire carbon cycle

and has a huge impact on the calculation of total global pri-

mary production. When the model successfully reproduces

the carbon to chlorophyll ratio in a global ocean simulation,

this is an indicator that it has a good enough approximation

of the roles of light, temperature and nutrient limitation in

each of the plankton functional types. The fact that the model

reproduces the natural range of behaviours of the carbon to

chlorophyll ratio highlights that the ecosystem model func-

tions appropriately over a range of environments. However,

there may be other ecosystem functions that are currently ab-

sent in the model that could affect this ratio, such as the pres-

ence of higher trophic levels, anthropogenic detritus sources,

or an improved model of photo-inhibition.

4.3 Particulate organic carbon and particulate

organic nitrogen

Figure 6 shows a comparison of the ratio of particulate or-

ganic carbon to particulate organic nitrogen in the model and

in an distribution of in situ measurements. In ERSEM, none

of the detritus fields have any limitations on their stoichio-

metric variability. This means that the models POC : PON

ratio can vary according to local conditions and predation,

and the overall particulate organic matter stoichiometry in

ERSEM is not susceptible to tuning via a small number of

parameters. In order for all of these interlocking and compet-

ing components to reproduce the POC : PON ratio variability

in the global ocean, it requires all the phytoplankton func-

tional types, zooplankton functional types and detrital fields

to be balanced and healthy.

While the model captures the central tendency of the

in situ data, it does not capture the range of observed

POC : PON ratios or the shape of the distribution seen in the

data. The model underestimates the frequency of POC : PON

ratios below 5 and above 6.5. It is possible that some of this

difference is due to spatial bias and uneven sampling of the in

situ data. In that case, it may be possible to capture more of

the shape of the Martiny et al. (2013) data by sub-sampling

the model data to match the distribution used to produce their

data. However, the model data shown here is a monthly mean

of a 1◦ by 1◦ square of ocean. The variability seen when tak-

ing an instantaneous measurement of the concentration in

a bottle of seawater will always be more extreme that the

mean value of a 1◦ by 1◦ square of ocean. Second, in this

work, we attempt to validate the models ecosystem function

over a large scale without the use of point-to-point matching.

The model’s narrow POC : PON distribution is reflected in

its the standard deviation (0.61), which is much lower than

that seen in data (2.46). However, the range of stoichiometric

variability seen in measured POC : PON data are underesti-

mated in the model. Furthermore, there are precisely zero

model data with a POC : PON ratio below 4.3 or above 16.5,

whereas the Martiny et al. (2013) data range from 2.0 to 20.

This behaviour in the model is linked to the fixed maximum

luxury buffer of nitrogen relative to carbon in all the phy-

toplankton functional types. This maximum nitrogen buffer

translates to a fixed minimum value of the POC : PON ratio,

which is maintained as it cascades through the trophic levels.

On the other end of the scale, there is a minimum require-

ment of nitrogen to carbon, below which the phytoplankton

are nitrogen limited and do not grow.

One downside of the simultaneous analysis of all PFTs is

the introduction of the risk of compensating errors. This oc-

curs when an error in the C : N ratio from one group is bal-

anced by a similar but opposite error in another group. For

this reason, we recommend that model validations also check

each the C : N ratio for each PFT individually.

While the model does not reproduce the standard deviation

or the tails of the distribution seen in data, the ERSEM sim-

ulation was particularly successful at reproducing the mode

of the Martiny et al. (2013) POC : PON ratio. This means

that the most common values in the modelled POC : PON ra-

tio are the same as the most common values in the in situ

measurement of POC : PON. The reproduction of the mode

of the data set by the ERSEM model is a strong indication

that the most common behaviour of the POC : PON relation-

ship is appropriately simulated. The ability to reproduce this

ratio from the combination of four phytoplankton functional

types, three zooplankton functional types and three classes
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of particulate organic detritus, all of which have variable sto-

ichiometry (except mesozooplankton), is a sign of the valid-

ity of models parameterisation of the balance of carbon to

nitrogen.

