REQUIREMENT FOR THIAMINE AMONG SOME MARINE AND SUPRA-LITTORAL PROTISTA

By M. R. DROOP

Marine Station, Millport, Scotland

(Text-fig. 1)

It has been known for some years that a need for an exogenous source of thiamine exists among algal flagellates (Lwoff & Lederer, 1935; Provasoli & Pintner, 1953) and indeed the requirement coupled with one for B_{12} is quoted as characterizing auxotrophic algae (Provasoli, McLaughlin & Droop, 1957). Nevertheless, published data for marine species concerning thiamine are limited to a recent paper by J. J. A. McLaughlin (1958) which establishes an absolute requirement for thiamine on the part of *Prymnesium parvum*. The reason for this is partly due to interest in thiamine taking second place to interest in vitamin B_{12} and partly to the fact that thiamine-free media are not easily prepared, so that the requirement for the vitamin appeared as stimulatory rather than absolute (Droop, 1953*a*, 1957).

The following is an attempt to remedy this state of affairs as regards a few species maintained in bacteria-free culture at Millport.

The strains used

METHODS

In the first instance B_{12} requiring strains were chosen for the study, then two known to have no B_{12} requirement were added and finally some dinoflagellates on which there were no data (Table 1).

Culture media

Basal media were as follows: for *Skeletonema*, S 36 with thiamine omitted (Droop, 1955*b*); for *Hemiselmis*, S 46 with thiamine omitted (Provasoli *et al.* 1957); and for the remainder, excepting *Oxyrrhis*, S 50 with thiamine omitted. S 50 is given in full in Table 2. It differs from my previously published media chiefly in the composition of the trace metal mixture and the replacement of the pH buffer tris(hydroxymethyl)aminomethane by glycylglycine (which is very much less toxic to some species than TRIS) and glycine (which increases the buffering of the medium in the region of pH 9–10).

The media for *Oxyrrhis* are to be discussed fully in a paper on the nutrition of this species shortly to be published. Thiamine data are included here for the sake of completeness.

M. R. DROOP

Both stocks and experimental cultures were kept in Pyrex test-tubes 15×150 mm. Oxo aluminium test-tube caps were employed to begin with, but were replaced by cotton wool when it was realized that contamination from this source was certainly less than 10 mµg/l.

TABLE 1. STRAINS USED

(Millport reference numbers in parentheses)

Chrysophyceae		
Monochrysis lutheri	(60)	Droop, 1953 <i>a</i> , 1954
Prymnesium parvum Carter	(65)	Droop, 1954
Syracosphaera elongata	(62)	Droop, 1954, 1955 <i>a</i>
Microglena arenicola	(72)	Droop, 1955 <i>a</i> , 1957
Cryptophyceae		
Hemiselmis virescens	(64)	Droop, 1955 <i>a</i> , 1957
Chlorophyceae		
Nannochloris oculata	(66)	Droop, 1955 <i>a</i>
Bacillariophyceae		
Skeletonema costatum (Grev.) Cleve	(73)	Plymouth strain, Droop, 1955b
Phaeodactylum tricornutum Bohlin (syn.	(14)	Finnish strain, Droop, 1953a
Nitzschia closterium f. minutissima (W.		, , , , , , , , , , , , , , , , , , , ,
Smith) Allen & Nelson)		
Dinophyceae		
Glenodinium foliaceum Stein	(47)	Finnish strain, Droop, 1953a
Peridinium trochoideum (Stein) Lemm.	(88)	From the Clyde
Oxyrrhis marina Dujardin	(18)	Finnish strain, Droop, 1953b
TABLE 2. N	AEDIUM	S 50

NaC1 Na₂EDTA 15 g Br 22 mg 50 mg Glycylglycine 500 mg MgCl₂6H₂O Sr 3.8 mg Fe 2.5 g 500 µg Glycine 250 mg 28 µg KNO. KČl A1 Mn 400 mg 50 µg 100 mg CaSO₄2H₂O 500 mg Rb 61 µg Zn 5.0 µg K2HPO4 IO mg 6.0 µg B12 Li Cu 5.0 µg 100 mµg Τ Thiamine 20 µg Co 500 mµg I.O mg Mo 500 mµg H_oO to I.0 l. pH adjusted to 8

Where possible, growth was measured optically, in which case it is expressed as percentage transmission or as $OD \times 100$, $\left(=100 \log_{10} \frac{100}{\% \text{ transmission}}\right)$. It was necessary to count in other cases; growth is then expressed as cells per mm³.

