In hot water: zooplankton and climate change

Richardson, AJ. 2008 In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65 (3). 279-295.

Full text not available from this repository.
Official URL: <Go to ISI>://000256130200002

Abstract/Summary

An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.

Item Type: Publication - Article
Additional Keywords: climate change, climate variability, distribution, global change, global warming, phenology, zooplankton
Divisions: Sir Alister Hardy Foundation for Ocean Science
Depositing User: Miss Gemma Brice
Date made live: 26 Mar 2014 14:09
Last Modified: 06 Jun 2017 16:11
URI: http://plymsea.ac.uk/id/eprint/5917

Actions (login required)

View Item View Item