4.4 Intracellular elemental stoichiometry

The stoichiometric variability of particulate organic matter

against the ratio of inorganic nutrients to DIC was shown

in Fig. 7. This figure showed the typical organic nutri-

ent : carbon ratio on the x axis against the typical inorganic

nutrient : carbon ratio on the y axis. In addition to the typical

values and the models distributions, this figure also showed

a range of values that have been observed for each element.

This figure demonstrated that the range of stoichiometric be-

haviours present in the model match those measured in situ.

The ratios of the inorganic nutrients to carbon in the model

do not typically get as low as the estimates of this ratio, ex-

cept iron. This is a problem with the model parameterisations

that has also been seen in Sect. 4.3, which will need to be ad-

dressed in future parameterisations. This is an example of the

use to emergent property validation as a tool to direct future

model development efforts.

The ratio of nitrogen to carbon is shown in blue in Fig. 7.

The model captured the mean organic N : C ratio, but had

a wider range of values than that quoted by Moore et al.

(2013). However, the maximum value of the N : C ratio has

been extended from 0.169 to 0.5 after the Martiny et al.

(2013) results were included. The model underestimated

both the mean inorganic ratio and the range of variability in

the inorganic N : C ratio. The model appears to have a fixed

lower limit of the dissolved inorganic nitrogen : DIC ratio

that is higher than the minimum nitrogen : carbon ratio es-

timated from the World Ocean Atlas (WOA) data set (Garcia

et al., 2010).

The mean organic phosphorus : carbon ratio is overesti-

mated by the model, but the mean inorganic P : C ratio is un-

derestimated. The range of the inorganic and organic P : C ra-

tios were underestimated by the model relative to the Moore

et al. (2013) data. However, both the organic and inorganic

phosphorus in the model show a wide range of behaviours,

reflecting those seen in nature. Similarly to the nitrogen case,

the lowest values of the models dissolved inorganic phos-

phorus to DIC ratio is higher than the lowest values seen in

the estimated DIP : DIC range. This means that the inorganic

phosphorus in the model never gets as depleted as the mini-

mum observed ratio estimate. However, the range of the in-

organic P : C ratio from the WOA estimates has no indication

of the frequency distributions of the P : C ratio range, so it is

entirely possible that this extremely low inorganic P : C ra-

tio is also relatively rare. In addition, the model data are the

mean of a 1◦ by 1◦ patch of ocean, whereas the observational

data originates from the mean of a 1 litre bottle, which would

imply that we can expect fewer extreme values in the model.

The modelled P : C ratio also illustrates the effect of external

resource limitation: as the inorganic P : C ratio decreases, the

organic P : C ratio simultaneously decreases. This figure can-

not indicate whether the drop in the organic P : C ratio occurs

in the phytoplankton, zooplankton, or detritus, or in some

combination of all three groups. Due to the trophic cascade

of the POC : PON ratio described in Sect. 4.3, we postulate

that this effect is caused by the modelled phytoplankton be-

coming nutrient stressed in low phosphorus environments.

The ERSEM model has four pelagic silicon fields: diatom

silicon, inorganic silicate, and medium and large detritus sil-

icon. The Si : C ratio in Moore et al. (2013) and in Fig. 7

are strictly limited to diatoms; there are no quotas associ-

ated with particulate organic silicon in other components of

the ecosystem shown here. The modelled ratio of silicon to

carbon, shown in purple in Fig. 7, captured the range of vari-

ability in the inorganic version of the ratio. The range of the

dissolved inorganic silicon to DIC ratio was estimated from

World Ocean Atlas, Garcia et al. (2010), and is shown as

a vertical purple dashed line in Fig. 7. As only diatom sil-

icon are included in this figure and ERSEM has very little

variability in the silicate stoichiometry for diatoms, there is

no variability in the organic component for silicate. There is

only a very slim range of Si : C ratios allowed in the mod-

elled diatoms because the diatoms Si : C quota is set close to

the optimal Si : C quota. External silicate limitation directly

reduces carbon assimilation and respiration losses may cause

small fluctuations in the diatoms Si : C quota (Butenschön

et al., 2015). This means that the nutrient stress effect seen in

the P : C ratio is not seen in the Si : C ratio. Instead of regu-

lating the internal quota at low inorganic Si : C ratios, diatom

growth is reduced and the community structure changes to

disfavour diatoms.