Serial transfer experiments

RESULTS

The concentrations over which growth is a function of thiamine concentration in other micro-organisms is $0-500 \text{ m}\mu g/l$. (Snell, 1951); and since my stock media contained up to 1 mg/l. of the vitamin, at least two transfers were necessary to reduce the concentration sufficiently in the blanks (cultures receiving no addition of the vitamin). This naturally depended on the size of the inoculum which was, therefore, made as small as possible. With Monochryses, Prymnesium, Syracosphaera, Microglena, Nannochloris, Phaeodactylum

THIAMINE REQUIREMENT IN PROTISTA

and *Skeletonema* the inoculum could be reduced to 0.02 ml., thus allowing a 300-fold reduction at each transfer, so that the blanks of the second should have contained about 10 m μ g/l. With *Hemiselmis* and the dinoflagellates, however, an inoculum of 0.2–0.3 ml. was advisable which only allowed a 20-fold reduction, with the consequence that four transfers were necessary to deplete the blanks to the same extent.

Transfers were made from the blanks. To the other cultures the vitamin was added initially in the form of the complete molecule (0.1 mg/l.), but later

TABLE 3. SERIAL TRANSFER EXPERIMENTS WITH THIAMINE

(-, blan	k; +.	with o	D'I	mg/l.	thiamine.	OD × 100.)
----------	-------	--------	-----	-------	-----------	------------

Species

													_		
Transfer No.	Nar	nno- oris		eodac- lum	-	ono- ysis	Pryn	nnes- m		aco- aera		cro- ena		nisel-	
		-	+	-	+	-	+	-	+	-	+	-	+	-	+
I		66	68	57	70	122	110	80	92	44	41	35	52	32	70
2		92	92	89	100	30	140	0	80	16	39	II	48	. 7	IIO
3		IIO	100	92	89	4	150	2	80	27	59	22	43	2	105

TABLE 4. SKELETONEMA COSTATUM, SERIAL TRANSFER EXPERIMENTS (OD \times 100. standard errors in parentheses, n=5.)

Treatmen	
reatmen	1t

		A	
Transfer no.	Blank	1∙0 mg/l. Na₂S9H₂O	0·1 mg/l. thiamine
2	27 (5.4)	21 (9.0)	40 (3.7)
3	39 (1.0)	39 (0.8)	39 (0.7)
4	0.4 (0.4)	29 (1.25)	21 (3.4)
5	21 (0.7)	30 (1.05)	32 (I·I)

TABLE 5. DINOFLAGELLATE SERIAL TRANSFER EXPERIMENTS

(Numbers per mm³.)

Treatment

			۸.		
Transfer no.	Blank	Thiamine	Thiazole+ pyrimidine	Thiazole	Pyrimidine
		Oxyrrh	nis marina		
I 2	32 8	119 73	113 129	125 72	25 5
		Peridinium	n trochoideum		
2 3 4	9 6 9	8 8 7	13 6 8	13 13 6	7 3 9
		Glenodini	um foliaceum		
2 3 4 5	34 20 28	26 28 33 21	27 27 39 26	30 33 28 26	24 28 31 25

the molecule was 'split' into its components, 4-methyl-5- β -hydroxyethyl-thiazole and 2-methyl-4-amino-5-aminomethyl-pyrimidine, and the following treatments given: (a) blank, (b) complete molecule, (c) thiazole and pyrimidine in equal amounts, (d) thiazole alone, and (e) pyrimidine alone.

The results of the transfer experiments are shown in Tables 3-5.

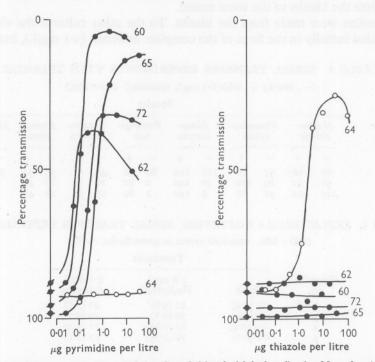


Fig. 1. Response to pyrimidine (left hand) and thiazole (right hand). 60, Monochrysis lutheri; 62, Syracosphaera elongata; 64, Hemiselmis virescens; 65, Prymnesium parvum; 72, Microglena arenicola.

Dose/response experiments

Where time and the material allowed the transfer experiments were confirmed by dose/response experiments in which was measured yield in response to graded doses of thiamine and its component parts. Response curves for the chrysomonads and *Hemiselmis* to pyrimidine and to thiazole are set out in Fig. 1.

DISCUSSION

Table 6 summarizes the results and includes data of other requirements, notably that for B_{12} . Previous reports regarding *Phaeodactylum*, *Nannochloris* and *Skeletonema* are confirmed (Peach & Drummond, 1942; Hutner, 1948; Droop, 1955*a*, *b*). All but two of the species under discussion in this paper

are of littoral or supra-littoral origin, the pelagic strains being *Skeletonema* and *Peridinium trochoideum*: neither had an absolute requirement for thiamine.

Skeletonema has been rather difficult to work with in defined media, because the vigour of cultures seems to depend to a large extent on such factors as pH, oxygen tension and the state of the inoculum—whether, for instance, it is in the exponential or stationary phase of growth, and its relation to the auxospore cycle. Under favourable conditions growth is quite independent of thiamine, and at such times thiamine does happen to be beneficial (as in the fourth transfer, Table 4) it can always be replaced by inorganic sulphide;

TA			RESULTS, Y ROPHIC TEN	WITH DATA ON NDENCIES
	Requirement for thiamine	Portion of vitamin required	Requirement for vitamin B ₁ ,	Other heterotrophic tendencies
Chrysophyceae Monochrysis Prymnesium Syracosphaera Microglena	} +	Pyrimidine	+	(Can utilize some amino acids as N source (Droop, 1955 <i>a</i>)
Chlorophyceae Nannochloris Bacillariophyceae Phaeodactylum	-	enado gere 5 e T ard 6de bas an	ingen) wittler oderne r te v Directoren	Can utilize some amino acids as N source (Droop, $1955 a$)
Skeletonema	o he <u>n</u> ed o decent fine	t oning of Second one	+	Organic compounds sometimes stimulatory in an unspecific way (Droop, 1957)
Cryptophyceae Hemiselmis Dinophyceae Oxyrrhis	} +	Thiazole	{+ ?	Amino N obligatory (Droop, 1957) Amino N obligatory; acetate as C source; phagotrophic in Nature; other B vitamins (unpublished data)
Glenodinium Peridinium	} -	ig mi <u>i</u> slit	+	?

consequently, it is unlikely that the vitamin is functioning here in this same way as in other organisms. Incidentally, neither *Hemiselmis* nor *Oxyrrhis* could utilize inorganic sulphide in place of thiazole. The significance of sulphur-containing compounds in diatom growth has been discussed by Harvey (1939, 1955); Lewin (1954) and Droop (1957)

The results appertaining to two photosynthetic dinoflagellates, *Peridinium* trochoideum and *Glenodinium foliaceum* (Table 5) are not completely satisfactory owing to the lightness of growth normally obtained with these two species. It is noted, therefore, simply that no requirement was demonstrable even after four transfers. On the other hand, a requirement for vitamin B_{12} became apparent on the first transfer and it was not possible to carry either species through more than two transfers in B_{12} -free media.

The four chrysomonads all responded to the pyrimidine half of the vitamin, whereas *Hemiselmis* and *Oxyrrhis* responded to the thiazole half (Fig. 1).

Possibly this represents a phyletic difference between the Chrysophyta and Pyrrophyta, though it is early to tell. With the exception of *Oxyrrhis*, all the species which proved to need thiamine had already been found to have a requirement for vitamin B_{12} (Droop, 1957), but the reverse was not the case.

The Chrysomonads are quite indifferent to the presence or absence of thiazole in the medium, so their response to pyrimidine can be regarded as simple. *Hemiselmis* and *Oxyrrhis*, on the other hand, appear to obtain some benefit from pyrimidine: pyrimidine does not support growth and, in the presence of thiazole, affects yield only slightly, nevertheless, *Hemiselmis* bleaches more quickly in its absence and *Oxyrrhis* fails to produce the fine pink colour characteristic of heavy healthy cultures.