The mean organic iron : carbon ratio in the model is lower

than the same ratio in Moore et al. (2013): the model un-

derestimated the mean organic ratio by an order of mag-

nitude. However, the Fe : C ratio is the only inorganic nu-

trient : carbon ratio where the model captured the estimated

range. While there is an atmospheric iron source from dust,

the model does not include any atmospheric, riverine or hy-

drothermal sources of nitrogen, silicon or phosphorus. The

nitrogen, silicon and phosphorus shown in this paper have

been circulated, consumed and recycled for more than 100

simulated years and the relationship between organic and in-

organic nutrients, and nutrients against carbon are still all

representative of nature. On the other hand, the iron cycle

is nudged towards what is observed in nature by an climato-

logical surface deposition, and through hydroxide precipita-

tion and saturation removal of excess iron. This means that

the distribution of inorganic iron is not an emergent property

of the model, but rather a tuned outcome. These nudges are

needed because the iron cycle of ERSEM is much less com-

plex than that seen in a nature. An example of a more natural

iron model is Tagliabue et al. (2009), which has three bio-

available forms of iron and two complexed forms of iron.

Despite this, as the inorganic Fe : C ratio in our model de-
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creases, the organic ratio also decreases, indicating that the

organic community become increasingly nutrient stressed in

low iron environments.

Anthropogenic nutrient loading is expected to increasingly

influence nutrient cycles in the ocean and this may lead to

shifts in the nutrient balance (Paerl, 1997). Unfortunately,

this model does not include any anthropogenic nutrient load-

ing, or indeed any flux of riverine nutrients, and the iron dust

deposition is forced with an annual climatology.

Overall, Fig. 7 informs one about the relationship between

the inorganic and organic component of the stoichiometric

balance. Effectively, it illustrates whether nutrient limitation

and nutrient stress are parameterised in a way that reflects

nature. Much of the modelled organic matter appears to be

iron poor and phosphorus rich relative to nature. The model

never captures the lowest dissolved inorganic nitrate, phos-

phate, or silicate concentrations. It might be expected that

the model will produce a wider range of quotas than the his-

toric data sets as the ocean is vastly under-sampled relative

to the model. On the other hand, the model is the mean of

a 1◦ by 1◦ patch of ocean, and the data are typically the mean

of a 1 litre bottle, which would imply less variability in the

model. Furthermore, some of the in situ data may originate in

coastal data sets, which have a higher spatial variability than

would be seen in a coarse global model.

4.5 The role of emergent properties

Combined together, these relationships have provided infor-

mation about community structure and balance of C : Chl in

phytoplankton, the ratio of POC : PON in particulate organic

matter, the stoichiometric flexibility of POM and dissolved

inorganic nutrients. While some selection cuts have been

necessary to reduce the impact of non-physical behaviour,

the combination of the relationships can be used to validate

the ecosystem model without relying on the model to repro-

duce an historic measurement at exactly the right place and

time. These methods should allow for a validation of the be-

haviour of the BGC model irrespective of the quality of lo-

calised features of the physical model. In this way, these tools

compliment current validation methods, such as the point to

point, that may not function ideally in an inappropriately pa-

rameterised physical ocean model. Furthermore, many of the

features seen here, such as the community structure, would

not be explicitly apparent in a point-to-point comparison of

model to observations.

While it has since expanded beyond its original remit, the

European Regional Seas Ecosystem Model was originally

built as a model for simulating temperate shelf seas. This

work confirms the work of Vichi et al. (2007) by demonstrat-

ing using emergent properties that many of ERSEM’s design

choices and parameterisation are still appropriate in a global

context. Furthermore, these emergent relationships were not

explicitly parameterised in model development; all of them

arise naturally out of a combination of many other ecosys-

tem functions.