It is not possible to arrive at more than a rough estimate of the magnitude of the thiamine requirement from dose/response curves based on optical measurements (Fig. 1). Furthermore, the basal medium S 50 was developed to suit Monochrysis and was not necessarily that most suitable for the other species. Half-maximal growth of the pyrimidine-requiring organisms appeared to be given by 100–300 m μ g/l. pyrimidine or thiamine; half-maximal growth of both Oxyrrhis and Hemiselmis (requiring thiazole) by ten times as much, i.e. 2000 m μ g/l., thiazole or thiamine. Such a difference in magnitude in thiamine requirement between pyrimidine and thiazole-requiring species has rather interesting implications should it prove to be real and of general occurrence. It suggests either that thiamine has a different function according to whether the requirement is met by one-half of the vitamin or by the other, or, alternatively, that the functions of pyrimidine and thiazole are divorced from each other and that the function of thiamine here is merely to supply either thiazole or pyrimidine as the case may be. Which alternative is biochemically less improbable it is difficult to say. On the other hand, it is possible that thiazole is merely more labile than pyrimidine.

SUMMARY

The requirement for thiamine was examined in eleven marine protists of littoral, supra-littoral or neritic origin. Six were found to have an absolute requirement for the vitamin.

The thiamine-requiring Chrysophyta responded to the pyrimidine half of the vitamin, whereas the two thiamine-requiring Pyrrophyta responded to the thiazole half.

All the species requiring thiamine were auxotrophic with respect to at least one other factor (usually vitamin B_{12}).

For half-maximal growth, species responding to pyrimidine required 100– 300 m μ g/l. pyrimidine or thiamine and species responding to thiazole 2000 m μ g/l. thiazole or thiamine.

REFERENCES

DROOP, M. R., 1953*a*. On the ecology of flagellates from some brackish and fresh water rock pools of Finland. *Acta bot. fenn.*, No. 51, 52 pp.

- 1953b. Phagotrophy in Oxyrrhis marina. Nature, Lond., Vol. 172, p. 250.

— 1954. Cobalamin requirement in Chrysophyceae. Nature, Lond., Vol. 174, p. 520.

---- 1955a. Some new supra-littoral Protista. J. mar. biol. Ass. U.K., Vol. 34, pp. 233-45.

- 1955b. A pelagic marine diatom requiring Cobalamin. J. mar. biol. Ass. U.K., Vol. 34, pp. 229–31.
- 1957. Auxotrophy and organic compounds in the nutrition of marine phytoplankton. J. gen. Microbiol., Vol. 16, pp. 286–93.
- HARVEY, H. W., 1939. Substances controlling the growth of a diatom. J. mar. biol. Ass. U.K., Vol. 23, pp. 499-519.
- 1955. The Chemistry and Fertility of Sea Water, 224 pp. Cambridge University Press.
- HUTNER, S. H., 1948. Essentiality of constituents of sea water for growth of a marine diatom. *Trans. N.Y. Acad. Sci.*, Vol. 10, pp. 136–41.
- LEWIN, J. C., 1954. Silicon metabolism in diatoms. 1. Evidence for the role of reduced sulfur compounds in silicon utilization. *J. gen. Physiol.*, Vol. 37, pp. 589–99.
- LWOFF, A. & LEDERER, E., 1935. Remarques sur 'l'extrait de terre' envisagé comme facteur de croissance pour les flagellés. C.R. Soc. Biol., Paris, T. 119, pp. 971–3.
- MCLAUGHLIN, J. J. A., 1958. Euryhaline chrysomonads: nutrition and toxigenesis in Prymnesium parvum with notes on Isochrysis galbana and Monochrysis lutheri. J. Protozool, Vol. 5, pp. 75-80.
- PEACH, E. A. & DRUMMOND, J. C., 1924. On the culture of the marine diatom Nitzschia closterium (F) minutissima, in artificial sea water. Biochem. J., Vol. 18, pp. 464-68.
- PROVASOLI, L., MCLAUGHLIN, J. J. A. & DROOP, M. R., 1957. The development of artificial media for marine algae. Arch. Mikrobiol., Bd. 25, pp. 392–428.
- PROVASOLI, L. & PINTNER, I. J., 1953. Ecological implications of *in vitro* nutritional requirements of algal flagellates. Ann. N.Y. Acad. Sci., Vol. 56, pp. 839–51.
- SNELL, E. E., 1951. Bacterial nutrition—chemical factors. In *Bacterial Physiology*, ed. C. W. Werkman and P. W. Wilson. 707 pp. New York: Academic Press Inc.