The combination of these well-known phenomena have

allowed for a test of the majority of the modelled fields

throughout the surface ocean. However, these relationships

do not cover all aspects of the model. They do not give in-

formation about the food web such as the balance of zoo-

plankton and detritus functional types to each other and to

the phytoplankton functional types, or about the bacterial

community or benthic environment in the model. Also these

relationship do not cover important fluxes such as primary

production, air–sea gas exchange, or export from the surface

layers.

The nutrient cycles of carbon, nitrogen, phosphorus and

iron are all influenced by the bacterial loop. The bacterial

biomass does not contribute their biomass to the calculation

of particulate organic matter used in Sect. 3.3 or 3.4, but the

bacterial functional type competes with the phytoplankton

for the inorganic nitrogen and phosphorus. The bacteria is an

additional food source for zooplankton whilst also competing

with the zooplankton by scavenging non-silicon particulate

detritus. In addition, the bacterial group only excretes to the

dissolved organic matter detrital fields. This means that the

bacterial functional type wields influence over a significant

portion of the pelagic model. Unfortunately, this work could

not locate an emergent property to investigate the bacterial

behaviour in the model. Some potential avenues where emer-

gent properties may be found in the future include the ratio

of primary production to bacterial production or the bacterial

growth efficiency.

The models grazers biomass were implicitly included in

the POC : PON, POC : Chl and the stoichiometric relation-

ships. However, there are no metrics included here to study

the zooplankton by themselves. The authors are not aware of

any stable global emergent property for describing the grazer

community.

These emergent relationships were selected to reduce the

impact of spatial biases, but these relationships may still be

influenced by uneven in situ data spatial and temporal cover-

age. This bias could potentially be resolved by using a point-

to-point analysis for the emergent properties; however, this

may limit the scope and the power of the emergent prop-

erty validation. These emergent properties also require the

assumption that the property can be extended to cover the

entire ocean. Some emergent properties have not been tested

in shallow or high latitude seas, and may not hold across all

marine environments.

5 Conclusions

Ecosystem relationships are coherent structures, patterns and

properties that are observed to be robust in nature and can

be reproduced by a sufficiently complex model. They allow

us to demonstrate how natural behaviour emerges from the
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model. As they are well-established functional relationships

that hold true over large regions of the global ocean, they are

a valuable tool for validating ecosystem model in data sparse

regions.

As ecosystem functions arise independently of local phys-

ical conditions of the ocean, they can be used to demonstrate

model quality in the case of when the physical features of

a sea are not co-located in the model and in nature. While

these methods cannot compensate for a catastrophic failure

of the circulation model, these methods may overcome lim-

ited weaknesses in the ocean physics such as a displacement

in ocean fronts or the mixed layer depth. These limited uncer-

tainties have the potential of spoiling a point-to-point metric

even though they may only be a minor error in the overall

picture.

Most importantly, an explicit analysis of the reproduc-

tion of ecosystem functions by the model is the only way

to demonstrate the models capacity to represent ecosystem

function, as opposed to a demonstration of quantitative met-

rics of absolute ecosystem state. None of the features shown

here would be visible in a model to data comparison of static

historical concentration measurements. For these reasons,

ecosystem functions are a critical tool for the validation of

marine ecosystem models.

In future works, it should be possible to use emergent

properties to test hypotheses during biogeochemical model

development. As an example, if some process X is expected

to influence an emergent property Y, a comparison of the

emergent property Y in the presence and absence of X may

yield insight as to the value of that process in models. Simi-

larly, a comparison of the emergent property Y in two mod-

els with alternative parameterisations for process X may fa-

cilitate the selection of a parameterisation. A second poten-

tial avenue for future research would be to test the indepen-

dence of the biogeochemical model from the physical model

by comparing the emergent properties from the same BGC

model coupled against multiple physical models. Finally, it is

important to remember that each emergent property that the

model fails to reproduce is a new direction for future model

development.

Code availability

The ERSEM model is available under the GNU Public Li-

cense version 3 (GPL3). Interested parties are encouraged

to register at the Shelf Seas Biogeochemistry home page,

www.shelfseasmodelling.org, to register in order to down-

load and use the model for their own purposes.

The analysis toolkit used in this work is available from the

author upon request under the terms of the Revised Berkeley

Software Distribution (BSD) 3-clause license.
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